硅质大火成岩省的形成机制及其与资源环境的关系

薄弘泽, 张招崇. 2020. 硅质大火成岩省的形成机制及其与资源环境的关系. 岩石学报, 36(7): 1973-1985. doi: 10.18654/1000-0569/2020.07.03
引用本文: 薄弘泽, 张招崇. 2020. 硅质大火成岩省的形成机制及其与资源环境的关系. 岩石学报, 36(7): 1973-1985. doi: 10.18654/1000-0569/2020.07.03
BO HongZe, ZHANG ZhaoChong. 2020. Genesis of Silicic Large Igneous Provinces and effects of resources and environment. Acta Petrologica Sinica, 36(7): 1973-1985. doi: 10.18654/1000-0569/2020.07.03
Citation: BO HongZe, ZHANG ZhaoChong. 2020. Genesis of Silicic Large Igneous Provinces and effects of resources and environment. Acta Petrologica Sinica, 36(7): 1973-1985. doi: 10.18654/1000-0569/2020.07.03

硅质大火成岩省的形成机制及其与资源环境的关系

  • 基金项目:

    本文受国家自然科学基金项目(41772057)资助

详细信息
    作者简介:

    薄弘泽, 男, 1997年生, 硕士生, 矿物学、岩石学、矿床学专业, E-mail:bohongze@qq.com

    通讯作者: 张招崇, 男, 1965年生, 教授, 矿物学、岩石学、矿床学专业, E-mail:zczhang@cugb.edu.cn
  • 中图分类号: P581

Genesis of Silicic Large Igneous Provinces and effects of resources and environment

More Information
  • 硅质大火成岩省是以流纹质熔结凝灰岩为主体的(>80vol.%),覆盖面积大于105km2、体积大于2.5×105km3的巨型岩浆岩建造,多呈条带状产出在大陆边缘,可能与大陆裂解和相邻镁铁质大火成岩省密切相关;其形成时间相对镁铁质大火成岩省较长,可达~40Myr。岩石中有黑云母、角闪石等含水斑晶,多为钙碱性系列,具有从Ⅰ型向A型花岗质岩石过渡的地球化学特征。本文在前人工作的基础上,整理了五个主要硅质大火成岩省的样品数据,综合研究认为其形成是玄武质岩浆底侵(或地幔柱上升),使得前期由于俯冲形成的富水下地壳重熔后经历不同程度分离结晶的结果。硅质大火成岩省的形成暗示深部有"隐伏的镁铁质大火成岩省",因为上部硅质岩浆的阻碍和富水地壳不易形成岩浆运移通道所以未能喷出,但这些镁铁质岩浆向上输送了大量的SO2气体。大规模的硅质岩浆活动一方面能够将这些SO2气溶胶送入平流层吸收太阳辐射,另一方面能够使海洋富铁后通过光合作用吸收大气中的CO2,从而导致全球降温。此外,硅质大火成岩省还是一个大型的热液成矿系统,形成大量的低硫化型贵金属浅成低温热液矿床,具有重要的经济意义。

  • 加载中
  • 图 1 

    世界主要大火成岩省分布图(据Bryan and Ferrari, 2013修改)

    Figure 1. 

    Global distribution of main Large Igneous Provinces (modified after Bryan and Ferrari, 2013)

    图 2 

    五个硅质大火成岩省岩浆岩地球化学判别图解

    Figure 2. 

    Geochemical discrimination diagrams for igneous rock samples from five S-LIPs

    图 3 

    五个硅质大火成岩省岩浆岩样品的哈克图解

    Figure 3. 

    Harker diagrams for igneous rock samples from five S-LIPs

    图 4 

    五个硅质大火成岩省中酸性岩浆岩(SiO2>60%)球粒陨石标准化稀土元素配分型式图(a)和原始地幔标准化微量元素蛛网图(b)(标准化值据McDonough and Sun, 1995)

    Figure 4. 

