-
摘要:
弧后盆地玄武岩(BABB)是弧后盆地扩张过程中岩浆作用的主要产物,其地球化学组成是认识弧后盆地演化的关键。现今弧后盆地主要集中在西太平洋地区。本文总结了该地区弧后盆地玄武岩的元素地球化学和同位素组成特征。总体而言,相对于开阔大洋洋中脊玄武岩(MORB),弧后盆地玄武岩的主量元素成分变化范围很大,在Al2O3-MgO、TiO2-MgO相关图上偏离了MORB的演化趋势,在MgO相同的情况下表现出更高的Al2O3含量和更低的TiO2含量。弧后盆地玄武岩的微量元素特征一般介于MORB和弧玄武岩之间。一方面,它们与MORB一样在中、重稀土元素之间没有明显分馏;另一方面,与弧玄武岩一样富集大离子亲石元素Rb、Ba、Th、U、K,具有Pb的正异常和Nb、Ta的负异常等。其中,劳海盆、日本海海盆和冲绳海槽有部分样品具有Nb、Ta的正异常,表现出类似于E-MORB的微量元素特征。西太平洋地区弧后盆地玄武岩的Sr-Nd-Pb同位素组成变化范围较大,相对于MORB,其富集组分更常见,总体介于亏损地幔端元(DMM)、1型富集地幔(EM1)和2型富集地幔(EM2)三者之间。不同基底属性(大陆基底和大洋基底)和不同阶段的弧后盆地玄武岩的地球化学组成也有明显区别。弧后盆地玄武岩地球化学成分上的多样性主要受控于源区(地幔楔)的物质组成、熔融程度和岩浆上升过程中的变化等因素。地幔源区的不均一性主要体现在地幔楔自身的化学性质和俯冲板片的物质贡献差异。部分弧后盆地玄武岩具有异常高的地幔潜能温度、高的3He/4He比值以及E-MORB型的微量元素特征,说明其地幔源区还可能受到了地幔柱的影响。地幔潜能温度越高,俯冲流体贡献越多,地幔楔的熔融程度越大。此外,岩浆上升过程中发生的地壳混染、岩石圈中的熔体-岩石反应以及矿物的结晶分离都会改造岩浆的成分。
Abstract:Back-arc basin basalt (BABB) is the product of rifting and spreading ridge magmatism of back-arc basin. The geochemical compositions of BABB record the information of their genesis, which is the key to understand the tectonic evolution of back-arc basin. Back-arc basins are mainly distributed in the Western Pacific. In this study, we summarized the elemental and isotopic characteristics of BABBs from the Western Pacific. In general, the ranges of major elements of BABBs are much larger than those of mid-ocean ridge basalt (MORB). For a given MgO, BABBs have higher Al2O3 content and lower TiO2 content than MORBs, deviating from the elemental trends of MORB on the plots of Al2O3 and TiO2 versus MgO. The trace elemental characteristics of BABB are generally between MORB and arc basalts. On the one hand, BABB has no obvious elemental fractionation between medium and heavy rare earth elements, which is similar to MORB. On the other hand, BABB is rich in Rb, Ba, Th, U, K, with positive Pb anomalies and negative Nb, Ta anomalies, which is similar to arc basalts. Among BABBs, some samples from Lau Basin, the Japan Sea Basin, and the Okinawa Trough have positive anomalies of Nb and Ta, similar to those of E-MORB. The Sr-Nd-Pb isotopic compositions of BABBs in Western Pacific region vary in large ranges. Compared with MORB, the enriched components in mantle sources are more common from BABB. In general, the isotopic compositions of BABB are between the depleted mantle member (DMM), the type-1 enriched mantle (EM1), and the type-2 enriched mantle (EM2). Geochemical difference is also observed for BABB between different basement settings (continental basement versus oceanic basement) and different evolution stages of back-arc basin. The geochemical diversity of BABB is mainly controlled by mantle source (the mantle wedge) heterogeneity, the degree of partial melting, and the magmatic processes during magma transportation. The mantle source heterogeneity is reflected by the difference in chemical properties of mantle wedge itself and material contributions from subduction plate. The abnormally high mantle potential temperature, high 3He/4He ratio, and E-MORB-type trace elemental characteristics in some BABB further indicate that their mantle source could have been affected by mantle plume activities. The higher mantle potential temperature and the more contribution of subduction fluid would cause the greater partial melting degree of the mantle wedge. In addition, crustal assimilation in continental lithosphere, melt-rock interaction in oceanic lithosphere, and the complicated history of fractional crystallization during magma transportation would all modify the geochemical compositions of BABB melts.
