粤北良源铌钽铷钨矿床地质、成岩成矿时代与成矿模式

范飞鹏, 肖惠良, 陈乐柱, 李海立, 鲍晓明. 2022. 粤北良源铌钽铷钨矿床地质、成岩成矿时代与成矿模式. 岩石学报, 38(2): 393-410. doi: 10.18654/1000-0569/2022.02.06
引用本文: 范飞鹏, 肖惠良, 陈乐柱, 李海立, 鲍晓明. 2022. 粤北良源铌钽铷钨矿床地质、成岩成矿时代与成矿模式. 岩石学报, 38(2): 393-410. doi: 10.18654/1000-0569/2022.02.06
FAN FeiPeng, XIAO HuiLiang, CHEN LeZhu, LI HaiLi, BAO XiaoMing. 2022. Deposit geology, geochronology and metallogenic model of Liangyuan Nb-Ta-Rb-W deposit in northern Guangdong Province. Acta Petrologica Sinica, 38(2): 393-410. doi: 10.18654/1000-0569/2022.02.06
Citation: FAN FeiPeng, XIAO HuiLiang, CHEN LeZhu, LI HaiLi, BAO XiaoMing. 2022. Deposit geology, geochronology and metallogenic model of Liangyuan Nb-Ta-Rb-W deposit in northern Guangdong Province. Acta Petrologica Sinica, 38(2): 393-410. doi: 10.18654/1000-0569/2022.02.06

粤北良源铌钽铷钨矿床地质、成岩成矿时代与成矿模式

  • 基金项目:

    本文受中国地质调查局工作项目(DD20221688、DD20190153、1212011120811、1212010533003)和江苏省面上基金(BK20191132)联合资助

详细信息
    作者简介:

    范飞鹏, 男, 1982年生, 硕士, 正高级工程师, 从事矿产资源调查与评价工作, E-mail: fanfp1111@163.com

  • 中图分类号: P597.3;P618.7

Deposit geology, geochronology and metallogenic model of Liangyuan Nb-Ta-Rb-W deposit in northern Guangdong Province

  • 良源铌钽铷钨矿床位于南岭东西向构造岩浆带与武夷山北东向构造带交汇部位。良源铌钽铷钨矿床是粤北地区近年在石英型钨矿、云英岩型铌钽铷钨矿和花岗岩型铌钽铷多金属矿勘查评价取得最重要突破矿区,新发现铌钽铷钨矿体4条,共、伴生Nb2O5资源量3425.72吨,平均品位0.0108%;Ta2O5资源量1428.99吨,平均品位0.00449%;WO3资源量8205.14吨,平均品位0.25%;伴生Rb2O资源量61398.73吨,平均品位0.0987%,矿区具有大型-超大型资源潜力。良源铌钽铷钨矿床矿化特征为浅部石英脉型钨多金属矿体和云英岩型铌钽铷钨矿体+深部花岗岩型铌钽铷矿体,与以往的石英脉型钨矿"五层楼"+"地下室"成矿特征明显不同,因此对其开展成矿年代学、元素富集成矿规律和成矿模式研究具有重要意义。本文在对矿床成矿地质特征研究基础上,开展了详细的矿物学和年代学研究,应用锆石SHRIMP U-Pb法获得云英岩成岩时代为163.6~159.2Ma;黑云母花岗岩锆石206Pb/238U加权平均年龄为163.0±1.6Ma.应用白云母40Ar-39Ar等时线法获得云英岩型矿体成矿时代为166.4±1.1Ma,白云母花岗岩型矿体成矿时代为168.7±1.2Ma。研究表明,良源铌钽铷钨矿床形成于中-晚侏罗世,是华南东部中生代大规模花岗质岩浆活动与铌钽铷多金属成矿作用开始的产物,其成矿作用是花岗质岩浆高度分异形成的产物,成岩与成矿时间基本一致。浅部为石英脉型钨矿和云英岩型钨锡铌钽铷矿化,岩体接触带为云英岩型钨铌钽铷矿体,深部为高分异花岗岩型铌钽铷矿体。根据以上研究成果,本文建立了良源铌钽铷钨矿床成矿模式,对南岭地区石英脉型-云英岩型-花岗岩型稀有金属成矿理论具有一定的拓展意义,对该地区下一步勘查工作部署具有重要实践意义。

  • 加载中
  • 图 1 

    南岭地区地质矿产简图(据陈骏等, 2008修改)

    Figure 1. 

    The simplified geological map in Nanling region (modified after Chen et al., 2008)

    图 2 

    良源铌钽铷钨矿床地质简图

    Figure 2. 

    Simplified Geological map of the Liangyuan Nb-Ta-Rb-W deposit

    图 3 

    良源铌钽铷钨矿区3号勘探线剖面图

    Figure 3. 

    Section map of No.3 exploration line of the Liangyuan Nb-Ta-Rb-W deposit

    图 4 

    良源铌钽铷钨矿床石英脉型黑钨矿+云英岩型铌钽铷+花岗岩型铌钽铷矿体特征照片

    Figure 4. 

    Characteristics of quartz vine-type tungsten orebody+greisen type Nb-Ta-Rb orebody+granite type Nb-Ta-Rb orebody in the Liangyuan Nb-Ta-Rb-W deposit

    图 5 

    良源铌钽铷钨矿床单偏光下各类矿石矿物特征

    Figure 5. 

    The characteristics of ore minerals in the Liangyuan Nb-Ta-Rb-W deposit under PPL

    图 6 

    良源铌钽铷钨矿床云英岩标本及镜下特征

    Figure 6. 

    The characteristics of specimens and microscope in the Liangyuan Nb-Ta-Rb-W deposit

    图 7 

    良源铌钽铷钨矿床云英岩锆石阴极发光图像及测试点位图

    Figure 7. 

    Cathodeluminescence (CL) images and sampling position of the greisen in the Liangyuan Nb-Ta-Rb-W deposit

    图 8 

    良源铌钽铷钨矿床花岗岩(ZK303-TW1-1)中锆石U-Pb年龄谐和图

    Figure 8. 