    Chondrite-normalized REE pattern (a) and primitive mantle-normalized trace element spider diagrams (b) for intermediate-felsic igneous rocks (SiO2>60%) from five S-LIPs (normalized values from McDonough and Sun, 1995)

    图 5 

    含水玄武质地壳在不同PH2O下熔融形成熔体中SiO2与Al2O3协变图(据Thy et al., 1990修改,实验岩石学数据来自Helz, 1976; Spulber and Rutherford, 1983; Beard and Lofgren, 1989)

    Figure 5. 

    SiO2 vs. Al2O3 in the melts produced by partial melting of hydrous basaltic crust under different PH2O (after Thy et al., 1990, experimental petrology data from Helz, 1976; Spulber and Rutherford, 1983; Beard and Lofgren, 1989)

    图 6 

    五个硅质大火成岩省中酸性岩浆岩(SiO2>60%)的87Sr/86Sr(t)-εNd(t)图解

    Figure 6. 

    87Sr/86Sr(t) vs. εNd(t) diagram for intermediate-felsic igneous rocks (SiO2>60%) from five S-LIPs

    图 7 

    五个硅质大火成岩省中酸性岩浆岩(SiO2>60%)Nb-Y构造判别图解(底图据Pearce et al., 1984)

    Figure 7. 

    Nb vs. Y diagram for tectonic discrimination for intermediate-felsic igneous rocks (SiO2>60%) from five S-LIPs (after Pearce et al., 1984)

  •  

    Agangi A, Kamenetsky VS and McPhie J. 2012. Evolution and emplacement of high fluorine rhyolites in the Mesoproterozoic Gawler silicic large Igneous Province, South Australia. Precambrian Research, 208-211:124-144 doi: 10.1016/j.precamres.2012.03.011

     

    Aguirre-Díaz G and Labarthe-Hernández G. 2003. Fissure ignimbrites:Fissure-source origin for voluminous ignimbrites of the Sierra Madre Occidental and its relationship with Basin and Range faulting. Geology, 31(9):773-776 doi: 10.1130/G19665.1

     

    Albrecht A and Goldstein SL. 2000. Effects of basement composition and age on silicic magmas across an accreted terrane-Precambrian crust boundary, Sierra Madre Occidental, Mexico. Journal of South American Earth Sciences, 13(3):255-273 doi: 10.1016/S0895-9811(00)00014-6

     

    Beard JS and Lofgren GE. 1989. Effect of water on the composition of partial melts of greenstone and amphibolite. Science, 244(4901):195-197 doi: 10.1126/science.244.4901.195

     

    Beard JS and Lofgren GE. 1991. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9kb. Journal of Petrology, 32(2):365-401 doi: 10.1093/petrology/32.2.365

     

    Black BA, Elkins-Tanton LT, Rowe MC and Peate IU. 2012. Magnitude and consequences of volatile release from the Siberian Traps. Earth and Planetary Science Letters, 317-318:363-373 doi: 10.1016/j.epsl.2011.12.001

     

    Bryan SE, Constantine AE, Stephens CJ, Ewart A, Schön RW and Parianos J. 1997. Early Cretaceous volcano-sedimentary successions along the eastern Australian continental margin:Implications for the break-up of eastern Gondwana. Earth and Planetary Science Letters, 153(1-2):85-102 doi: 10.1016/S0012-821X(97)00124-6

     

    Bryan SE, Ewart A, Stephens CJ, Parianos J and Downes PJ. 2000. The Whitsunday Volcanic Province, Central Queensland, Australia:Lithological and stratigraphic investigations of a silicic-dominated large igneous province. Journal of Volcanology and Geothermal Research, 99(1-4):55-78 doi: 10.1016/S0377-0273(00)00157-8

     

    Bryan SE, Riley TR, Jerram DA, Leat PT and Stephens CJ. 2002. Silicic volcanism: An under-valued component of Large Igneous Provinces and volcanic rifted margins. In: Menzies MA, Klemperer SL, Ebinger CJ and Baker J (eds.). Magmatic Rifted Margins. Geological Society of America Special Paper, 99-120

     