-
Key words:
- Back-arc basin /
- Back-arc basin basalt /
- Geochemistry /
- Mantle heterogeneity /
- Oceanic subduction
-
-
Arculus RJ. 2003. Use and abuse of the terms calcalkaline and calcalkalic. Journal of Petrology, 44(5):929-935 doi: 10.1093/petrology/44.5.929
Auzende JM, Pelletier B and Eissen JP. 1995. The North Fiji Basin geology, structure, and geodynamic evolution. In: Taylor B (ed.). Backarc Basins: Tectonics and Magmatism. Boston: Springer, 139-170
Behn MD and Grove TL. 2015. Melting systematics in mid-ocean ridge basalts:Application of a plagioclase-spinel melting model to global variations in major element chemistry and crustal thickness. Journal of Geophysical Research, 120(7):4863-4886 http://cn.bing.com/academic/profile?id=b4d48defba8d23ff3278e013b200f510&encoded=0&v=paper_preview&mkt=zh-cn
Bézos A, Escrig S, Langmuir CH, Michael PJ and Asimow PD. 2009. Origins of chemical diversity of back-arc basin basalts:A segment-scale study of the Eastern Lau Spreading Center. Journal of Geophysical Research, 114(B6):B06212, doi:10.1029/2008JB005924
Bodinier JL and Godard M. 2014. Orogenic, ophiolitic, and abyssal peridotites. Treatise on Geochemistry, 3:103-167 http://cn.bing.com/academic/profile?id=802c9fc8eec6df6f682ca966e964fb58&encoded=0&v=paper_preview&mkt=zh-cn
Bonatti E, Seyler M, Channell J, Giraudeau J and Mascle G. 1990. Peridotites drilled from the Tyrrhenian Sea, ODP Leg 107. In: Kastens KA and Mascle J (eds.). Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX: Ocean Drilling Program, 37-47
Carbotte SM and Scheirer DS. 2004. Variability of ocean crustal structure created along the global midocean ridge. In: Davis EE and Elderfield H (eds.). Hydrogeology of the Oceanic Lithosphere. Cambridge: Cambridge University Press, 59-107
Chen SS, Liu JQ, Chen SS, Guo ZF and Sun CQ. 2015a. Variations in the geochemical structure of the mantle wedge beneath the Northeast Asian marginal region from pre- to post-opening of the Japan Sea. Lithos, 224-225:324-341 doi: 10.1016/j.lithos.2015.03.008
Chen SS, Liu JQ, Guo ZF, Chen SS and Sun CQ. 2015b. Geochemical characteristics of volcanic rocks from ODP Site 794, Yamato Basin:Implications for deep mantle processes of the Japan Sea. Acta Geologica Sinica, 89(4):1189-1212 doi: 10.1111/1755-6724.12523
Christie DM, Fisher CR, Lee SM and Givens S. 2006. Back-Arc Spreading Systems:Geological, Biological, Chemical, and Physical Interactions. Washington, DC:American Geophysical Union, 1-303
Cole JW, Darby DJ and Stern TA. 1995. Taupo volcanic zone and central volcanic region backarc structures of North Island, New Zealand. In: Taylor B (ed.). Backarc Basins: Tectonics and Magmatism. Boston: Springer, 1-28
Cousens BL and Allan JF. 1992. A Pb, Sr, and Nd isotopic study of basaltic rocks from the Sea of Japan, LEGS 127/128. In: Tamaki K, Suyehiro K, Allan J and McWilliams M (eds.). Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX: Ocean Drilling Program, 805-816
Cousens BL, Allan JF and Gorton MP. 1994. Subduction-modified pelagic sediments as the enriched component in back-arc basalts from the Japan Sea:Ocean Drilling Program Sites 797 and 794. Contributions to Mineralogy and Petrology, 117(4):421-434 doi: 10.1007/BF00307275
Crawford AJ, Meffre S and Symonds PA. 2003. 120 to 0Ma tectonic evolution of the Southwest Pacific and analogous geological evolution of the 600 to 220Ma Tasman Fold Belt System. In: Hillis RR and Müller RD (eds.). Evolution and Dynamics of the Australian Plate. Boulder: Geological Society of America, 383-403
Danyushevsky LV. 2001. The effect of small amounts of H2O on crystallisation of mid-ocean ridge and backarc basin magmas. Journal of Volcanology and Geothermal Research, 110(3-4):265-280 doi: 10.1016/S0377-0273(01)00213-X
Danyushevsky LV, Perfit MR, Eggins SM and Falloon TJ. 2003. Crustal origin for coupled 'ultra-depleted' and 'plagioclase' signatures in MORB olivine-hosted melt inclusions:Evidence from the Siqueiros Transform Fault, East Pacific Rise. Contributions to Mineralogy and Petrology, 144(5):619-637 doi: 10.1007/s00410-002-0420-3
Danyushevsky LV and Plechov P. 2011. Petrolog3:Integrated software for modeling crystallization processes. Geochemistry, Geophysics, Geosystems, 12(7):Q07021, doi:10.1029/2011GC003516
Escrig S, Bézos A, Goldstein SL, Langmuir CH and Michael PJ. 2009. Mantle source variations beneath the Eastern Lau Spreading Center and the nature of subduction components in the Lau basin-Tonga arc system. Geochemistry, Geophysics, Geosystems, 10(4):Q04014, doi:10.1029/2008gc002281