    The U-Pb concordia diagram of zircons of the granite(ZK303-TW1-1) in the Liangyuan Nb-Ta-Rb-W deposit

    图 9 

    良源铌钽铷钨矿床LY14-Ar-01样品白云母40Ar-39Ar坪年龄图谱(a)和等时线年龄图解(b)

    Figure 9. 

    40Ar-39Ar spectrum age (a) and isochron age (b) for muscovite of sample LY14-Ar-01 from the Liangyuan Nb-Ta-Rb-W deposit

    图 10 

    良源铌钽铷钨矿床LY14-Ar-02样品白云母40Ar-39Ar坪年龄图谱(a)和等时线年龄图解(b)

    Figure 10. 

    40Ar-39Ar spectrum age (a) and isochron age (b) for muscovite of sample LY14-Ar-02 from the Liangyuan Nb-Ta-Rb-W deposit

    图 11 

    南岭地区铌钽稀有金属成矿年龄直方图

    Figure 11. 

    Histogram of mineralization ages of Nb-Ta rare metals in Nanling region

    图 12 

    良源铌钽铷钨矿床花岗岩球粒陨石标准化稀土元素配分图(标准化值据Sun and McDonough, 1989)

    Figure 12. 

    Chondrite-normalized REE patterns of the granites in the Liangyuan Nb-Ta-Rb-W deposit (normalization values after Sun and McDonough, 1989)

    图 13 

    良源铌钽铷钨矿床成矿模式图

    Figure 13. 

    Metallogenic model of the Liangyuan Nb-Ta-Rb-W deposit

    表 1 

    良源铌钽铷钨矿床矿体特征表

    Table 1. 

    List of ore bodies characteristics of the Liangyuan Nb-Ta-Rb-W deposit

    矿体编号 赋存空间 规模(米) 形态 平均品位(%) 矿石类型
    矿体埋深(米) 标高(米) 长度 延深 平均厚度 Ta2O5 Nb2O5 WO3 Rb2O Sn
    Ⅰ-1 0 200~400 5~500 10~200 0.1~0.5 脉状 0.3~1.8 0.003~3 石英脉型
    0~49.66 202~395 500 50 15 层状 0.0055 0.0104 0.25 0.088 云英岩型、花岗岩型铌钽钨矿
    3~147.79 165.2~294 >450 >100 30 似层状 0.00498 0.0125 0.103 花岗岩型铌钽矿
    0~131.97 171.03~395 >300 80 20 似层状 0.0035 0.0086 0.103 花岗岩型铷伴生铌钽矿
    51.74~158.51 90.5~259 >450 100 60 层状 0.0956 花岗岩型铷矿
    下载: 导出CSV

    表 2 

    良源铌钽铷钨矿云英岩SHRIMP锆石U-Pb分析结果

    Table 2. 

    SHRIMP zircon U-Pb dating of the greisen in the Liangyuan Nb-Ta-Rb-W deposit

    测点号 206Pbc U Th Th/U 206Pb* 年龄(Ma) 同位素比值
    (%) (×10-6) (×10-6) 206Pb/238U ±1σ 207Pb*/235U ±1σ 206Pb*/238U ±1σ Err.corr
    LY10-1b
    1.1 6.69 2027 1529 0.78 47.9 163.6 ±6.8 0.103 58.0 0.02570 4.2 0.072
    2.1 12.27 2425 5196 2.21 59.2 159.2 ±6.2 0.358 16.0 0.02501 4.0 0.243
    3.1 33.88 6727 8113 1.25 444.0 321.0 ±19.0 3.720 7.1 0.05110 6.1 0.864
    11-TW2
    1.1 4.60 358.5 125.3 0.36 24.9 479.0 ±10.0 0.520 17.0 0.07720 2.3 0.134
    2.1 12.76 318.5 217.7 0.71 7.4 151.0 ±7.3 0.167 59.0 0.02370 4.9 0.083
    3.1 8.03 603.7 442.7 0.76 14.2 160.3 ±3.4 0.151 24.0 0.02518 2.1 0.088
    下载: 导出CSV

    表 3 

    良源铌钽铷钨矿床花岗岩(ZK303-TW1-1)LA-ICP-MS锆石U-Pb分析结果

    Table 3. 

    LA-ICP-MS zircon U-Pb data of the granite (ZK303-TW1-1) in the Liangyuan Nb-Ta-Rb-W deposit