    Bryan SE. 2006. Petrology and geochemistry of the quaternary caldera-forming, Phonolitic Granadilla Eruption, Tenerife (Canary Islands). Journal of Petrology, 47(8):1557-1589 doi: 10.1093/petrology/egl020

     

    Bryan SE. 2007. Silicic Large Igneous Provinces. Episodes, 30(1):20-31 doi: 10.18814/epiiugs/2007/v30i1/004

     

    Bryan SE and Ernst RE. 2008. Revised definition of Large Igneous Provinces (LIPs). Earth-Science Reviews, 86(1-4):175-202 doi: 10.1016/j.earscirev.2007.08.008

     

    Bryan SE and Ferrari L. 2013. Large igneous provinces and silicic large igneous provinces:Progress in our understanding over the last 25 years. GSA Bulletin, 125(7-8):1053-1078 doi: 10.1130/B30820.1

     

    Cameron KL, Cameron M, Bagby WC, Moll EJ and Drake RE. 1980. Petrologic characteristics of mid-Tertiary volcanic suites, Chihuahua, Mexico. Geology, 8(2):87-91 http://cn.bing.com/academic/profile?id=4ab9ba3d19aae281ea0885b72b4e7c07&encoded=0&v=paper_preview&mkt=zh-cn

     

    Campbell IH and Griffiths RW. 1990. Implications of mantle plume structure for the evolution of flood basalts. Earth and Planetary Science Letters, 99(1-2):79-93 doi: 10.1016/0012-821X(90)90072-6

     

    Campbell IH. 2007. Testing the plume theory. Chemical Geology, 241(3-4):153-176 doi: 10.1016/j.chemgeo.2007.01.024

     

    Camprubí A, Ferrari L, Cosca MA, Cardellach E and Canals À. 2003. Ages of epithermal deposits in Mexico:Regional significance and links with the evolution of tertiary volcanism. Economic Geology, 98(5):1029-1037 doi: 10.2113/gsecongeo.98.5.1029

     

    Cather SM, Dunbar NW, McDowell FW, McIntosh WC and Scholle PA. 2009. Climate forcing by iron fertilization from repeated ignimbrite eruptions:The icehouse-silicic large igneous province (SLIP) hypothesis. Geosphere, 5(3):315-324 doi: 10.1130/GES00188.1

     

    Cheng ZG, Zhang ZC, Wang ZC, Stantosh M, Wang FY, Mao Q and Xu LJ. 2019. Genesis of perilithic rocks in Tarim igneous province: Contribution from remelting of hydrous crust. In: The 17th Annual Conference of the Chinese Society of Mineralogy, Petrology and Geochemistry. Hangzhou: Chinese Society for Mineralogy, Petrology and Geochemistry, 317-318 (in Chinese)

     

    Clemens JD, Stevens G and Farina F. 2011. The enigmatic sources of Ⅰ-type granites:The peritectic connexion. Lithos, 126(3-4):174-181 doi: 10.1016/j.lithos.2011.07.004

     

    Coffin MF and Eldholm O. 1994. Large igneous provinces:Crustal structure, dimensions, and external consequences. Reviews of Geophysics, 32(1):1-36 http://cn.bing.com/academic/profile?id=94181276187e79f54e554cbc6ef131e1&encoded=0&v=paper_preview&mkt=zh-cn

     

    Conrad WK, Nicholls IA and Wall VJ. 1988. Water-saturated and -undersaturated melting of metaluminous and peraluminous crustal compositions at 10kb:Evidence for the origin of silicic magmas in the Taupo Volcanic Zone, New Zealand, and other occurrences. Journal of Petrology, 29(4):765-803 doi: 10.1093/petrology/29.4.765

     

    Courtillot V, Jaupart C, Manighetti I, Tapponnier P and Besse J. 1999. On causal links between flood basalts and continental breakup. Earth and Planetary Science Letters, 166(3-4):177-195 doi: 10.1016/S0012-821X(98)00282-9

     