Falloon TJ, Malahoff A, Zonenshaina LP and Bogdanova Y. 1992. Petrology and Geochemistry of back-arc basin basalts from Lau Basin Spreading Ridges at 15°, 18° and 19°S. Mineralogy and Petrology, 47(1):1-35 doi: 10.1007/BF01165295
Falloon TJ, Danyushevsky LV, Crawford TJ, Maas R, Woodhead JD, Eggins SM, Bloomer SH, Wright DJ, Zlobin SK and Stacey AR. 2007. Multiple mantle plume components involved in the petrogenesis of subduction-related lavas from the northern termination of the Tonga Arc and northern Lau Basin:Evidence from the geochemistry of arc and backarc submarine volcanics. Geochemistry, Geophysics, Geosystems, 8(9):Q09003 http://cn.bing.com/academic/profile?id=dca7d5eb0c4e6d4bdb90fb89c7fdaee3&encoded=0&v=paper_preview&mkt=zh-cn
Gaina C and Müller D. 2007. Cenozoic tectonic and depth/age evolution of the Indonesian gateway and associated back-arc basins. Earth-Science Review, 83(3-4):177-203 doi: 10.1016/j.earscirev.2007.04.004
Gale A, Dalton CA, Langmuir CH, Su YJ and Schilling JG. 2013. The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems, 14(3):489-518 doi: 10.1029/2012GC004334
Gamble J, Woodhead J, Wright I and Smith I. 1996. Basalt and sediment geochemistry and magma petrogenesis in a transect from oceanic island arc to rifted continental margin arc:The Kermadec-Hikurangi margin, SW Pacific. Journal of Petrology, 37(6):1523-1546 doi: 10.1093/petrology/37.6.1523
Gamble JA and Wright IC. 1995. The southern havre trough geological structure and magma petrogenesis of an active backarc rift complex. In: Taylor B (ed.). Backarc Basins: Tectonics and Magmatism. Boston: Springer, 29-62
Gill J, Michael P, Woodcock J, Dreyer B, Ramos F, Clague D, Kela J, Scott S, Konrad K and Stakes D. 2016. Spatial and temporal scale of mantle enrichment at the Endeavour segment, Juan de Fuca Ridge. Journal of Petrology, 57(5):863-896 doi: 10.1093/petrology/egw024
Gnibidenko HS, Hilde TWC, Gretskaya EV and Andreyev AA. 1995. Kuril (South Okhotsk) backarc basin. In: Taylor B (ed.). Backarc Basins: Tectonics and Magmatism. Boston: Springer, 421-449
Gribble RF, Stern RJ, Bloomer SH, Stüben D, O'Hearn T and Newman S. 1996. MORB mantle and subduction components interact to generate basalts in the southern Mariana Trough back-arc basin. Geochimica et Cosmochimica Acta, 60(12):2153-2166 doi: 10.1016/0016-7037(96)00078-6
Gribble RF, Stern RJ, Newman S, Bloomer SH and O'Hearn T. 1998. Chemical and isotopic composition of lavas from the northern Mariana Trough:Implications for magmagenesis in back-arc basins. Journal of Petrology, 39(1):125-154 doi: 10.1093/petroj/39.1.125
Guo K, Zhai SK, Yu ZH, Cai ZW and Zhang X. 2016. Sr-Nd-Pb isotopic geochemistry of phenocrysts in pumice from the central Okinawa Trough. Geological Journal, 51(Suppl.1):368-375 http://cn.bing.com/academic/profile?id=b446dc2f86ff145ef4cc2ddf36e982cb&encoded=0&v=paper_preview&mkt=zh-cn
Hawkins Jr JW. 1995. The geology of the Lau Basin. In: Taylor B (ed.). Backarc Basins: Tectonics and Magmatism. Boston: Springer, 63-138
Herzberg C. 2004. Partial crystallization of mid-ocean ridge basalts in the crust and mantle. Journal of Petrology, 45(12):2389-2405 doi: 10.1093/petrology/egh040
Hickey-Vargas R, Savov IP, Bizimis M, Ishii T and Fujioka K. 2006. Origin of diverse geochemical signatures in igneous rocks from the West Philippine Basin: Implications for tectonic models. In: Christie DM, Fisher CR, Lee SM and Givens S (eds.). Back-arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions. Washington, DC: American Geophysical Union, 287-303
Hilde TWC and Lee CS. 1984. Origin and evolution of the West Philippine Basin:A new interpretation. Tectonophysics, 102(1-4):85-104 doi: 10.1016/0040-1951(84)90009-X
Hirahara Y, Kimura JI, Senda R, Miyazaki T, Kawabata H, Takahashi T, Chang Q, Vaglarov BS, Sato T and Kodaira S. 2015. Geochemical variations in Japan Sea back-arc basin basalts formed by high-temperature adiabatic melting of mantle metasomatized by sediment subduction components. Geochemistry, Geophysics, Geosystems, 16(5):1324-1347 doi: 10.1002/2015GC005720
Hirata N, Tokuyama H and Chung TW. 1989. An anomalously thick layering of the crust of the Yamato Basin, southeastern sea of Japan:The final stage of back-arc spreading. Tectonophysics, 165(1-4):303-314 doi: 10.1016/0040-1951(89)90055-3
Hoang N and Uto K. 2006. Upper mantle isotopic components beneath the Ryukyu arc system:Evidence for 'back-arc' entrapment of Pacific MORB mantle. Earth and Planetary Science Letters, 249(3-4):229-240 doi: 10.1016/j.epsl.2006.07.021
Hochstaedter A, Gill J, Peters R, Broughton P, Holden P and Taylor B. 2001. Across-arc geochemical trends in the Izu-Bonin arc:Contributions from the subducting slab. Geochemistry, Geophysics, Geosystems, 2(7):2000GC000105, doi:10.1029/2000GC000105