    测点号 Th U Th/U 同位素比值 年龄(Ma) 谐和度
    (×10-6) 1σ 1σ 1σ 1σ 1σ 1σ (%)
    1 359.2 775.3 0.46 0.0522 0.0019 0.1837 0.0071 0.0251 0.0004 294.5 83.3 171.3 6.1 159.9 2.4 93
    2 523.0 1059 0.49 0.0522 0.0015 0.1867 0.0052 0.0257 0.0003 294.5 69.4 173.8 4.4 163.7 2.0 94
    3 1431 3487 0.41 0.0527 0.0012 0.1867 0.0045 0.0254 0.0003 322.3 51.8 173.8 3.8 161.5 2.2 92
    4 1091 3011 0.36 0.0508 0.0013 0.1771 0.0046 0.0251 0.0003 231.6 63.9 165.6 3.9 159.8 2.0 96
    5 888.0 2152 0.41 0.0486 0.0012 0.1708 0.0044 0.0253 0.0003 127.9 54.6 160.1 3.8 160.9 2.2 99
    6 322.5 569.4 0.57 0.0484 0.0019 0.1706 0.0067 0.0258 0.0004 116.8 94.4 160.0 5.8 164.1 2.6 97
    7 758.7 1266 0.60 0.0505 0.0015 0.1844 0.0056 0.0262 0.0003 220.4 66.7 171.9 4.8 167.0 2.1 97
    8 446.3 1721 0.26 0.0493 0.0013 0.1764 0.0049 0.0257 0.0004 164.9 65.7 165.0 4.2 163.6 2.3 99
    9 265.5 1243 0.21 0.0490 0.0014 0.1697 0.0046 0.0251 0.0004 146.4 66.7 159.2 4.0 159.8 2.3 99
    10 272.5 525.7 0.52 0.0466 0.0022 0.1707 0.0083 0.0265 0.0005 31.6 107.4 160.0 7.2 168.3 3.3 94
    11 263.8 397.8 0.66 0.0502 0.0022 0.1766 0.0075 0.0257 0.0005 211.2 101.8 165.1 6.5 163.6 2.9 99
    12 311.2 633.7 0.49 0.0536 0.0018 0.1988 0.0067 0.0267 0.0004 366.7 74.1 184.1 5.7 170.1 2.4 92
    13 259.4 460.7 0.56 0.0461 0.0018 0.1613 0.0063 0.0255 0.0004 400.1 -305.5 151.9 5.5 162.1 2.5 93
    14 458.8 502.9 0.91 0.0568 0.0027 0.1972 0.0092 0.0255 0.0004 483.4 103.7 182.8 7.8 162.2 2.5 88
    15 453.7 455.4 1.00 0.0502 0.0017 0.1734 0.0055 0.0252 0.0004 205.6 75.9 162.4 4.7 160.2 2.2 98
    16 367.3 424.7 0.86 0.0491 0.0017 0.1763 0.0059 0.0263 0.0004 153.8 76.8 164.8 5.1 167.2 2.6 98
    17 320.6 1239 0.26 0.0498 0.0013 0.1775 0.0048 0.0258 0.0003 187.1 65.7 165.9 4.2 164.4 2.1 99
    下载: 导出CSV

    表 4 

    良源铌钽铷钨矿床白云母40Ar-39Ar阶段升温测年数据结果

    Table 4. 

    40Ar-39Ar stepwise heating analytical data of muscovite from the Liangyuan Nb-Ta-Rb-W deposit

    温阶 (36Ar/39Ar)m (37Ar/39Ar)m (40Ar/39Ar)m (40Ar*/39Ar)c 39Ar 40Ar* 39Ar (Cum.) Age ±1σ
    (℃) (×10-14mol) (%) (%) (Ma)
    样品号LY14-Ar-01
    700 0.0121 0 44.402 40.814 0.05 92 3.1 162.9 2.1
    750 0.0178 0.0002 47.108 41.84 0.1 89 9.7 166.9 2.2
    780 0.011 0.0001 44.664 41.405 0.11 93 17.3 165.2 2.1
    810 0.01 0 44.373 41.421 0.23 93 32.4 165.3 2.1
    850 0.0119 0 45.123 41.592 0.25 92 49.1 165.9 2.1
    880 0.0132 0 45.656 41.745 0.2 91 62.7 166.5 2.1
    930 0.0152 0.0001 46.353 41.85 0.18 90 74.6 166.9 2.1
    980 0.0132 0.0001 45.785 41.864 0.15 91 84.6 166.9 2.1
    1050 0.0146 0.001 46.741 42.434 0.14 91 94.3 169.1 3.2
    1250 0.0194 0.0001 48.065 42.33 0.07 88 99.3 171.2 2.1
    1450 0.1179 0.0009 84.624 49.789 0.01 59 100 199.7 3
    样品号LY14-Ar-02
    700 0.011 0.0001 45.728 42.47 0.12 93 4.3 169.8 2.1
    750 0.0142 0.0001 46.82 42.604 0.11 91 8 170.3 2.1
    780 0.0063 0 43.362 41.488 0.48 96 24.5 166.1 2.1
    810 0.0082 0 44.399 41.961 0.42 95 38.8 167.7 2.1
    850 0.0122 0 46.009 42.383 0.3 92 49.1 169.5 2.1
    880 0.009 0 44.76 42.099 0.39 94 62.3 168.4 2.1
    930 0.0106 0 45.371 42.226 0.34 93 74.1 168.9 2.1
    980 0.017 0 48.187 43.153 0.21 90 81.3 172.4 2.2
    1050 0.0186 0.0001 49.553 44.062 0.19 89 87.8 175.9 2.2
    1250 0.0194 0.0001 49.349 43.612 0.19 88 94.2 174.2 2.2
    1450 0.021 0.0001 49.82 43.607 0.17 87 100 174.2 2.2
    下载: 导出CSV

    表 5 

    良源铌钽铷钨矿床中各类矿物电子探针数据(wt%)

    Table 5. 

    The electron microprobe analyses of minerals from the Liangyuan Nb-Ta-Rb-W deposit

    矿物 锡石 锡石 锡石 锡石 白钨矿 白钨矿 白钨矿 钍石 钼铅矿 钼铅矿 钨钼铅矿 黑钨矿 黑钨矿 砷酸铋矿 砷酸铋矿 砷酸铋矿
    WO3 0.66 0.11 0.85 0.19 78.00 79.73 79.35 0.09 34.26 75.07 73.36 0.20 0.01 0.25
    MnO 20.38 22.31
    Rb2O 0.04 0.01 0.04
    Bi2O3 0.02 79.88 78.15 78.48
    Ta2O5 0.04 0.06 0.05 0.13 0.23 0.02 0.06 0.09
    As2O5 15.84 21.57 16.95
    PbO 0.13 0.12 4.49 62.25 62.76 53.40
    CaO 19.85 19.40 19.63
    ThO2 13.41
    UO2 81.79
    FeO 0.06 4.23 4.47
    P2O5 3.44 0.06 4.06
    MoO3 0.06 0.01 0.01 0.01 0.01 0.01 37.96 37.42 11.85 0.03 0.38
    HfO2 0.10
    Ce2O3 0.26 0.19 0.33
    Sb2O5 0.06 0.14 0.11 0.20
    SnO2 98.84 98.75 98.51 99.27 0.09 0.01
    Nb2O5 0.14 0.14 0.06 0.14 0.01 0.18 0.11
    Yb2O3 0.40 0.35 0.45
    ZrO2 0.07 0.02 0.05 0.51 0.50 0.45
    Y2O3 0.01 0.02 0.24 0.10 0.21
    Total 99.84 99.15 99.50 99.75 99.39 100.47 100.51 99.99 100.21 100.27 99.51 99.89 100.24 99.90 100.00 100.15
    注:空白为未测出
    下载: 导出CSV

    表 6 

    南岭地区主要铌钽矿床的成矿年龄

    Table 6. 