    Creaser RA and White AJR. 1991. Yardea dacite:Large-volume, high-temperature felsic volcanism from the Middle Proterozoic of South Australia. Geology, 19(1):48-51 http://cn.bing.com/academic/profile?id=5d02abbdb116e9d2234a37190a4d4f73&encoded=0&v=paper_preview&mkt=zh-cn

     

    Dalziel IWD. 1992. Antarctica; A tale of two supercontinents? Annual Review of Earth and Planetary Sciences, 20:501-526 http://cn.bing.com/academic/profile?id=387b92cfb1181d790f573a9b0987da76&encoded=0&v=paper_preview&mkt=zh-cn

     

    Dalziel IWD, Lawver LA and Murphy JB. 2000. Plumes, orogenesis, and supercontinental fragmentation. Earth and Planetary Science Letters, 178(1-2):1-11 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=803f4c3afd61d237f12c317533e2485e

     

    de Wall H, Pandit MK, Donhauser I, Schöbel S, Wang W and Sharma KK. 2018. Evolution and tectonic setting of the Malani-Nagarparkar Igneous Suite:A neoproterozoic silicic-dominated Large Igneous Province in NW India-SE Pakistan. Journal of Asian Earth Sciences, 160:136-158 doi: 10.1016/j.jseaes.2018.04.016

     

    Dingwell DB and Mysen BO. 1985. Effects of water and fluorine on the viscosity of albite melt at high pressure:A preliminary investigation. Earth and Planetary Science Letters, 74(2-3):266-274 doi: 10.1016/0012-821X(85)90026-3

     

    Dingwell DB. 1996. Volcanic dilemma-flow or blow? Science, 273(5278):1054-1055 doi: 10.1126/science.273.5278.1054

     

    Ernst RE. 2014. Large Igneous Provinces. Cambridge:Cambridge University Press, 1-653

     

    Ewart A, Schon RW and Chappell BW. 1992. The Cretaceous volcanic-plutonic province of the central Queensland (Australia) coast:A rift related 'calc-alkaline' province. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1-2):327-345 doi: 10.1017/S0263593300008002

     

    Ferrari L, López-Martínez M and Rosas-Elguera J. 2002. Ignimbrite flare-up and deformation in the southern Sierra Madre Occidental, western Mexico:Implications for the late subduction history of the Farallon plate. Tectonics, 21(4):17-1-17-24 http://cn.bing.com/academic/profile?id=1d6151e0dc510d56f2ee177ae3b47df4&encoded=0&v=paper_preview&mkt=zh-cn

     

    Ferrari L, Valencia-Moreno MN and Bryan SE. 2007. Magmatism and tectonics of the Sierra Madre Occidental and its relation with the evolution of the western margin of North America. In: Alaniz-álvarez SA and Nieto-Samaniego áF (eds.). Geology of Mexico: Celebrating the Centenary of the Geological Society of Mexico. Geological Society of America, 1-39

     

    Ferrari L, Orozco-Esquivel T, Bryan SE, López-Martínez M and Silva-Fragoso A. 2018. Cenozoic magmatism and extension in western Mexico:Linking the Sierra Madre Occidental silicic large igneous province and the Comondú Group with the Gulf of California rift. Earth-Science Reviews, 183:115-152 doi: 10.1016/j.earscirev.2017.04.006

     

    Fisher RV and Schmincke HU. 1984. Pyroclastic Rocks. Berlin:Springer, 1-472

     

    Giordano D, Russell JK and Dingwell DB. 2008. Viscosity of magmatic liquids:A model. Earth and Planetary Science Letters, 271(1-4):123-134 doi: 10.1016/j.epsl.2008.03.038

     

    Griffiths RW and Campbell IH. 1990. Stirring and structure in mantle starting plumes. Earth and Planetary Science Letters, 99(1-2):66-78 doi: 10.1016/0012-821X(90)90071-5

     

    Helz RT. 1976. Phase relations of basalts in their melting ranges at PH2O=5kb. Part Ⅱ. Melt compositions. Journal of Petrology, 17(2):139-193 doi: 10.1093/petrology/17.2.139

