四川鲜水河-安宁河断裂带温泉氢氧稳定同位素特征

张磊, 郭丽爽, 刘树文, 杨耀, 施得旸. 2021. 四川鲜水河-安宁河断裂带温泉氢氧稳定同位素特征. 岩石学报, 37(2): 589-598. doi: 10.18654/1000-0569/2021.02.16
引用本文: 张磊, 郭丽爽, 刘树文, 杨耀, 施得旸. 2021. 四川鲜水河-安宁河断裂带温泉氢氧稳定同位素特征. 岩石学报, 37(2): 589-598. doi: 10.18654/1000-0569/2021.02.16
ZHANG Lei, GUO LiShuang, LIU ShuWen, YANG Yao, SHI DeYang. 2021. Characteristics of hydrogen and oxygen stable isotopes of hot springs in Xianshuihe-Anninghe fault zone, Sichuan Province, China. Acta Petrologica Sinica, 37(2): 589-598. doi: 10.18654/1000-0569/2021.02.16
Citation: ZHANG Lei, GUO LiShuang, LIU ShuWen, YANG Yao, SHI DeYang. 2021. Characteristics of hydrogen and oxygen stable isotopes of hot springs in Xianshuihe-Anninghe fault zone, Sichuan Province, China. Acta Petrologica Sinica, 37(2): 589-598. doi: 10.18654/1000-0569/2021.02.16

四川鲜水河-安宁河断裂带温泉氢氧稳定同位素特征

  • 基金项目:

    本文受应急管理部国家自然灾害防治研究院基本科研业务专项(ZDJ2019-07)、国家自然科学基金项目(41703009)和国家重点研发计划(2018YFC1503806)联合资助

详细信息
    作者简介:

    张磊, 男, 1987年生, 副研究员, 从事水文地球化学研究, E-mail: lzhang87@163.com

    通讯作者: 刘树文, 男, 1958年生, 教授, 从事前寒武纪地质学研究, E-mail: swliu@pku.edu.cn
  • 中图分类号: P592;P597.2

Characteristics of hydrogen and oxygen stable isotopes of hot springs in Xianshuihe-Anninghe fault zone, Sichuan Province, China

More Information
  • 温泉地下水同位素特征对确定断裂带地下水来源、循环过程和断裂带活动性至关重要。为了确定青藏高原东缘温泉的地下水同位素特征和流体来源,本研究采集了鲜水河-安宁河断裂带上温泉水、冷泉水、河流和积雪融水等样品,进行了氢氧稳定同位素和水化学组分测定,并进行了同位素特征的对比研究。分析结果表明,温泉水体δ18O变化范围为-19.04‰~-12.71‰,平均值为-16.42‰;δ2H变化范围为-144.07‰~-88.63‰,平均值为-122.37‰。河水的δ18O变化范围为-15.90‰~-10.85‰,平均值为-13.86‰;δ2H变化范围为-118.21‰~-71.12‰,平均值为-98.99‰。康定冷泉δ18O和δ2H分别为-13.66‰和-106.74‰。道孚积雪融水的δ18O和δ2H分别为-10.27‰和-65.41‰。不同类型水体样品氢氧稳定同位素组成主要分布在全球和区域大气降水线上,表明了大气降水成因,缺少明显的氧同位素漂移特征。不同类型水体同位素值差异较大,显示出温泉与河水、积雪融水之间补给来源的不一致性。温泉同位素值具有明显的同位素高程效应,鲜水河-安宁河断裂带上氧同位素高程效应为-0.23‰/100m,氢同位素高程效应为-1.95‰/100m。温泉氧同位素漂移与相关离子比值、Na-K-Mg三角图、Li和Sr元素等指标表明研究区域大部分温泉的水岩作用强度弱。氢氧稳定同位素特征、水岩作用特征和循环深度揭示出温泉的成因为远距离大气降水运移补给地下水,地下水在地下热储层加热后通过断裂上升到地表形成温泉,这为认识青藏高原东缘地热水循环、断裂带活动性与演化特征提供了依据。

  • 加载中
  • 图 1 

    研究区域位置与采样点分布示意图

    Figure 1. 

    The study area and the sampling locations

    图 2 

    水样δ18O-δ2H分布及其与全球和区域大气降水线的关系

    Figure 2. 