    Metallogenic ages of main Nb-Ta deposits in Nanling region

    矿产地 矿种组合 采样地质体 成矿年龄(Ma) 测试方法 文献
    江西广昌西港 Li-Ta 花岗伟晶岩 420~430 铌铁矿U-Pb Che et al., 2019
    福建南平 Ta-Nb-Li 花岗伟晶岩 391 铌钽铁矿U-Pb Che et al., 2015
    广西恭县栗木 Ta、Nb 花岗岩 211~214 白云母Ar-Ar 李胜虎, 2015
    广西恭县栗木 Ta、Nb 花岗岩 ~218 铌铁矿U-Pb Che et al., 2019
    湖南临武尖峰岭 Li、Be、Nb、Ta 花岗岩 160 锆石U-Pb 轩一撒等, 2014
    湖南临武尖峰岭 Li、Be、Nb、Ta 花岗岩 160 铌铁矿U-Pb Che et al., 2019
    湖南临武癞子岭 Be、Nb、Ta、Sn 花岗岩 155 锆石U-Pb 朱金初等, 2011
    江西全南大吉山 Ta、Nb、W 含辉钼矿石英脉 161 辉钼矿Re-Os 张思明等, 2011
    界牌岭 Ta、Nb 花岗岩 ~90 铌钽铁矿U-Pb Che et al., 2019
    江西横峰黄 Nb、Ta 花岗岩 130 铌钽铁矿U-Pb Che et al., 2019
    江西宜春414 W、Ta 花岗岩 160 铌钽铁矿U-Pb Che et al., 2015
    湖北断峰山 Nb-Ta-Nb-Be-Li 花岗伟晶岩 128 白云母Ar-Ar 李建康等, 2019
    湖南湘阴望湘 Nb 花岗岩 137 全岩b-Sr 地矿部南岭项目花岗岩专题组, 1989
    湖南平江仁里 Ta-Li-Be-Nb-Ta 花岗伟晶岩 130 铌钽铁矿U-Pb 李建康等, 2019
    湖南连云山 Li-Be-Nb-Ta 花岗伟晶岩 130 辉钼矿Re-Os 李建康等, 2019
    广东良源 Nb、Ta、Rb、W 云英岩 168.7±1.2 白云母Ar-Ar 本文
    广东良源 Nb、Ta、Rb、W 二云母花岗岩 166.4±1.2 云母Ar-Ar 本文
    广东良源 Nb-Ta-Rb、W 云英岩 160 锆石SHRIMP U-Pb 本文
    广东良源 Nb-Ta-Rb、W 云英岩 164~159 锆石SHRIMP U-Pb 本文
    广东良源 Nb-Ta-Rb、W 黑云母花岗岩 163.0±1.6 LA-ICP-MS锆石U-Pb 本文
    广东南山坑 钨锡多金属矿 辉钼矿 160.5±1.4 辉钼矿Re-Os 未发表数据
    下载: 导出CSV

    表 7 

    良源铌钽铷钨矿床花岗岩类稀土元素分析测试结果表(×10-6)

    Table 7. 

    Trace and rare earth elements of granites in the Liangyuan Nb-Ta-Rb-W deposit(×10-6)

    样品号 岩性 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er
    SY301-GS1 云英岩 4.30 12.20 1.72 6.20 2.63 0.03 2.41 0.57 3.48 0.60 1.99
    ZK101-H55 白云母花岗岩 4.70 13.20 1.68 6.30 2.87 0.03 2.53 0.63 3.96 0.69 2.29
    ZK101-H64 白云母花岗岩 4.80 13.20 1.68 6.30 2.80 0.03 2.60 0.55 3.65 0.69 2.07
    ZK101-H110 二云母花岗岩 5.00 14.50 1.82 6.80 3.11 0.03 2.59 0.56 3.58 0.68 2.14
    ZK101-H134 二云母花岗岩 4.80 13.60 1.76 6.50 2.89 0.04 2.71 0.60 3.80 0.74 2.35
    ZK102-H78 黑云母花岗岩 19.20 48.00 5.89 22.20 6.72 0.22 5.92 1.07 6.83 1.42 4.14
    样品号 岩性 Tm Yb Lu Y ∑REE LREE HREE LREE/HREE (La/Yb)N δEu δCe
    SY301-GS1 云英岩 0.38 3.15 0.46 18.70 40.12 27.08 13.04 2.08 0.92 0.04 1.05
    ZK101-H55 白云母花岗岩 0.44 3.72 0.57 25.60 43.61 28.78 14.83 1.94 0.85 0.03 1.10
    ZK101-H64 白云母花岗岩 0.40 3.42 0.54 24.10 42.73 28.81 13.92 2.07 0.95 0.03 1.09
    ZK101-H110 二云母花岗岩 0.40 3.41 0.53 23.90 45.15 31.26 13.89 2.25 0.99 0.03 1.13
    ZK101-H134 二云母花岗岩 0.46 4.02 0.63 24.90 44.90 29.59 15.31 1.93 0.81 0.04 1.10
    ZK102-H78 黑云母花岗岩 0.66 4.89 0.76 45.90 127.9 102.23 25.69 3.98 2.65 0.11 1.06
    下载: 导出CSV
  •  

    Che XD, Wu FY, Wang RC, Gerdes A, Ji WQ, Zhao ZH, Yang JH and Zhu ZY. 2015. In situ U-Pb isotopic dating of columbite-tantalite by LA-ICP-MS. Ore Geology Reviews, 65: 979-989 doi: 10.1016/j.oregeorev.2014.07.008