     

    Houghton BF, Wilson CJN, McWilliams MO, Lanphere MA, Weaver SD, Briggs RM and Pringle MS. 1995. Chronology and dynamics of a large silicic magmatic system:Central Taupo Volcanic Zone, New Zealand. Geology, 23(1):13-16 http://cn.bing.com/academic/profile?id=5c33848d6894b3e081250be0b9ad30ef&encoded=0&v=paper_preview&mkt=zh-cn

     

    Hua RM, Chen PR, Zhang WL, Yao JM, Lin JF, Zhang ZS and Gu SY. 2005. Metallogeneses and their geodynamic settings related to mesozoic granitoids in the Nanling Range. Geological Journal of China Universities, 11(3):291-304 (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200503002

     

    Huang H, Zhang ZC, Zhang DY, Du HX, Ma LT, Kang JL and Xue CJ. 2011. Petrogenesis of Late Carboniferous to Early Permian granitoid plutons in the Chinese South Tianshan:Implications for crustal accretion. Acta Geologica Sinica, 85(8):1305-1333 (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=e85f886d47d0832f278d7f8c5133dafc&encoded=0&v=paper_preview&mkt=zh-cn

     

    Huang HH, Lin FC, Schmandt B, Farrell J, Smith RB and Tsai VC. 2015. The Yellowstone magmatic system from the mantle plume to the upper crust. Science, 348(6236):773-776 doi: 10.1126/science.aaa5648

     

    Le Bas MJ, Le Maitre RW, Streckeisen A and Zanettin B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3):745-750 doi: 10.1093/petrology/27.3.745

     

    Li D, He DF, Santosh M and Tang JY. 2014. Petrogenesis of Late Paleozoic volcanics from the Zhaheba depression, East Junggar:Insights into collisional event in an accretionary orogen of Central Asia. Lithos, 184-187:167-193 doi: 10.1016/j.lithos.2013.10.003

     

    Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids. GSA Bulletin, 101(5):635-643 doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

     

    McDonough WF and Sun SS. 1995. The composition of the Earth. Chemical Geology, 120(3-4):223-253 doi: 10.1016/0009-2541(94)00140-4

     

    Moreira P and Fernández RR. 2015. La Josefina Au-Ag deposit (Patagonia, Argentina):A Jurassic epithermal deposit formed in a hot spring environment. Ore Geology Reviews, 67:297-313 doi: 10.1016/j.oregeorev.2014.12.012

     

    Morgan WJ. 1971. Convection plumes in the lower mantle. Nature, 230(5288):42-43 doi: 10.1038/230042a0

     

    Murray BP and Busby CJ. 2015. Epithermal mineralization controlled by synextensional magmatism in the Guazapares Mining District of the Sierra Madre Occidental silicic large igneous province, Mexico. Journal of South American Earth Sciences, 58:54-71 doi: 10.1016/j.jsames.2014.12.009

     

    Pankhurst RJ and Rapela CR. 1995. Production of Jurassic rhyolite by anatexis of the lower crust of Patagonia. Earth and Planetary Science Letters, 134(1-2):23-36 doi: 10.1016/0012-821X(95)00103-J

     

    Pankhurst RJ, Leat PT, Sruoga P, Rapela CW, Márquez M, Storey BC and Riley TR. 1998. The Chon Aike province of Patagonia and related rocks in West Antarctica:A silicic large igneous province. Journal of Volcanology and Geothermal Research, 81(1-2):113-136 doi: 10.1016/S0377-0273(97)00070-X

     

    Pankhurst RJ, Riley TR, Fanning CM and Kelley SP. 2000. Episodic silicic volcanism in Patagonia and the Antarctic Peninsula:Chronology of magmatism associated with the break-up of gondwana. Journal of Petrology, 41(5):605-625 doi: 10.1093/petrology/41.5.605

     

    Pearce JA, Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4):956-983 doi: 10.1093/petrology/25.4.956

     