    Plot of δ18O vs. δ2H and their correlations with GMWL and LMWL

    图 3 

    温泉(a、b)和河水(c、d)采样点海拔与δ18O和δ2H的关系

    Figure 3. 

    Plot of altitude vs. δ18O and δ2H for hot springs (a, b) and for rivers (c, d)

    图 4 

    泉水样品Na-K-Mg三角图

    Figure 4. 

    Na-K-Mg triangular diagram for springs

    图 5 

    温泉循环深度与δ18O和δ2H的对比关系

    Figure 5. 

    Plot of circulation depths vs. δ18O and δ2H for hot springs

    表 1 

    采样点位置和氢氧稳定同位素组成

    Table 1. 

    The sampling locations and analyzed δ2H and δ18O data

    样品号 采样点描述 东经(°) 北纬(°) 海拔(m) 水温(℃) δ18O(‰) δ2H(‰)
    S1 道孚新江沟温泉 101.1054 31.0539 3258 51.14 -19.04 -144.07
    S2 道孚七美1#温泉 101.1761 31.1726 3889 52.59 -19.03 -143.73
    S3 道孚七美2#温泉 101.1824 31.1416 3946 53.66 -18.53 -139.20
    S4 道孚龙普沟54泉 101.2424 30.9490 3375 39.72 -18.13 -139.29
    S5 道孚苍龙沟1#温泉 101.2896 30.8605 3554 45.57 -18.41 -137.08
    S6 道孚苍龙沟2#温泉 101.2896 30.8605 3554 45.34 -18.44 -137.75
    S7 道孚八美牦牛沟2#温泉 101.6260 30.5432 3443 68.19 -18.24 -138.92
    S8 道孚八美牦牛沟1#温泉 101.6207 30.5324 3467 55.58 -18.33 -139.92
    S9 康定折多塘温泉 101.8948 29.9921 3228 37.67 -17.94 -131.85
    S10 康定中谷温泉1# 101.8676 30.2680 3106 62.56 -16.88 -125.84
    S11 康定中谷温泉2# 101.8688 30.2683 3099 46.21 -16.38 -123.29
    S12 康定雅拉温泉3# 101.8856 30.2461 3020 59.81 -16.96 -128.03
    S13 康定雅拉温泉2# 101.8850 30.2453 3018 56.66 -17.04 -127.41
    S14 康定二道桥55泉 101.9525 30.0841 2563 41.47 -14.92 -111.08
    S15 康定龙头沟57泉 101.9587 29.9763 2956 72.17 -16.38 -127.75
    S16 康定灌顶温泉 101.9629 29.9491 3029 74.81 -15.31 -115.37
    S17 贡嘎山温泉 101.9622 29.3871 2517 46.71 -15.26 -110.57
    S18 泸定新兴乡温泉 102.0615 29.7514 2257 41.89 -14.84 -105.13
    S19 泸定共和温泉 102.1110 29.6170 1599 55.49 -12.71 -88.63
    S20 石棉田湾温泉 102.1587 29.4689 1175 57.19 -13.27 -92.22
    S21 石棉公益海温泉 102.3927 29.0220 2163 57.56 -14.95 -107.87
    S22 喜德路边温泉 102.3773 28.3214 1816 39.92 -13.62 -99.85
    S23 喜德红莫泉 102.2436 28.0852 1734 49.27 -14.57 -110.79
    S24 西昌河西温泉 102.1509 27.7481 1519 37.29 -14.81 -111.25
    M1 道孚七美山顶积雪融水 101.2349 31.0153 4555 ~ -10.27 -65.41
    CS1 康定雅拉冷泉1# 101.8851 30.2447 3017 19.88 -13.66 -106.74
    R1 道孚新江沟温泉旁河水 101.1029 31.0503 3229 15.59 -15.90 -118.21
    R2 道孚七美1#河水 101.1761 31.1726 3889 6.48 -14.73 -105.35
    R3 道孚七美云祝措河水 101.2147 31.0891 4197 6.63 -14.13 -100.82
    R5-1 道孚苍龙沟河水1# 101.2752 30.8465 3460 11.56 -14.30 -103.11
    R5-2 道孚苍龙沟河水2# 101.2745 30.8490 3477 10.77 -14.99 -109.04
    R9 康定折多塘温泉旁河水 101.8952 29.9919 3220 8.52 -15.54 -111.86
    R11 康定中谷温泉2#旁河水 101.8689 30.2682 3097 9.86 -14.64 -104.30
    R16 康定灌顶温泉旁河水 101.9629 29.9485 3026 13.90 -14.19 -100.07
    R17 贡嘎山温泉旁河水 101.9624 29.3871 2516 13.56 -14.79 -107.02
    R18 泸定新兴乡温泉旁河水 102.0615 29.7514 2257 12.71 -11.20 -73.83
    R21 石棉公益海温泉旁河水 102.3927 29.0220 2164 18.56 -10.85 -71.12
    R23 喜德红莫泉旁河水 102.2434 28.0845 1734 23.82 -10.99 -83.09
    注:"~"为未测量
    下载: 导出CSV