Hochstaedter AG, Gill JB, Taylor B, Ishizuka O, Yuasa M and Monta S. 2000. Across-arc geochemical trends in the Izu-Bonin arc:Constraints on source composition and mantle melting. Journal of Geophysical Research, 105(B1):495-512 doi: 10.1029/1999JB900125
Ikeda Y, Nagao K, Ishii T, Matsumoto D, Stern RJ, Kagami H, Arima M and Bloomer SH. 2016. Contributions of slab fluid and sediment melt components to magmatism in the Mariana Arc-Trough system:Evidence from geochemical compositions and Sr, Nd, and noble gas isotope systematics. Island Arc, 25(4):253-273 doi: 10.1111/iar.12150
Isezaki N. 1992. A new shipboard three-component magnetometer. Geophysics, 51(10):1992-1998 http://cn.bing.com/academic/profile?id=78c89aed4a9959b3c98336fcc0ed97ac&encoded=0&v=paper_preview&mkt=zh-cn
Ishizuka O, Taylor RN, Milton JA and Nesbitt RW. 2003. Fluid-mantle interaction in an intra-oceanic arc:Constraints from high-precision Pb isotopes. Earth and Planetary Science Letters, 211(3-4):221-236 doi: 10.1016/S0012-821X(03)00201-2
Kamenetsky VS, Crawford AJ, Eggins S and Mühe R. 1997. Phenocryst and melt inclusion chemistry of near-axis seamounts, Valu Fa Ridge, Lau Basin:Insight into mantle wedge melting and the addition of subduction components. Earth and Planetary Science Letters, 151(3-4):205-223 doi: 10.1016/S0012-821X(97)81849-3
Kamenetsky VS, Eggins SM, Crawford AJ, Green DH, Gasparon M and Falloon TJ. 1998. Calcic melt inclusions in primitive olivine at 43°N MAR:Evidence for melt-rock reaction/melting involving clinopyroxene-rich lithologies during MORB generation. Earth and Planetary Science Letters, 160(1-2):115-132 doi: 10.1016/S0012-821X(98)00090-9
Karig DE. 1971. Origin and development of marginal basins in the Western Pacific. Journal of Geophysics Research, 76(11):2542-2561 doi: 10.1029/JB076i011p02542
Karson JA, Cannat M, Miller DJ and Elthon D. 1997. Mid-Atlantic Ridge: Sites 920-924. In: Karson JA, Cannat M, Miller DJ and Elthon D (eds.). Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX: Ocean Drilling Program, 577
Kelley KA, Plank T, Grove TL, Stolper EM, Newman S and Hauri E. 2006. Mantle melting as a function of water content beneath back-arc basins. Journal of Geophysical Research, 111(B9):B09208, doi:10.1029/2005jb003732
Kelley KA and Cottrell E. 2009. Water and the oxidation state of subduction zone magmas. Science, 325(5940):605-607 doi: 10.1126/science.1174156
Kim J, Pak SJ, Moon JW, Lee SM, Oh J and Stuart FM. 2017. Mantle heterogeneity in the source region of mid-ocean ridge basalts along the northern Central Indian Ridge (8°S~17°S). Geochemistry, Geophysics, Geosystems, 18(4):1419-1434 doi: 10.1002/2016GC006673
Kimura M. 1985. Back-arc rifting in the Okinawa Trough. Marine and Petroleum Geology, 2(3):222-240 doi: 10.1016/0264-8172(85)90012-1
Klein EM and Langmuir CH. 1987. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. Journal of Geophysical Research, 92(B8):8089-8115 doi: 10.1029/JB092iB08p08089
Kuritani T, Ohtani E and Kimura JI. 2011. Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation. Nature Geoscience, 4(10):713-716 doi: 10.1038/ngeo1250
Lagabrielle Y, Bideau D, Cannat M, Karson JA and Mével C. 1998. Ultramafic-mafic plutonic rock suites exposed along the mid-Atlantic ridge (10°N~30°N): Symmetrical-asymmetrical distribution and implications for seafloor spreading processes. In: Buck WR, Delaney PT, Karson JA and Lagabrielle Y (eds.). Faulting and Magmatism at Mid-Ocean Ridges. Washington, DC: American Geophysical Union, 153-176
Langmuir CH, Klein EM and Plank T. 1992. Petrological systematics of mid-ocean ridge basalts: Constraints on melt generation beneath ocean ridges. In: Morgan JP, Blackman DK and Sinton JM (eds.). Mantle Flow and Melt Generation at Mid-Ocean Ridges. Washington, DC: American Geophysical Union, 180-183
Langmuir CH, Bézos A, Escrig S and Parman SW. 2006. Chemical systematics and hydrous melting of the mantle in back-arc basins. In: Christie DM, Fisher CR, Lee SM and Givens S (eds.). Back-arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions. Washington, DC: American Geophysical Union, 87-146
Leat PT, Pearce JA, Barker PF, Millar IL, Barry TL and Larter RD. 2004. Magma genesis and mantle flow at a subducting slab edge:The South Sandwich arc-basin system. Earth and Planetary Science Letters, 227(1-2):17-35 doi: 10.1016/j.epsl.2004.08.016
Li ZG. 2015. Magmatism and mantle dynamics in the Lau back-arc basin, SW Pacific. Ph. D. Dissertation. Hangzhou: Zhejiang University, 1-131 (in Chinese with English summary)