    Riley TR, Leat PT, Pankhurst RJ and Harris C. 2001. Origins of large volume rhyolitic volcanism in the Antarctic Peninsula and Patagonia by crustal melting. Journal of Petrology, 42(6):1043-1065 doi: 10.1093/petrology/42.6.1043

     

    Robock A. 2000. Volcanic eruptions and climate. Reviews of Geophysics, 38(2):191-219 http://cn.bing.com/academic/profile?id=b7f58efc2002130f169c64e2845a67c0&encoded=0&v=paper_preview&mkt=zh-cn

     

    Schalamuk IB, Zubia M, Genini A and Fernandez RR. 1997. Jurassic epithermal Au-Ag deposits of Patagonia, Argentina. Ore Geology Reviews, 12(3):173-186 http://cn.bing.com/academic/profile?id=0dde299b915468973bcebaf5774a4b23&encoded=0&v=paper_preview&mkt=zh-cn

     

    Self S, Thordarson T and Keszthelyi L. 1997. Emplacement of continental flood basalt lava flows. In: Mahoney JJ and Coffin MF (eds.). Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. Washington: AGU, 381-410

     

    Self S, Thordarson T and Widdowson M. 2005. Gas fluxes from flood basalt eruptions. Elements, 1(5):283-287 doi: 10.2113/gselements.1.5.283

     

    Sharma KK. 2004. The Neoproterozoic Malani magmatism of the northwestern Indian shield:Implications for crust-building processes. Journal of Earth System Science, 113(4):795-807 doi: 10.1007/BF02704038

     

    Sharma KK. 2005. Malani magmatism: An extensional lithospheric tectonic origin. In: Foulger GR, Natland JH, Presnall DC and Anderson DL (eds.). Plates, Plumes and Paradigms. Geological Society of America, 463-476

     

    Spulber SD and Rutherford MJ. 1983. The origin of rhyolite and plagiogranite in oceanic crust:An experimental study. Journal of Petrology, 24(1):1-25 http://cn.bing.com/academic/profile?id=fa9a62a1c0e07f1be151b9eae78af085&encoded=0&v=paper_preview&mkt=zh-cn

     

    Staude JMG and Barton MD. 2001. Jurassic to Holocene tectonics, magmatism, and metallogeny of northwestern Mexico. GSA Bulletin, 113(10):1357-1374 doi: 10.1130/0016-7606(2001)113<1357:JTHTMA>2.0.CO;2

     

    Swanson ER and McDowell FW. 1984. Calderas of the Sierra Madre Occidental Volcanic Field western Mexico. Journal of Geophysical Research:Solid Earth, 89(B10):8787-8799 doi: 10.1029/JB089iB10p08787

     

    Swanson ER, Kempter KA, McDowell FW and McIntosh WC. 2006. Major ignimbrites and volcanic centers of the Copper Canyon area:A view into the core of Mexico's Sierra Madre Occidental. Geosphere, 2(3):125-141 doi: 10.1130/GES00042.1

     

    Tamura Y and Tatsumi Y. 2002. Remelting of an Andesitic crust as a possible origin for rhyolitic magma in oceanic arcs:An example from the Izu-Bonin Arc. Journal of Petrology, 43(6):1029-1047 doi: 10.1093/petrology/43.6.1029

     

    Tassara S, González-Jiménez JM, Reich M, Schilling ME, Morata D, Begg G, Saunders E, Griffin WL, O'Reilly SY, Grégoire M, Barra F and Corgne A. 2017. Plume-subduction interaction forms large auriferous provinces. Nature Communications, 8(1):https://doi.org/10.1038/s41467-017-00821-z http://cn.bing.com/academic/profile?id=fbf5701193697c9275627e01b138e45c&encoded=0&v=paper_preview&mkt=zh-cn

     

    Thordarson T, Rampino M, Keszthelyi LP and Self S. 2009. Effects of megascale eruptions on Earth and Mars. In: Chapman MG and Keszthelyi LP (eds.). Preservation of Random Megascale Events on Mars and Earth: Influence on Geologic History. Geological Society of America, 37-55