    表 2 

    温泉和冷泉水化学组成结果(mg/L)

    Table 2. 

    The analyzed chemical compositions and related parameters (mg/L)

    样品号 Ca2+ Mg2+ Na+ K+ HCO3- CO32- SO42- Cl- NO3- F- E(%) Li Sr MGI (Ca2++Mg2+)/HCO3-
    S1 37.19 11.94 521.5 15.20 1681 0 37.97 2.65 6.41 2.41 -5.01 0.81 1.02 29.09 0.10
    S2 66.28 13.24 190.5 12.01 854.1 0 10.24 10.83 3.01 5.02 -6.61 4.81 0.78 38.87 0.31
    S3 69.06 9.64 152.1 11.39 716.8 0 13.25 8.75 2.15 5.39 -6.08 4.04 0.45 24.14 0.36
    S4 75.79 11.09 290.2 11.25 1104 0 14.94 19.82 3.06 2.94 -4.25 0.46 1.41 39.71 0.26
    S5 131.7 38.52 109.7 15.17 945.6 0 21.91 3.26 3.17 1.07 -4.03 0.15 1.40 11.11 0.63
    S6 140.0 37.93 111.8 15.72 957.8 0 21.85 3.37 3.05 1.05 -3.09 0.16 1.43 11.36 0.64
    S7 44.51 1.01 274.6 22.55 918.1 0 7.33 42.88 2.67 7.51 -6.38 3.43 1.83 74.12 0.15
    S8 66.44 38.49 471.3 81.19 1940 0 14.25 35.26 4.82 4.89 -6.98 1.87 2.80 72.74 0.20
    S9 2.91 0.13 161.9 1.12 381.3 0 12.48 9.20 0.62 22.92 -4.98 0.13 0.21 26.21 0.02
    S10 48.42 7.47 257.6 25.90 838.8 0 15.61 73.41 2.26 4.31 -4.82 2.34 0.82 30.14 0.22
    S11 73.66 14.38 260.2 27.27 985.2 0 12.69 73.39 3.35 4.35 -5.30 2.36 1.01 37.64 0.30
    S12 105.4 19.40 329.7 31.36 1266 0 23.80 80.24 3.23 3.56 -3.82 2.65 1.10 25.99 0.33
    S13 110.2 19.18 315.6 30.39 1251 0 25.28 78.80 3.51 3.30 -4.22 2.49 1.11 23.34 0.35
    S14 245.1 49.32 123.5 21.45 1220 0 112.8 43.28 2.90 0.50 -3.12 0.48 1.31 2.00 0.81
    S15 48.42 33.20 502.5 54.91 1452 0 26.53 228.3 0.25 3.43 -4.32 3.50 1.09 30.45 0.22
    S16 54.60 16.19 318.3 42.20 771.7 0 53.67 180.2 2.85 1.60 0.01 3.30 0.94 8.81 0.32
    S17 117.3 20.26 142.0 15.69 704.6 0 31.70 41.34 2.23 0.69 2.37 0.94 1.01 8.20 0.65
    S18 23.12 11.27 295.6 9.18 750.4 0 18.74 98.09 3.83 2.84 -1.60 0.10 0.63 26.46 0.17
    S19 56.29 20.20 125.8 10.62 497.2 0 60.51 20.77 1.75 1.86 0.46 0.18 0.75 4.09 0.55
    S20 61.75 6.14 140.2 13.93 262.3 0 256.7 12.98 1.26 1.84 -0.42 0.25 0.83 1.14 0.83
    S21 1.23 0.03 127.6 5.07 42.70 42.00 32.80 51.80 0.25 22.77 2.66 0.35 0.04 6.18 0.09
    S22 150.2 61.97 51.05 36.70 655.8 0 186.5 20.07 3.73 0.87 1.45 0.41 1.39 0.67 1.17
    S23 93.21 31.13 215.6 51.74 494.1 0 233.2 140.4 3.19 2.19 2.38 1.16 1.74 1.39 0.89
    S24 0.86 0.04 46.77 0.11 85.41 30.00 9.57 6.24 1.54 1.24 -15.79 0.03 0.04 9.34 0.03
    CS1 89.72 22.91 284.5 27.73 1171 0 19.22 69.78 4.04 2.79 -5.64 2.17 0.97 27.78 0.33
    下载: 导出CSV
  •  