Lissenberg CJ and Dick HJB. 2008. Melt-rock reaction in the lower oceanic crust and its implications for the genesis of mid-ocean ridge basalt. Earth and Planetary Science Letters, 271(1-4):311-325 doi: 10.1016/j.epsl.2008.04.023
Lupton JE, Arculus RJ, Evans LJ and Graham DW. 2012. Mantle hotspot neon in basalts from the Northwest Lau Back-arc Basin. Geophysical Research Letter, 39(8):L08308, doi:10.1029/2012GL051201
Lytle ML, Kelley KA, Hauri EH, Gill JB, Papia D and Arculus RJ. 2012. Tracing mantle sources and Samoan influence in the northwestern Lau back-arc basin. Geochemistry, Geophysics, Geosystems, 13(10):Q10019, doi:10.1029/2012GC004233
Macpherson CG, Hilton DR, Mattey DP and Sinton JM. 2000. Evidence for an 18O-depleted mantle plume from contrasting 18O/16O ratios of back-arc lavas from the Manus basin and Mariana trough. Earth and Planetary Science Letters, 176(2):171-183 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=703fe9b0b0b23b6b0015db1b19bf6a10
Martinez F and Taylor B. 2002. Mantle wedge control on back-arc crustal accretion. Nature, 416(6879):417-420 doi: 10.1038/416417a
Martinez F and Taylor B. 2006. Modes of crustal accretion in back-arc basins: Inferences from the Lau Basin. In: Christie DM, Fisher CR, Lee SM and Givens S (eds.). Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions. Washington, DC: American Geophysical Union, 5-30
McDonough WF and Sun SS. 1995. The composition of the Earth. Chemical Geology, 120(3-4):223-253 doi: 10.1016/0009-2541(94)00140-4
Miyashiro A. 1975. Origin of the troodos and other ophiolites:A reply to hynes. Earth and Planetary Science Letters, 25(2):217-222 http://cn.bing.com/academic/profile?id=9b5a8e6aee9b343de0892e6e0d138862&encoded=0&v=paper_preview&mkt=zh-cn
Mortimer N, Herzer RH, Gans PB, Laporte-Magoni C, Calvert AT and Bosch D. 2007. Oligocene-Miocene tectonic evolution of the South Fiji Basin and Northland Plateau, SW Pacific Ocean:Evidence from petrology and dating of dredged rocks. Marine Geology, 237(1-2):1-24 http://cn.bing.com/academic/profile?id=5be89d1dabf41d6e56b6678dc1d062e3&encoded=0&v=paper_preview&mkt=zh-cn
Nebel O and Arculus RJ. 2015. Selective ingress of a Samoan plume component into the northern Lau backarc basin. Nature Communications, 6:6554, doi:10.1038/ncomms7554
Newman S, Stolper E and Stern R. 2000. H2O and CO2 in magmas from the Mariana arc and back arc systems. Geochemistry, Geophysics, Geosystems, 1(5):1013, doi:10.1029/1999GC000027
Niu YL, Collerson KD, Batiza R, Wendt JI and Regelous M. 1999. Origin of enriched-type mid-ocean ridge basalt at ridges far from mantle plumes:The East Pacific Rise at 11°20'N. Journal of Geophysical Research, 104(B4):7067-7087 doi: 10.1029/1998JB900037
Niu YL and O'Hara MJ. 2003. Origin of ocean island basalts:A new perspective from petrology, geochemistry, and mineral physics considerations. Journal of Geophysical Research, 108(B4):2209, doi:10.1029/2002JB002048
Niu YL and O'Hara MJ. 2008. Global correlations of ocean ridge basalt chemistry with axial depth:A new perspective. Journal of Petrology, 49(4):633-664 doi: 10.1093/petrology/egm051
Nohda S, Tatsumi Y, Yamashita S and Fujii T. 1992. Nd and Sr isotopic study of Leg 127 basalts: Implications for the evolution of the Japan Sea backarc basin. In: Tamaki K, Suyehiro K, Allan J and McWilliams M (eds.). Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX: Ocean Drilling Program, 899-904
Nohda S. 2009. Formation of the Japan Sea basin:Reassessment from Ar-Ar ages and Nd-Sr isotopic data of basement basalts of the Japan Sea and adjacent regions. Journal of Asian Earth Science, 34(5):599-609 doi: 10.1016/j.jseaes.2008.08.003
Ohara Y. 2016. The Godzilla Megamullion, the largest oceanic core complex on the earth:A historical review. Island Arc, 25(3):193-208 doi: 10.1111/iar.12116
Okamura S, Arculus RJ and Martynov YA. 2005. Cenozoic magmatism of the north-eastern Eurasian margin:The role of lithosphere versus asthenosphere. Journal of Petrology, 46(2):221-253 http://cn.bing.com/academic/profile?id=b77db7424f05bc6cb07cf68f5ee42cf7&encoded=0&v=paper_preview&mkt=zh-cn
Parkinson IJ and Pearce JA. 1998. Peridotites from the Izu-Bonin-Mariana forearc (ODP Leg 125):Evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. Journal of Petrology, 39(9):1577-1618 doi: 10.1093/petroj/39.9.1577
Pearce JA, Alabaster T, Shelton AW and Searle MP. 1981. The Oman ophiolite as a Cretaceous arc-basin complex:Evidence and implications. Philosophical Transactions of the Royal Society A, 300(1454):299-317 http://cn.bing.com/academic/profile?id=ab16c4a540a253c4c81b11cba3bf8797&encoded=0&v=paper_preview&mkt=zh-cn