     

    Thy P, Beard JS and Lofgren GE. 1990. Experimental constraints on the origin of icelandic rhyolites. The Journal of Geology, 98(3):417-421 doi: 10.1086/629413

     

    Turner JS and Campbell IH. 1986. Convection and mixing in magma chambers. Earth-Science Reviews, 23(4):255-352 doi: 10.1016/0012-8252(86)90015-2

     

    Van Lente B, Ashwal LD, Pandit MK, Bowring SA and Torsvik TH. 2009. Neoproterozoic hydrothermally altered basaltic rocks from Rajasthan, Northwest India:Implications for Late Precambrian tectonic evolution of the Aravalli Craton. Precambrian Research, 170(3-4):202-222 doi: 10.1016/j.precamres.2009.01.007

     

    Wallace PJ. 2001. Volcanic SO2 emissions and the abundance and distribution of exsolved gas in magma bodies. Journal of Volcanology and Geothermal Research, 108(1-4):85-106 doi: 10.1016/S0377-0273(00)00279-1

     

    Wang DZ, Ren QJ, Qiu JS, Chen KR, Xu ZW and Zeng JH. 1996. Characteristics of volcanic rocks in the shoshonite province, eastern China, and their metallogenesis. Acta Geologica Sinica, 70(1):23-24 (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=bf43b56e60b759c6bf4dfada23654d9f&encoded=0&v=paper_preview&mkt=zh-cn

     

    Wang DZ and Zhou JC. 2005. New progress in studying the large igneous provinces. Geological Journal of China Universities, 11(1):1-8 (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200501001

     

    Wang GG, Ni P, Zhao C, Wang XL, Li PF, Chen H, Zhu AD and Li L. 2016. Spatiotemporal reconstruction of Late Mesozoic silicic large igneous province and related epithermal mineralization in South China:Insights from the Zhilingtou volcanic-intrusive complex. Journal of Geophysical Research:Solid Earth, 121(11):7903-7928 doi: 10.1002/2016JB013060

     

    Wang W, Pandit MK, Zhao JH, Chen WT and Zheng JP. 2018. Slab break-off triggered lithosphere-asthenosphere interaction at a convergent margin:The Neoproterozoic bimodal magmatism in NW India. Lithos, 296-299:281-296 doi: 10.1016/j.lithos.2017.11.010

     

    Wark DA. 1991. Oligocene ash flow volcanism, northern Sierra Madre Occidental:Role of mafic and intermediate-composition magmas in rhyolite genesis. Journal of Geophysical Research:Solid Earth, 96(B8):13389-13411 doi: 10.1029/90JB02666

     

    Westrich HR and Gerlach TM. 1992. Magmatic gas source for the stratospheric SO2 cloud from the June 15, 1991, eruption of Mount Pinatubo. Geology, 20(10):867-870 doi: 10.1130/0091-7613(1992)020<0867:MGSFTS>2.3.CO;2

     

    Whalen JB, Currie KL and Chappell BW. 1987. A-type granites:Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4):407-419 doi: 10.1007/BF00402202

     

    Wignall PB. 2001. Large igneous provinces and mass extinctions. Earth-Science Reviews, 53(1-2):1-33 doi: 10.1016/S0012-8252(00)00037-4

     

    Wignall PB. 2005. The link between large igneous province eruptions and mass extinctions. Elements, 1(5):293-297 doi: 10.2113/gselements.1.5.293

     

    Wilson CJN, Houghton BF, McWilliams MO, Lanphere MA, Weaver SD and Briggs RM. 1995. Volcanic and structural evolution of Taupo Volcanic Zone, New Zealand:A review. Journal of Volcanology and Geothermal Research, 68(1-3):1-28 doi: 10.1016/0377-0273(95)00006-G

     

    Xia LQ, Xia ZC, Xu XY, Li XM and Ma ZP. 2013. Late Paleoproterozoic rift-related magmatic rocks in the North China Craton:Geological records of rifting in the Columbia supercontinent. Earth-Science Reviews, 125:69-86 doi: 10.1016/j.earscirev.2013.06.004