     

    Che XD, Wang RC, Wu FY, Zhu ZY and Zhang D. 2019. Episodic Nb-Ta mineralization in South China: Constraints from in situ LA-ICP-MS columbite-tantalite U-Pb dating. Ore Geology Reviews, 105: 71-85 doi: 10.1016/j.oregeorev.2018.11.023

     

    Chen J, Lu JJ, Chen WF, Wang RC, Ma DS, Zhu JC, Zhang WL and Ji JF. 2008. W-Sn-Nb-Ta-bearing granites in the Nanling range and their relationship to metallogengesis. Geological Journal of China Universities, 14(4): 459-473 (in Chinese with English abstract) https://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200804003.htm

     

    Chen YC, Pei RF, Zhang HL et al. 1989. Geology of Nonferrous and Rare Metal Deposits Related to Mesozoic Granitoids in Nanling Region. Beijing: Geological Publishing House, 1-471 (in Chinese)

     

    Claesson S. 1987. Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides: Ⅰ. Conventional U-Pb zircon and Sm-Nd whole rock data. Contributions to Mineralogy and Petrology, 97(2): 196-204

     

    Claoué-Long JC, Compston W, Roberts J and Fanning CM. 1995. Two carboniferous ages: A comparison of shrimp zircon dating with conventional zircon ages and 40Ar/39Ar analysis. In: Berggren WA, Kent DV, Aubry MP and Hardenbol J (eds. ). Geochronology, Time Scales and Global Stratigraphic Correlation. Tulsa: SEPM, 3-21

     

    Compston W, Williams IS and Meyer C. 1984. U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. Journal of Geophysical Research: Solid Earth, 89(S02): B525-B534 doi: 10.1029/JB089iS02p0B525

     

    Compston W, Williams IS, Kirschvink JL, Zhang ZC and Ma GG. 1992. Zircon U-Pb ages for the Early Cambrian time-scale. Journal of the Geological Society, 149(2): 171-184 doi: 10.1144/gsjgs.149.2.0171

     

    Deng P, Chen YM, Ye JH and Zhang WB. 2019. Study on the resource distribution and industry development of global niobium and tantalum. China Mining Magazine, 28(4): 63-68 (in Chinese with English abstract)

     

    Fu JM, Li HQ, Qu WJ, Ma LY, Yang XJ, Wei JQ and Liu GQ. 2008. Determination of mineralization epoch of quartz-vein type tungsten deposits in Shixing region, northern Guangdong and its geological significance. Geotectonica et Metallogenia, 32(1): 57-62 (in Chinese with English abstract)

     

    Granite Group of the Nanling Project of the Ministry of Geology and Minerals. 1989. Nanling Granite Geology and its Genesis and Mineralization. Beijing: Geological Publishing House, 1-471 (in Chinese)

     

    Hua RM, Chen PR, Zhang WL and Lu JJ. 2005. Three major metallogenic events in Mesozoic in South China. Mineral deposits, 24(2): 99-107 (in Chinese with English abstract) https://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200502001.htm

     

    Huang XL, Wang RC, Chen XM, Hu H and Liu CS. 2002. Vertical variations in the mineralogy of the Yichun topaz-lepidolite granite, Jiangxi Province, southern China. The Canadian Mineralogist, 40(4): 1047-1068 doi: 10.2113/gscanmin.40.4.1047

     

    Jian P, Liu DY and Sun XM. 2003. SHRIMP dating of carboniferous Jinshajiang ophiolite in western Yunnan and Sichuan: Geochronological constraints on the evolution of the paleo-Tethys oceanic crust. Acta Geologica Sinica, 77(2): 217-228 (in Chinese with English abstract)

     

    Koppers AAP. 2002. ArArCALC-software for 40Ar/39Ar age calculations. Computers & Geosciences, 28(5): 605-619 https://ui.adsabs.harvard.edu/abs/2002CG.....28..605K/abstract

     

    Li FC, Hou ML, Luan RJ, Lin PJ, Li ZS, Zhao L, Wang JL and Xu S. 2016. Optimization of analytical conditions for LA-ICP-MS and its application to zircon U-Pb dating. Rock and Mineral Analysis, 35(1): 17-23 (in Chinese with English abstract)

     

    Li JK, Li P, Wang DH and Li XJ. 2019. A review of niobium and tantalum metallogenic regularity in China. Chinese Science Bulletin, 64(15): 1545-1566 (in Chinese) doi: 10.1360/N972018-00933

     

    Li SH. 2015. Ore-forming mechanisms and prospecting models of typical granite type rare metal deposits in South China. Ph. D. Dissertation. Beijing: China University of Geosciences (Beijing), 1-156 (in Chinese with English abstract)

     

    Li SH, Li JK, Chou IM, Jiang L, Ding X. 2017. The formation of the Yichun Ta-Nb deposit, South China, through fractional crystallization of magma indicated by fluid and silicate melt inclusions. Journal of Asian Earth Sciences, 137: 180-193 doi: 10.1016/j.jseaes.2016.11.016

     

    Liu XC, Xing HL and Zhang DH. 2016. Influences of fluid properties on the hydrothermal fluid flow and alteration halos at the Dajishan tungsten deposit, China. Journal of Geochemical Exploration, 163: 53-69 doi: 10.1016/j.gexplo.2016.01.014

     

    Ludwig KR. 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley, California: Berkeley Geochronology Center, 70-71

     

    Mao JW, Xie GQ, Li XF, Zhang CQ and Mei YX. 2004. Mesozoic large scale mineralization and multiple lithospheric extension in South China. Earth Science Frontiers, 11(1): 45-55 (in Chinese with English abstract) https://en.cnki.com.cn/Article_en/CJFDTotal-DXQY200401002.htm

     

    Mao JW, Xie GQ, Guo CL and Chen YC. 2007. Large-scale tungsten-tin mineralization in the Nanling region, South China: Metallogenic ages and corresponding geodynamic processes. Acta Petrologica Sinica, 23(10): 2329-2338 (in Chinese with English abstract) https://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200710003.htm