    Blasch KW and Bryson JR. 2007. Distinguishing sources of ground water recharge by using δ2H and δ18O. Groundwater, 45(3): 294-308 doi: 10.1111/j.1745-6584.2006.00289.x

     

    Chen Z, Du JG, Zhou XC, Yi L, Liu L, Xie C, Cui YJ and Li Y. 2014. Hydrochemistry of the hot springs in western Sichuan Province related to the Wenchuan MS 8.0 earthquake. The Scientific World Journal, 2014: 901432 http://www.ncbi.nlm.nih.gov/pubmed/24892106

     

    Claesson L, Skelton A, Graham C and Mörth CM. 2007. The timescale and mechanisms of fault sealing and water-rock interaction after an earthquake. Geofluids, 7(4): 427-440 doi: 10.1111/j.1468-8123.2007.00197.x

     

    Clark ID and Fritz P. 1997. Environmental Isotopes in Hydrogeology. Boca Raton: CRC Press

     

    Craig H. 1961. Isotopic variations in meteoric waters. Science, 133(3465): 1702-1703 doi: 10.1126/science.133.3465.1702

     

    Gat JR. 1996. Oxygen and hydrogen isotopes in the hydrologic cycle. Annual Review of Earth and Planetary Sciences, 24: 225-262 doi: 10.1146/annurev.earth.24.1.225

     

    Giggenbach WF. 1988. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochimica et Cosmochimica Acta, 52(12): 2749-2765 doi: 10.1016/0016-7037(88)90143-3

     

    Gu WZ, Pang ZH, Wang QJ and Song XF. 2011. Isotope Hydrology. Beijing: Science Press (in Chinese)

     

    Guo Q, Pang ZH, Wang YC and Tian J. 2017a. Fluid geochemistry and geothermometry applications of the Kangding high-temperature geothermal system in eastern Himalayas. Applied Geochemistry, 81: 63-75 doi: 10.1016/j.apgeochem.2017.03.007

     

    Guo QH, Liu ML, Li JX, Zhang XB, Guo W and Wang YX. 2017b. Fluid geochemical constraints on the heat source and reservoir temperature of the Banglazhang hydrothermal system, Yunnan-Tibet Geothermal Province, China. Journal of Geochemical Exploration, 172: 109-119 doi: 10.1016/j.gexplo.2016.10.012

     

    Kaasalainen H, Stefánsson A, Giroud N and Arnórsson S. 2015. The geochemistry of trace elements in geothermal fluids, Iceland. Applied Geochemistry, 62: 207-223 doi: 10.1016/j.apgeochem.2015.02.003

     

    Kong YL, Wang K, Li J and Pang ZH. 2019. Stable isotopes of precipitation in China: A consideration of moisture sources. Water, 11(6): 1239 doi: 10.3390/w11061239

     

    Li B, Shi ZM, Wang GC and Liu CL. 2019. Earthquake-related hydrochemical changes in thermal springs in the Xianshuihe Fault zone, western China. Journal of Hydrology, 579: 124175 doi: 10.1016/j.jhydrol.2019.124175

     

    Li J, Zhou X, Fang B and Yang YX. 2007. Formation of hot springs at Wenquanpu, Qinhuangdao City, Hebei, China, and suggestions of their exploitation and utilization. Geological Bulletin of China, 26(3): 344-349 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200703011.htm

     

    Li JX, Yang G, Sagoe G and Li YL. 2018. Major hydrogeochemical processes controlling the composition of geothermal waters in the Kangding geothermal field, western Sichuan Province. Geothermics, 75: 154-163 doi: 10.1016/j.geothermics.2018.04.008

     