     

    Xiao L, Pirajno F and He Q. 2007. A preliminary discussion on large igneous provinces and associated ore deposits. Geological Journal of China Universities, 13(2):148-160 (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200702002

     

    Xu YG. 2002. Mantle plumes, large igneous provinces and their geologic consequences. Earth Science Frontiers, 9(4):341-353 (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200204014

     

    Xu YG, Wei X, Luo ZY, Liu HQ and Cao J. 2014. The Early Permian Tarim Large Igneous Province:Main characteristics and a plume incubation model. Lithos, 204:20-35 doi: 10.1016/j.lithos.2014.02.015

     

    Zaw K, Hunns SR, Large RR, Gemmell JB, Ryan CG and Mernagh TP. 2003. Microthermometry and chemical composition of fluid inclusions from the Mt Chalmers volcanic-hosted massive sulfide deposits, central Queensland, Australia:Implications for ore genesis. Chemical Geology, 194(1-3):225-244 doi: 10.1016/S0009-2541(02)00279-6

     

    Zhang Q. 2013. A discussion on Mesozoic large scale magmatism and felsic large igneous province in eastern China. Acta Petrologica et Mineralogica, 32(4):557-564 (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201304014

     

    Zhang ZC, Mahoney JJ, Mao JW and Wang FS. 2006. Geochemistry of picritic and associated basalt flows of the Western Emeishan Flood Basalt Province, China. Journal of Petrology, 47(10):1997-2019 doi: 10.1093/petrology/egl034

     

    Zhu J, Zhang ZC, Santosh M and Jin ZL. 2020. Carlin-style gold province linked to the extinct Emeishan plume. Earth and Planetary Science Letters, 530:115940 doi: 10.1016/j.epsl.2019.115940

     

    程志国, 张招崇, 王振朝, Santosh M, 汪方跃, 毛骞, 徐丽娟, 2019.塔里木大火成岩省长英质岩石成因: 来自富水下地壳重熔的贡献.见: 中国矿物岩石地球化学学会第17届学术年会论文摘要集.杭州: 中国矿物岩石地球化学学会, 317-318

     

    华仁民, 陈培荣, 张文兰, 姚军明, 林锦富, 张展适, 顾晟彦. 2005.南岭与中生代花岗岩类有关的成矿作用及其大地构造背景.高校地质学报, 11(3):291-304 doi: 10.3969/j.issn.1006-7493.2005.03.002

     

    黄河, 张招崇, 张东阳, 杜红星, 马乐天, 康建丽, 薛春纪. 2011.中国南天山晚石炭世-早二叠世花岗质侵入岩的岩石成因与地壳增生.地质学报, 85(8):1305-1333 http://www.cnki.com.cn/Article/CJFDTotal-DZXE201108007.htm

     

    王德滋, 任启江, 邱检生, 陈克荣, 徐兆文, 曾家湖. 1996.中国东部橄榄安粗岩省的火山岩特征及其成矿作用.地质学报, 70(1):23-34 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600066084

     

    王德滋, 周金城. 2005.大火成岩省研新进展.高校地质学报, 11(1):1-8 doi: 10.3969/j.issn.1006-7493.2005.01.001

     

    肖龙, Pirajno F, 何琦. 2007.试论大火成岩省与成矿作用.高校地质学报, 13(2):148-160 doi: 10.3969/j.issn.1006-7493.2007.02.002

     

    徐义刚. 2002.地幔柱构造、大火成岩省及其地质效应.地学前缘, 9(4):341-353 doi: 10.3321/j.issn:1005-2321.2002.04.014

     

    张旗. 2013.中国东部中生代大规模岩浆活动与长英质大火成岩省问题.岩石矿物学杂志, 32(4):557-564 doi: 10.3969/j.issn.1000-6524.2013.04.014

  • 加载中

(7)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2020-02-02
修回日期:  2020-05-15
刊出日期:  2020-07-01

目录