     

    Mo ZS. 1980. Nanling Granite Geology. Beijing: Geological Publishing House, 1-363 (in Chinese)

     

    Ren JS. 2002. Tectonic Map of China and Adjacent Regions. Beijing: Geological Publishing House (in Chinese)

     

    Shannon RD. 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5): 751-767 doi: 10.1107/S0567739476001551

     

    Song B, Zhang YH, Wan YS and Jian P. 2002. Mount making and procedure of the SHRIMP dating. Geological Review, 48(Suppl. 1): 26-30 (in Chinese with English abstract) https://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP2002S1006.htm

     

    Steiger RH and Jäger E. 1977. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36(3): 359-362 doi: 10.1016/0012-821X(77)90060-7

     

    Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds. ). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345

     

    Team 932, Guangdong Nonferrous Metals Geological Exploration Company. 1966. How do we search, evaluate and explore quartz vein type tungsten deposits with the "five floors" rule. Geology and Exploration, 2(5): 15-19 (in Chinese)

     

    Wang DH, Tang JX, Ying LJ, Chen ZH, Xu JX, Zhang JJ, Li SR and Zeng ZL. 2010. Application of "Five levels+basement" model for prospecting deposits into depth. Journal of Jilin University (Earth Science Edition), 40(4): 733-738 (in Chinese with English abstract) https://www.researchgate.net/publication/282481409_Application_of_Five_levelsBasement_model_for_prospecting_deposits_into_depth

     

    Wang DH, Li JK, Li JG et al. 2017. Theory and Practice of Deep Detection in Nanling Metallogenic Belt. Beijing: Geological Publishing House, 1-471 (in Chinese)

     

    Wang RC, Hu H, Zhang AC, Huang XL and Ni P. 2004. Pollucite and the cesium-dominant analogue of polylithionite as expressions of extreme Cs enrichment in the Yichun topaz-lepidolite granite, southern China. The Canadian Mineralogist, 42(3): 883-896 doi: 10.2113/gscanmin.42.3.883

     

    Wang RC, Che XD, Wu B and Xie L. 2020. Critical mineral resources of Nb, Ta, Zr, and Hf in China. Chinese Science Bulletin, 65(33): 3763-3777 (in Chinese) doi: 10.1360/TB-2020-0271

     

    Wang YT, Shi MK, Tan YJ and Zhang CR. 1980. Petrological, mineralogical and geochemical evolution of the rare metal-bearing granites in the Nanling region. Anthology of Yichang Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences (1). Beijing: Geological Publishing House, 99-116 (in Chinese)

     

    Xia WH, Zhang JT, Feng ZW and Chen ZY. 1989. Geology of Nanling Granite Type Rare Metal Deposit. Beijing: China University of Geosciences Press, 1-125 (in Chinese)

     

    Xiao HL, Chen LZ, Wu HY, Bao XM, Zhou Y, Wu L, Fan FP and Yao ZH. 2008. Discovery of Nanshan W-Mo-polymetallic deposit in northern Guangdong Province and its significance. Geological Journal of China Universities, 14(4): 558-564 (in Chinese with English abstract)

     

    Xiao HL, Chen LZ, Bao XM, Fan FP, Zhou Y, Yao ZH, Wu L and Wu HY. 2011. Geological characteristics, metallogenic model and ore-prospecting direction of tungsten-tin-polymetallic deposits in the eastern Nanling region. Resources Survey & Environment, 32(4): 107-119 (in Chinese with English abstract)

     

    Xiao HL, Chen LZ, Bao XM, Fan FP, Zhou Y, Wu HY, Yao ZH, Wu L and Teng L. 2012. Discovery of Liangyuan Nb-Ta-Rb-W-polymetallic deposit in Shixing County, Guangdong Province and its significance. Resources Survey & Environment, 33(4): 229-237 (in Chinese with English abstract)

     

    Xie L, Wang RC, Groat LA, Zhu JC, Huang FF and Cempírek J. 2015. A combined EMPA and LA-ICP-MS study of Li-bearing mica and Sn-Ti oxide minerals from the Qiguling topaz rhyolite (Qitianling District, China): The role of fluorine in origin of tin mineralization. Ore Geology Reviews, 65: 779-792 doi: 10.1016/j.oregeorev.2014.08.013

     

    Xie L, Wang RC, Che XD, Huang FF, Erdmann S and Zhang WL. 2016. Tracking magmatic and hydrothermal Nb-Ta-W-Sn fractionation using mineral textures and composition: A case study from the Late Cretaceous Jiepailing ore district in the Nanling Range in South China. Ore Geology Reviews, 78: 300-321 doi: 10.1016/j.oregeorev.2016.04.003

     

    Xie L, Wang ZJ, Wang RC, Zhu JC, Che XD, Gao JF and Zhao X. 2018. Mineralogical constraints on the genesis of W-Nb-Ta mineralization in the Laiziling granite (Xianghualing district, South China). Ore Geology Reviews, 95: 695-712 doi: 10.1016/j.oregeorev.2018.03.021

     

    Xu JX, Zeng ZL, Wang DH, Chen ZH, Liu SB, Wang CH and Ying LJ. 2008. A new type of tungsten deposit in southern Jiangxi and the new model of "Five Floors+basement" for prospecting. Acta Geologica Sinica, 82(7): 880-887 (in Chinese with English abstract) https://www.researchgate.net/publication/282482117_A_new_type_of_tungsten_deposit_in_southern_Jiangxi_and_the_new_model_of_Five_floors_Basement_for_prospecting

     

    Xuan YS, Yuan SD, Yuan YB and Mi JR. 2014. Zircon U-Pb age, geochemistry and petrogenesis of Jianfengling pluton in southern Hunan Province. Mineral Deposits, 33(6): 1379-1390 (in Chinese with English abstract)

     