Pearce JA, Barker PF, Edwards SJ, Parkinson IJ and Leat PT. 2000. Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic. Contributions to Mineralogy and Petrology, 139(1):36-53 doi: 10.1007/s004100050572
Pearce JA. 2003. Supra-subduction zone ophiolites: The search for modern analogues. In: Dilek Y and Newcomb S (eds.). Ophiolite Concept and the Evolution of Geological Thought. Colorado: Geological Society of America, 269-293
Pearce JA, Stern RJ, Bloomer SH and Fryer P. 2005. Geochemical mapping of the Mariana arc-basin system:Implications for the nature and distribution of subduction components. Geochemistry, Geophysics, Geosystems, 6(7):Q07006, doi:10.1029/2004GC000895
Pearce JA and Stern RJ. 2006. Origin of back-arc basin magmas: Trace element and isotope perspectives. In: Christie DM, Fisher CR, Lee SM and Givens S (eds.). Back-arc spreading systems: Geological, Biological, Chemical, and Physical Interactions. Washington, DC: American Geophysical Union, 63-86
Peate DW, Kokfelt TF, Hawkesworth CJ, van Calsteren PW, Hergt JM and Pearce JA. 2001. U-series isotope data on Lau Basin glasses:The role of subduction-related fluids during melt generation in back-arc basins. Journal of Petrology, 42(8):1449-1470 doi: 10.1093/petrology/42.8.1449
Pouclet A, Lee JS, Vidal P, Cousens B and Bellon H. 1994. Cretaceous to Cenozoic volcanism in South Korea and in the Sea of Japan: Magmatic constraints on the opening of the back-arc basin. In: Smellie JL (ed.). Volcanism Associated with Extension at Consuming Plate Margins. Geological Society, London, Special Publications, 81(1): 169-191
Price AA, Jackson MG, Blichert-Toft J, Blusztajn J, Conatser CS, Konter JG, Koppers AAP and Kurz MD. 2016. Geochemical evidence in the northeast Lau Basin for subduction of the Cook-Austral volcanic chain in the Tonga Trench. Geochemistry, Geophysics, Geosystems, 17(5):1694-1724 doi: 10.1002/2015GC006237
Ren JY and Li ST. 2000. Spreading and dynamic setting of marginal basins of the Western Pacific. Earth Science Frontiers, 7(3):203-213 (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200003019
Robertson AHF. 2002. Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos, 65(1-2):1-67 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=72fac5b6b7e676a8743291d9dda38dd8
Sakuyama T, Tian W, Kimura JI, Fukao Y, Hirahara Y, Takahashi T, Senda R, Chang Q, Miyazaki T, Obayashi M, Kawabata H and Tatsumi Y. 2013. Melting of dehydrated oceanic crust from the stagnant slab and of the hydrated mantle transition zone:Constraints from Cenozoic alkaline basalts in eastern China. Chemical Geology, 359:32-48 doi: 10.1016/j.chemgeo.2013.09.012
Sanfilippo A, Dick HJB and O'Hara Y. 2013. Melt-rock reaction in the mantle:Mantle troctolites from the Parece Vela ancient back-arc spreading center. Journal of Petrology, 54(5):861-885 doi: 10.1093/petrology/egs089
Sano T, Shirao M, Tani K, Tsutsumi Y, Kiyokawa S and Fujii T. 2016. Progressive enrichment of arc magmas caused by the subduction of seamounts under Nishinoshima volcano, Izu-Bonin Arc, Japan. Journal of Volcanology and Geothermal Research, 319:52-65 doi: 10.1016/j.jvolgeores.2016.03.004
Sano Y, Nishio Y, Gamo T, Jambon A and Marty B. 1998. Noble gas and carbon isotopes in Mariana Trough basalt glasses. Applied Geochemistry, 13(4):441-449 http://cn.bing.com/academic/profile?id=047e8c7b872279570b3055c2483792ed&encoded=0&v=paper_preview&mkt=zh-cn
Schellart WP, Lister GS and Toy VG. 2006. A late Cretaceous and Cenozoic reconstruction of the Southwest Pacific region:Tectonics controlled by subduction and slab rollback processes. Earth-Science Reviews, 76(3-4):191-233 doi: 10.1016/j.earscirev.2006.01.002
Schilling JG, Thompson G, Kingsley R and Humphris S. 1985. Hotspot-migrating ridge interaction in the South Atlantic. Nature, 313(5999):187-191 doi: 10.1038/313187a0
Schmidt MW and Jagoutz O. 2017. The global systematics of primitive arc melts. Geochemistry, Geophysics, Geosystems, 18(8):2817-2854 doi: 10.1002/2016GC006699
Shaw AM, Hilton DR, Macpherson CG and Sinton JM. 2001. Nucleogenic neon in high 3He/4He lavas from the Manus back-arc basin:A new perspective on He-Ne decoupling. Earth and Planetary Science Letters, 194(1-2):53-66 doi: 10.1016/S0012-821X(01)00539-8
Shi XF and Yan QS. 2013. Magmatism of typical marginal basins (or back-arc basins) in the West Pacific. Advances in Earth Science, 28(7):737-750 (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=87fa669fe3d451be18434e255b672133&encoded=0&v=paper_preview&mkt=zh-cn
Shinjo R, Chung SL, Kato Y and Kimura M. 1999. Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc:Implications for the evolution of a young, intracontinental back arc basin. Journal of Geophysical Research, 104(B5):10591-10608 doi: 10.1029/1999JB900040