    Li X, Wang JJ, Huang X and Yu ZY. 2018. Chemical and isotopic characteristics of hot water in the Kangding-Daofu section of Xianshuihe fault zone, Sichuan, China. Journal of Chengdu University of Technology (Science & Technology Edition), 45(6): 733-745 (in Chinese with English abstract) http://www.researchgate.net/publication/331332157_Chemical_and_isotopic_characteristics_of_hot_water_in_the_Kangding-Daofu_section_of_Xianshuihe_fault_zone_Sichuan_China

     

    Luo J, Pang ZH, Kong YK and Wang YC. 2017. Geothermal potential evaluation and development prioritization based on geochemistry of geothermal waters from Kangding area, western Sichuan, China. Environmental Earth Sciences, 76(9): 343 doi: 10.1007/s12665-017-6659-9

     

    Luo LL. 1994. Inquisition of the distribution and cause of the hot springs in western Sichuan. Journal of Chongqing Teachers College (Natural Science Edition), 11(2): 39-47 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-CQSF402.009.htm

     

    Pang ZH, Kong YL, Li J and Tian J. 2017. An isotopic geoindicator in the hydrological cycle. Procedia Earth and Planetary Science, 17: 534-537 doi: 10.1016/j.proeps.2016.12.135

     

    Redwan M, Abdel Moneim AA and Amra MA. 2016. Effect of water-rock interaction processes on the hydrogeochemistry of groundwater west of Sohag area, Egypt. Arabian Journal of Geosciences, 9(2): 111 doi: 10.1007/s12517-015-2042-x

     

    Shangguan ZG, Du JK, Zang W, Wang JH, Kong LC and Gao SS. 1998. Modern hot spring geochemistry at the Tanlu fault and Jiaoliao block in eastern China. Science in China (Series D), 41(1): 87-94 doi: 10.1007/BF02932426

     

    Shi ZM, Liao F, Wang GC, Xu QY, Mu WQ and Sun XY. 2017. Hydrogeochemical characteristics and evolution of hot springs in eastern Tibetan Plateau geothermal belt, western China: Insight from multivariate statistical analysis. Geofluids, 2017: 6546014 http://www.researchgate.net/publication/317343496_Hydrogeochemical_Characteristics_and_Evolution_of_Hot_Springs_in_Eastern_Tibetan_Plateau_Geothermal_Belt_Western_China_Insight_from_Multivariate_Statistical_Analysis

     

    Skelton A, Andrén M, Kristmannsdóttir H, Stockmann G, Mörth CM, Sveinbjörnsdóttir Á, Jónsson S, Sturkell E, Guorúnardóttir HR, Hjartarson H, Siegmund H and Kockum I. 2014. Changes in groundwater chemistry before two consecutive earthquakes in Iceland. Nature Geoscience, 7(10): 752-756 doi: 10.1038/ngeo2250

     

    Skelton A, Liljedahl-Claesson L, Wästeby N, Andrén M, Stockmann G, Sturkell E, Mörth CM, Stefansson A, Tollefsen E, Siegmund H, Keller N, Kjartansdóttir R, Hjartarson H and Kockum I. 2019. Hydrochemical changes before and after earthquakes based on long-term measurements of multiple parameters at two sites in northern Iceland: A review. Journal of Geophysical Research: Solid Earth, 124(3): 2702-2720 doi: 10.1029/2018JB016757

     

    Soltan ME. 1998. Characterisation, classification, and evaluation of some ground water samples in Upper Egypt. Chemosphere, 37(4): 735-745 doi: 10.1016/S0045-6535(98)00079-4

     

    Song XF, Liu XC, Xia J, Yu JJ and Tang CY. 2006. A study of interaction between surface water and groundwater using environmental isotope in Huaisha River basin. Science in China (Series D), 49(12): 1299-1310 doi: 10.1007/s11430-006-1299-z

     

    Tang XC, Zhang J, Pang ZH, Hu SB, Tian J and Bao SJ. 2017. The eastern Tibetan Plateau geothermal belt, western China: Geology, geophysics, genesis, and hydrothermal system. Tectonophysics, 717: 433-448 doi: 10.1016/j.tecto.2017.08.035

     

    Thomas D. 1988. Geochemical precursors to seismic activity. Pure and Applied Geophysics, 126(2-4): 241-266 doi: 10.1007/BF00878998

     