    Yao ZH. 2011. The genetic relationship between Yanshanian granites and tungsten-tin polymetallic mineralization in Nanshan area, Shixing County, Guangdong Province. Master Degree Thesis. Beijing: Chinese Academy of Geological Sciences, 1-80 (in Chinese with English abstract)

     

    Zhang J, Liu HB, Li JJ, Jin GS, Han J and Zhang JF. 2014. Advances in the study of 40Ar-39Ar isotopic dating method. World Nuclear Geoscience, 31(1): 53-58 (in Chinese with English abstract)

     

    Zhang SM, Chen ZH, Shi GH, Li LX, Qu WJ and Li C. 2011. Re-Os isotopic dating of molybdenite from Dajishan tungsten deposit in Jiangxi Province. Mineral Deposits, 30(6): 1113-1121 (in Chinese with English abstract)

     

    Zhao YM, Wu LS, Bai G et al. 2004. Metallogeny of the Major Metallic Ore Deposits in China. Beijing: Geological Publishing House, 1-424 (in Chinese)

     

    Zhao Z, Wang DH, Chen YC, Liu SB, Fang GC, Liang T, Guo NX, Wang SY, Wang HY, Liu ZQ, Zeng ZL, Ding M, Chen W and Zhou XP. 2017. "Jiulongnao metallogenic model" and the demonstration of deep prospecting: The extended application of "Five levels+Basement" exploration model. Earth Science Frontiers, 24(5): 8-16 (in Chinese with English abstract)

     

    Zhao Z, Fu TY, Gan JW, Liu C, Wang DH, Sheng JF, Li WB, Wang PA, Yu ZF and Chen YC. 2021. A synthesis of mineralization style and regional distribution and a proposed new metallogenic model of Mesozoic W-dominated polymentallic deposits in South China. Ore Geology Reviews, 133: 104008 doi: 10.1016/j.oregeorev.2021.104008

     

    Zhou JX and Chen ZY. 2002. A new integrated method for dating minerals like zircon using electron microprobe and cathodoluminescence. Geological Review, 48(Suppl. 1): 31-35 (in Chinese with English abstract)

     

    Zhu JC, Li RK, Zhou FY, Wang RC, Xiong XL and Xu HZ. 1996. Genesis of asymmetrically layered pegmatiteaplite dykes of Shuiximiao mine, Limu district, Guangxi. Geochimica, 25(1): 1-9 (in Chinese with English abstract)

     

    Zhu JC, Wang RC, Lu JJ, Zhang H, Zhang WL, Xie L and Zhang RQ. 2011. Fractionation, evolution, petrogenesis and mineralization of Laiziling granite pluton, southern Hunan Province. Geological Journal of China Universities, 17(3): 381-392 (in Chinese with English abstract) https://en.cnki.com.cn/Article_en/CJFDTotal-GXDX201103005.htm

     

    Zhu ZY, Wang RC, Che XD, Zhu JC, Wei XL and Huang X. 2015. Magmatic-hydrothermal rare-element mineralization in the Songshugang granite (northeastern Jiangxi, China): Insights from an electron-microprobe study of Nb-Ta-Zr minerals. Ore Geology Reviews, 65: 749-760 doi: 10.1016/j.oregeorev.2014.07.021

     

    Zhu ZY, Wang RC, Marignac C, Cuney M, Mercadier J, Che XD and Lespinasse MY. 2018. A new style of rare metal granite with Nb-rich mica: The Early Cretaceous Huangshan rare-metal granite suite, Northeast Jiangxi Province, Southeast China. American Mineralogist, 103(10): 1530-1544 doi: 10.2138/am-2018-6511

     

    陈骏, 陆建军, 陈卫锋, 王汝成, 马东升, 朱金初, 张文兰, 季峻峰. 2008. 南岭地区钨锡铌钽花岗岩及其成矿作用. 高校地质学报, 14(4): 459-473 doi: 10.3969/j.issn.1006-7493.2008.04.001

     

    陈毓川, 裴荣富, 张宏良等. 1989. 南岭地区与中生代花岗岩类有关的有色及稀有金属矿床地质. 北京: 地质出版社, 1-471

     

    邓攀, 陈玉明, 叶锦华, 张伟波. 2019. 全球铌钽资源分布概况及产业发展形势分析. 中国矿业, 28(4): 63-68 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201904012.htm

     

    地矿部南岭项目花岗岩专题组. 1989. 南岭花岗岩地质及其成因和成矿作用. 北京: 地质出版社, 1-471

     

    付建明, 李华芹, 屈文俊, 马丽艳, 杨晓君, 魏君奇, 刘国庆. 2008. 粤北始兴地区石英脉型钨矿成矿时代的确定及其地质意义. 大地构造与成矿学, 32(1): 57-62 doi: 10.3969/j.issn.1001-1552.2008.01.008

     

    广东有色金属地质勘探公司九三二队. 1966. 我们是怎样用"五层楼"规律寻找、评价和勘探黑钨石英脉矿床的. 地质与勘探, 2(5): 15-19 https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT196605005.htm

     

    华仁民, 陈培荣, 张文兰, 陆建军. 2005. 论华南地区中生代3次大规模成矿作用. 矿床地质, 24(2): 99-107 doi: 10.3969/j.issn.0258-7106.2005.02.002

     

    简平, 刘敦一, 孙晓猛. 2003. 滇川西部金沙江石炭纪蛇绿岩SHRIMP测年: 古特提斯洋壳演化的同位素年代学制约. 地质学报, 77(2): 217-228 https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200302017.htm

     

    李凤春, 侯明兰, 栾日坚, 林培军, 李增胜, 赵龙, 王继林, 徐爽. 2016. 电感耦合等离子体质谱仪与激光器联用测量条件优化及其在锆石U-Pb定年中的应用. 岩矿测试, 35(1): 17-23 https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201601006.htm

     

    李建康, 李鹏, 王登红, 李兴杰. 2019. 中国铌钽矿成矿规律. 科学通报, 64(15): 1545-1566 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201915002.htm

     