Shinjo R and Kato Y. 2000. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin. Lithos, 54(3-4):117-137 doi: 10.1016/S0024-4937(00)00034-7
Sibuet JC, Deffontaines B, Hsu SK, Thareau N, Le Formal JP and Liu CS. 1998. Okinawa trough backarc basin:Early tectonic and magmatic evolution. Journal of Geophysical Research, 103(B12):30245-30267 doi: 10.1029/98JB01823
Sinton JM and Fryer P. 1987. Mariana Trough lavas from 18°N:Implications for the origin of back arc basin basalts. Journal of Geophysical Research, 92(B12):12782-12802 doi: 10.1029/JB092iB12p12782
Stern RJ, Bloomer SH, Martinez F, Yamazaki T and Harrison TM. 1996. The composition of back-arc basin lower crust and upper mantle in the Mariana Trough:A first report. Island Arc, 5(3):354-372 doi: 10.1111/j.1440-1738.1996.tb00036.x
Straub SM, Woodhead JD and Arculus RJ. 2015. Temporal evolution of the mariana arc:Mantle wedge and subducted slab controls revealed with a tephra perspective. Journal of Petrology, 56(2):409-439 doi: 10.1093/petrology/egv005
Tamaki K, Suyehiro J, Allan J, Ingle Jr JC and Pisciotto KA. 1992. Tectonic synthesis and implications of Japan sea ODP Drilling. In: Tamaki K, Suyehiro K, Allan J and McWilliams M (eds.). Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX: Ocean Drilling Program, 1333-1348
Tamura A and Arai S. 2006. Harzburgite-dunite-orthopyroxenite suite as a record of supra-subduction zone setting for the Oman ophiolite mantle. Lithos, 90(1-2):43-56 doi: 10.1016/j.lithos.2005.12.012
Taylor B. 1979. Bismarck Sea:Evolution of a back-arc basin. Geology, 7(4):171-174 http://cn.bing.com/academic/profile?id=6d938a40fc7ebd4e734b47237e56c741&encoded=0&v=paper_preview&mkt=zh-cn
Taylor B. 1995. Backarc Basins:Tectonics and Magmatism. New York:Springer, 1-521
Taylor B, Goodliffe A, Martinez F and Hey R. 1995. Continental rifting and initial sea-floor spreading in the Woodlark basin. Nature, 374(6522):534-537 doi: 10.1038/374534a0
Taylor B and Martinez F. 2003. Back-arc basin basalt systematics. Earth and Planetary Science Letters, 210(3-4):481-497 doi: 10.1016/S0012-821X(03)00167-5
Tian LY, Castillo PR, Hawkins JW, Hilton DR, Hanan BB and Pietruszka AJ. 2008. Major and trace element and Sr-Nd isotope signatures of lavas from the central Lau basin:Implications for the nature and influence of subduction components in the back-arc mantle. Journal of Volcanology and Geothermal Research, 178(4):657-670 doi: 10.1016/j.jvolgeores.2008.06.039
Tian LY, Castillo PR, Hilton DR, Hawkins JW, Hanan BB and Pietruszka AJ. 2011. Major and trace element and Sr-Nd isotope signatures of the northern Lau Basin lavas:Implications for the composition and dynamics of the back-arc basin mantle. Journal of Geophysical Research, 116(B11):B11201, doi:10.1029/2011JB008791
Tisseau C and Tonnerre T. 1995. Non steady-state thermal model of spreading ridges: Implications for melt generation and mantle outcrops. In: Vissers RLM and Nicolas A (eds.). Mantle and Lower Crust Exposed in Oceanic Ridges and in Ophiolites. Dordrecht: Springer, 181-214
Todd E, Gill JB, Wysoczanski RJ, Handler MR, Wright IC and Gamble JA. 2010. Sources of constructional cross-chain volcanism in the southern Havre Trough:New insights from HFSE and REE concentration and isotope systematics. Geochemistry, Geophysics, Geosystems, 11(4):Q04009, doi:10.1029/2009GC002888
Tollstrup D, Gill J, Kent A, Prinkey D, Williams R, Tamura Y and Ishizuka O. 2010. Across-arc geochemical trends in the Izu-Bonin arc:Contributions from the subducting slab, revisited. Geochemistry, Geophysics, Geosystems, 11(1):Q01X10, doi:10.1029/2009GC002847
Ulrich M, Hémond C, Nonnotte P and Jochum KP. 2012. OIB/seamount recycling as a possible process for E-MORB genesis. Geochemistry, Geophysics, Geosystems, 13(6):Q0AC19, doi:10.1029/2012GC004078
Voigt M, Coogan LA and von der Handt A. 2017. Experimental investigation of the stability of clinopyroxene in mid-ocean ridge basalts:The role of Cr and Ca/Al. Lithos, 274-275:240-253 doi: 10.1016/j.lithos.2017.01.003
Volpe AM, Macdougall JD and Hawkins JW. 1988. Lau Basin basalts (LBB):Trace element and Sr-Nd isotopic evidence for heterogeneity in backarc basin mantle. Earth and Planetary Science Letters, 90(2):174-186 doi: 10.1016/0012-821X(88)90099-4
Wang XJ, Chen LH, Hofmann AW, Mao FG, Liu JQ, Zhong Y, Xie LW and Yang YH. 2017. Mantle transition zone-derived EM1 component beneath NE China:Geochemical evidence from Cenozoic potassic basalts. Earth and Planetary Science Letters, 465:16-28 doi: 10.1016/j.epsl.2017.02.028