    Wang GL. 2018. Geothermy of China. Beijing: Science Press (in Chinese)

     

    Wang GL and Lin WJ. 2020. Main hydro-geothermal systems and their genetic models in China. Acta Geologica Sinica, 94(7): 1923-1937 (in Chinese with English abstract)

     

    Wang JH, Lin YW, Liu CL and Liu WZ. 2000. Evidence to the hydrogen-oxygen stable isotopes and gas composition formed from hot springs in southern Zhangjiakou. Hydrogeology and Engineering Geology, 27(4): 30-33 (in Chinese with English abstract)

     

    Wang Y, Zhou X, Yu Y, Liu CH and Zhou HY. 2007. Application of geothermometers to calculation of temperature of geothermal reservoirs. Geoscience, 21(4): 605-612 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200704003.htm

     

    Wang YL, Mu WQ and Shi ZM. 2020. Hydrogeochemical characteristics of hot springs in south segment of the Xianshuihe fault zone. Journal of Seismological Research, 43(2): 287-295 (in Chinese with English abstract) http://www.researchgate.net/publication/338554475_Hydrogeochemical_Characteristics_and_Conceptual_Model_of_the_Geothermal_Waters_in_the_Xianshuihe_Fault_Zone_Southwestern_China

     

    Wei KQ, Lin RF and Wang ZX. 1983. Hydrogen and oxygen stable isotopic composition and tritium content of waters from Yangbajain geothermal area, Xizang, China. Geochimica, (4): 338-346 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX198304001.htm

     

    Wen XZ, Ma SL, Xu XW and He YN. 2008. Historical pattern and behavior of earthquake ruptures along the eastern boundary of the Sichuan-Yunnan faulted-block, southwestern China. Physics of the Earth and Planetary Interiors, 168(1-2): 16-36 doi: 10.1016/j.pepi.2008.04.013

     

    Yu JS, Zhang HB, Yu FJ and Liu DP. 1984. Oxygen and hydrogen isotopic compositions of meteoric waters in the eastern part of Xizang. Geochemistry, 3(2): 93-101

     

    Zhang J, Li WY, Tang XC, Tian J, Wang YC, Guo Q and Pang ZH. 2017. Geothermal data analysis at the high-temperature hydrothermal area in Western Sichuan. Science China (Earth Sciences), 60(8): 1507-1521 doi: 10.1007/s11430-016-9053-2

     

    Zhang L, Guo LS, Wang Y, Liu DY, Liu YW and Li J. 2020. Continuous monitoring of hydrogen and oxygen stable isotopes in a hot spring: Significance for distant earthquakes. Applied Geochemistry, 112: 104488 doi: 10.1016/j.apgeochem.2019.104488

     

    Zhang YH. 2018. Research on genesis and development of the geothermal system in the Kangding-Moxi segment of the Xianshuihe fault. Ph. D. Dissertation. Chengdu: Chengdu University of Technology (in Chinese with English summary)

     

    Zhao QS. 1984. The hydrogeochemical characteristics and forming model of hot water in the Xianshuihe fracture zone. Journal of Chengdu University of Science and Technology, (2): 77-88 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SCLH198402008.htm

     

    Zhao YH, Bai JT, Li XF, Jia K and Chen H. 2011. Correlation between hydrogen isotope in underground water near active fault and earthquakes. Acta Petrologica Sinica, 27(6): 1909-1915 (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-YSXB201106028.htm

     

    Zheng SH, Zhang ZF, Ni BL, Hou FG and Shen MZ. 1982. Hydrogen and oxygen isotopic studies of thermal waters in Xizang. Acta Scientiarum Naturalium Universitatis Pekinensis, (1): 99-106 (in Chinese with English abstract) http://www.cabdirect.org/abstracts/19812608807.html

     

    Zhou X, Cao Q, Yin F, Guo J, Wang XC, Zhang YS, Wang LD and Shen Y. 2015. Characteristics of the brines and hot springs in the Triassic carbonates in the high and steep fold zone of the eastern Sichuan basin. Acta Geologica Sinica, 89(11): 1908-1920 (in Chinese with English abstract) http://www.en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE201511003&dbcode=CJFD&year=2015&dflag=pdfdown

     