    李胜虎. 2015. 华南典型花岗岩型稀有金属矿床的成矿机制与找矿模式研究. 博士学位论文. 北京: 中国地质大学(北京), 1-156

     

    毛景文, 谢桂青, 李晓峰, 张长青, 梅燕雄. 2004. 华南地区中生代大规模成矿作用与岩石圈多阶段伸展. 地学前缘, 11(1): 45-55 doi: 10.3321/j.issn:1005-2321.2004.01.003

     

    毛景文, 谢桂青, 郭春丽, 陈毓川. 2007. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景. 岩石学报, 23(10): 2329-2338 doi: 10.3969/j.issn.1000-0569.2007.10.002 http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?flag=1&file_no=200701002&journal_id=ysxb

     

    莫柱孙. 1980. 南岭花岗岩地质学. 北京: 地质出版社, 1-363

     

    宋彪, 张玉海, 万渝生, 简平. 2002. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论. 地质论评, 48(增1): 26-30 https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2002S1006.htm

     

    王登红, 唐菊兴, 应立娟, 陈郑辉, 许建祥, 张家菁, 李水如, 曾载淋. 2010. "五层楼+地下室"找矿模型的适用性及其对深部找矿的意义. 吉林大学学报(地球科学版), 40(4): 733-738 https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201004003.htm

     

    王登红, 李建康, 李建国等. 2017. 南岭成矿带深部探测的理论与实践. 北京: 地质出版社, 1-471

     

    王汝成, 车旭东, 邬斌, 谢磊. 2020. 中国铌钽锆铪资源. 科学通报, 65(33): 3763-3777 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033011.htm

     

    王玉太, 史明魁, 谭运金, 张传荣. 1980. 南岭地区含稀有金属花岗岩的岩石、矿物、地球化学演化特点. 中国地质科学院宜昌地质矿产研究所文集(1). 北京: 地质出版社, 99-116

     

    夏卫华, 章锦统, 冯志文, 陈紫英. 1989. 南岭花岗岩型稀有金属矿床地质. 北京: 中国地质大学出版社, 1-125

     

    肖惠良, 陈乐柱, 吴涵宇, 鲍晓明, 周延, 武玲, 范飞鹏, 姚政红. 2008. 广东始兴南山钨钼多金属矿床的发现及其意义. 高校地质学报, 14(4): 558-564 doi: 10.3969/j.issn.1006-7493.2008.04.009

     

    肖惠良, 陈乐柱, 鲍晓明, 范飞鹏, 周延, 姚正红, 武玲, 吴涵宇. 2011. 南岭东段钨锡多金属矿床地质特征、成矿模式及找矿方向. 资源调查与环境, 32(2): 107-119 doi: 10.3969/j.issn.1671-4814.2011.02.004

     

    肖惠良, 陈乐柱, 鲍晓明, 范飞鹏, 周延, 吴涵宇, 姚正红, 武玲, 滕龙. 2012. 广东始兴良源铌钽铷钨多金属矿床的发现及其意义. 资源调查与环境, 33(4): 229-237 doi: 10.3969/j.issn.1671-4814.2012.04.005

     

    许建祥, 曾载淋, 王登红, 陈郑辉, 刘善宝, 王成辉, 应立娟. 2008. 赣南钨矿新类型及"五层楼+地下室"找矿模型. 地质学报, 82(7): 880-887 doi: 10.3321/j.issn:0001-5717.2008.07.003

     

    轩一撒, 袁顺达, 原垭斌, 弥佳茹. 2014. 湘南尖峰岭岩体锆石U-Pb年龄、地球化学特征及成因. 矿床地质, 33(6): 1379-1390 doi: 10.3969/j.issn.0258-7106.2014.06.015

     

    姚正红. 2011. 广东始兴南山地区燕山期花岗岩与钨锡多金属矿成矿关系. 硕士学位论文. 北京: 中国地质科学院, 1-80

     

    张佳, 刘汉彬, 李军杰, 金贵善, 韩娟, 张建锋. 2014. 40Ar-39Ar同位素定年方法研究进展. 世界核地质科学, 31(1): 53-58 doi: 10.3969/j.issn.1672-0636.2014.01.010

     

    张思明, 陈郑辉, 施光海, 李丽侠, 屈文俊, 李超. 2011. 江西省大吉山钨矿床辉钼矿铼-锇同位素定年. 矿床地质, 30(6): 1113-1121 doi: 10.3969/j.issn.0258-7106.2011.06.011

     

    赵一鸣, 吴良士, 白鸽等. 2004. 中国主要金属矿床成矿规律. 北京: 地质出版社, 1-424

     

    赵正, 王登红, 陈毓川, 刘善宝, 方贵聪, 梁婷, 郭娜欣, 王少轶, 王浩洋, 刘战庆, 曾载淋, 丁明, 陈伟, 周新鹏. 2017. "九龙脑成矿模式"及其深部找矿示范: "五层楼+地下室"勘查模型的拓展. 地学前缘, 24(5): 8-16 https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201705003.htm

     

    周剑雄, 陈振宇. 2002. 锆石等测年矿物的电子探针及阴极射线致发光综合研究新方法. 地质论评, 48(增1): 31-35 https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2002S1007.htm

     

    朱金初, 李人科, 周凤英, 王汝成, 熊小林, 许红忠. 1996. 广西栗木水溪庙不对称层状伟晶岩-细晶岩岩脉的成因讨论. 地球化学, 25(1): 1-9 doi: 10.3321/j.issn:0379-1726.1996.01.001

     

    朱金初, 王汝成, 陆建军, 张辉, 张文兰, 谢磊, 章荣清. 2011. 湘南癞子岭花岗岩体分异演化和成岩成矿. 高校地质学报, 17(3): 381-392 doi: 10.3969/j.issn.1006-7493.2011.03.003

  • 加载中

(13)

(7)

计量
  • 文章访问数:  3170
  • PDF下载数:  206
  • 施引文献:  0
出版历程
收稿日期:  2021-07-24
修回日期:  2022-01-14
刊出日期:  2022-02-01

目录