Wang XJ, Chen LH and Liu JQ. 2019. The genetic relationship and difference between typical EM1-type oceanic and continental intraplate basalts. Bulletin of Mineralogy, Petrology and Geochemistry, 38(2):237-247 (in Chinese with English abstract) https://www.researchgate.net/publication/332630148_The_Genetic_Relationship_and_Difference_between_Typical_EM1-Type_Oceanic_and_Continental_Intraplate_Basalts
Waters CL, Sims KWW, Perfit MR, Blichert-Toft J and Blusztajn J. 2011. Perspective on the genesis of E-MORB from chemical and isotopic heterogeneity at 9~10°N East Pacific Rise. Journal of Petrology, 52(3):565-602 doi: 10.1093/petrology/egq091
White WM and Klein EM. 2014. Composition of the oceanic crust. Treatise on Geochemistry, 4:457-496
Whittaker JM, Müller RD, Leitchenkov G, Stagg H, Sdrolias M, Gaina C and Goncharov A. 2007. Major Australian-Antarctic plate reorganization at Hawaiian-Emperor bend time. Science, 318(5847):83-86 doi: 10.1126/science.1143769
Wiens DA, Kelley KA and Plank T. 2006. Mantle temperature variations beneath back-arc spreading centers inferred from seismology, petrology, and bathymetry. Earth and Planetary Science Letters, 248(1-2):30-42 doi: 10.1016/j.epsl.2006.04.011
Woodhead J, Stern RJ, Pearce J, Hergt J and Vervoort J. 2012. Hf-Nd isotope variation in Mariana Trough basalts:The importance of "ambient mantle" in the interpretation of subduction zone magmas. Geology, 40(6):539-542 http://cn.bing.com/academic/profile?id=decb684d019a92381f37ebdae67566ee&encoded=0&v=paper_preview&mkt=zh-cn
Workman RK and Hart SR. 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231(1-2):53-72 doi: 10.1016/j.epsl.2004.12.005
Yan QS and Shi XF. 2006. Mantle plume (hotspot)-ridge interaction. Marine Geology and Quaternary Geology, 26(5):131-138 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200605021.htm
Yan QS and Shi XF. 2014. Petrologic perspectives on tectonic evolution of a nascent basin (Okinawa Trough) behind Ryukyu Arc:A review. Acta Oceanologica Sinica, 33(4):1-12 doi: 10.1007/s13131-014-0400-2
Yang J, Wang JR, Zhang Q, Chen WF, Pan ZJ, Jiao ST and Wang SH. 2016. Back-arc basin basalt (BABB) data mining:Comparison with MORB and IAB. Advances in Earth Science, 31(1):66-77 (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=78108c2d7d3a803a8f10c60e0726bdb8&encoded=0&v=paper_preview&mkt=zh-cn
Yoneshima S, Mochizuki K, Araki E, Hino R, Shinohara M and Suyehiro K. 2005. Subduction of the Woodlark Basin at New Britain Trench, Solomon Islands region. Tectonophysics, 397(3-4):225-239 doi: 10.1016/j.tecto.2004.12.008
Yoshida T, Kimura JI, Yamada R, Acocella V, Sato H, Zhao DP, Nakajima J, Hasegawa A, Okada T, Honda S, Ishikawa M, Prima ODA, Kudo T, Shibazaki B, Tanaka A and Imaizumi T. 2013. Evolution of late Cenozoic magmatism and the crust-mantle structure in the NE Japan Arc. In: Gómez-Tuena A, Straub SM and Zellmer GF (eds.). Orogenic Andesites and Crustal Growth. Geological Society, London, Special Publications, 385(1): 335-387
Yu ZH, Zhai SK, Guo K, Zhou YH and Zong T. 2016. Helium isotopes in volcanic rocks from the Okinawa trough-impact of volatile recycling and crustal contamination. Geological Journal, 51(Suppl.1):376-386 http://cn.bing.com/academic/profile?id=ea6ab4576efcd1da3b94b6feaedc432e&encoded=0&v=paper_preview&mkt=zh-cn
Zellmer KE and Taylor B. 2001. A three-plate kinematic model for Lau Basin opening. Geochemistry, Geophysics, Geosystems, 2(5):2000GC000106, doi:10.1029/2000gc000106
Zeng ZG, Zhang YX, Chen ZX, Ma Y, Wang XY, Zhang DD and Li XH. 2016. Geological tectonics, magmatism and seafloor hydrothermal activity in the back-arc basins of the Western Pacific. Studia Marina Sinica, 51:3-36 (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hykjjk201601002
Zhang YX, Zeng ZG, Li XH, Yin XB, Wang XY and Chen S. 2018. High-potassium volcanic rocks from the Okinawa trough:Implications for a cryptic potassium-rich and DUPAL-like source. Geological Journal, 53(5):1755-1766 doi: 10.1002/gj.3000
李正刚. 2015.西南太平洋Lau盆地弧后岩浆作用及地幔动力学研究.博士学位论文.杭州: 浙江大学, 1-131
任建业, 李思田. 2000.西太平洋边缘海盆地的扩张过程和动力学背景.地学前缘, 7(3):203-213 doi: 10.3321/j.issn:1005-2321.2000.03.019
石学法, 鄢全树. 2013.西太平洋典型边缘海盆的岩浆活动.地球科学进展, 28(7):737-750 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz201307001
王小均, 陈立辉, 刘建强. 2019.大洋与大陆板内典型EM1型玄武岩的成因联系和区别.矿物岩石地球化学通报, 38(2):237-247 http://www.cnki.com.cn/Article/CJFDTotal-KYDH201902006.htm
鄢全树, 石学法. 2006.洋中脊与地幔柱热点相互作用研究进展.海洋地质与第四纪地质, 26(5):131-13 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz200605017
杨婧, 王金荣, 张旗, 陈万峰, 潘振杰, 焦守涛, 王淑华. 2016.弧后盆地玄武岩(BABB)数据挖掘:与MORB及IAB的对比.地球科学进展, 31(1):66-77 doi: 10.11867/j.issn.1001-8166.2016.01.0066
曾志刚, 张玉祥, 陈祖兴, 马瑶, 王晓媛, 张丹丹, 李晓辉. 2016.西太平洋典型弧后盆地的地质构造、岩浆作用与热液活动.海洋科学集刊, 51:3-36 doi: 10.12036/hykxjk20160725003