    Zhou XC, Wang WC, Chen Z, Yi L, Liu L, Xie C, Cui YJ, Du JG, Cheng JW and Yang LM. 2015. Hot spring gas geochemistry in western Sichuan Province, China after the Wenchuan Ms 8.0 earthquake. Terrestrial, Atmospheric and Oceanic Sciences, 26(4): 361-373 doi: 10.3319/TAO.2015.01.05.01(TT)

     

    Zhou XC, Wang WL, Li LW, Hou JM, Xing LT, Li ZP, Shi HY and Yan YC. 2020. Geochemical features of hot spring gases in the Jinshajiang-Red River fault zone, Southeast Tibetan Plateau. Acta Petrologica Sinica, 36(7): 2197-2214 (in Chinese with English abstract) doi: 10.18654/1000-0569/2020.07.18

     

    顾慰祖, 庞忠和, 王全九, 宋献方. 2011. 同位素水文学. 北京: 科学出版社

     

    李娟, 周训, 方斌, 杨燕雄. 2007. 河北秦皇岛市温泉堡温泉的形成与开发利用建议. 地质通报, 26(3): 344-349 doi: 10.3969/j.issn.1671-2552.2007.03.012

     

    李晓, 王金金, 黄珣, 余中友. 2018. 鲜水河断裂带康定至道孚段热水化学与同位素特征. 成都理工大学学报(自然科学版), 45(6): 733-745 doi: 10.3969/j.issn.1671-9727.2018.06.09

     

    罗来麟. 1994. 四川西部温泉分布及成因初探. 重庆师范学院学报(自然科学版), 11(2): 39-47 https://www.cnki.com.cn/Article/CJFDTOTAL-CQSF402.009.htm

     

    王贵玲. 2018. 中国地热志. 北京: 科学出版社

     

    王贵玲, 蔺文静. 2020. 我国主要水热型地热系统形成机制与成因模式. 地质学报, 94(7): 1923-1937 doi: 10.3969/j.issn.0001-5717.2020.07.002

     

    王基华, 林元武, 刘成龙, 刘五洲. 2000. 张家口南部地区温泉形成的氢氧稳定同位素及气体组成证据. 水文地质工程地质, 27(4): 30-33 doi: 10.3969/j.issn.1000-3665.2000.04.009

     

    王莹, 周训, 于湲, 柳春晖, 周海燕. 2007. 应用地热温标估算地下热储温度. 现代地质, 21(4): 605-612 doi: 10.3969/j.issn.1000-8527.2007.04.003

     

    王逸凌, 穆文清, 史浙明. 2020. 鲜水河断裂南段温泉水文地球化学特征. 地震研究, 43(2): 287-295 doi: 10.3969/j.issn.1000-0666.2020.02.010

     

    卫克勤, 林瑞芬, 王志祥. 1983. 西藏羊八井地热水的氢、氧稳定同位素组成及氚含量. 地球化学, (4): 338-346 doi: 10.3321/j.issn:0379-1726.1983.04.002

     

    张云辉. 2018. 鲜水河断裂康定-磨西段地热系统成因及开发利用研究. 博士学位论文. 成都: 成都理工大学

     

    赵庆生. 1984. 鲜水河断裂带热水水文地球化学特征及形成模式. 成都科技大学学报, (2): 77-88 https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH198402008.htm

     

    赵永红, 白竣天, 李小凡, 贾科, 陈辉. 2011. 活动断裂带附近地下水中的氢同位素变化与地震关系研究. 岩石学报, 27(6): 1909-1915 http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20110628&flag=1

     

    郑淑蕙, 张知非, 倪葆龄, 侯发高, 沈敏子. 1982. 西藏地热水的氢氧稳定同位素研究. 北京大学学报, (1): 99-106 https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ198201010.htm

     

    周训, 曹琴, 尹菲, 郭娟, 王晓翠, 张永帅, 王黎栋, 沈晔. 2015. 四川盆地东部高褶带三叠系地层卤水和温泉的地球化学特征及成因. 地质学报, 89(11): 1908-1920 https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201511003.htm

     

    周晓成, 王万丽, 李立武, 侯建民, 邢蓝田, 李中平, 石宏宇, 颜玉聪. 2020. 金沙江-红河断裂带温泉气体地球化学特征. 岩石学报, 36(7): 2197-2214 http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20200718&flag=1

  • 加载中

(5)

(2)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2020-08-01
修回日期:  2020-10-21
刊出日期:  2021-02-01

目录