深部碳循环的环境气候效应

宗克清, 何德涛, 陈春飞, 陈唯, 虞凯章, 刘勇胜. 2022. 深部碳循环的环境气候效应. 岩石学报, 38(5): 1389-1398. doi: 10.18654/1000-0569/2022.05.08
引用本文: 宗克清, 何德涛, 陈春飞, 陈唯, 虞凯章, 刘勇胜. 2022. 深部碳循环的环境气候效应. 岩石学报, 38(5): 1389-1398. doi: 10.18654/1000-0569/2022.05.08
ZONG KeQing, HE DeTao, CHEN ChunFei, CHEN Wei, YU KaiZhang, LIU YongSheng. 2022. The effect of the deep carbon cycle on environment and climate. Acta Petrologica Sinica, 38(5): 1389-1398. doi: 10.18654/1000-0569/2022.05.08
Citation: ZONG KeQing, HE DeTao, CHEN ChunFei, CHEN Wei, YU KaiZhang, LIU YongSheng. 2022. The effect of the deep carbon cycle on environment and climate. Acta Petrologica Sinica, 38(5): 1389-1398. doi: 10.18654/1000-0569/2022.05.08

深部碳循环的环境气候效应

  • 基金项目:

    本文受国家重点研发计划项目(2019YFA0708400)和国家自然科学基金项目(41922021)联合资助

详细信息
    作者简介:

    宗克清,男,1982年生,教授,从事岩石地球化学研究,E-mail: zongkeqing@cug.edu.cn

  • 中图分类号: P531.2;P542;P595

The effect of the deep carbon cycle on environment and climate

  • 地球表层温度主要由接收的太阳辐射能量及大气温室气体的保温能力共同控制。CO2等温室气体通过对大气温度的调节影响着全球环境气候变化,工业革命以来全球CO2排放量的增加被认为是全球变暖的重要原因,地质历史时期大气CO2浓度的波动与温室和冰室气候的交替出现相对应。地球超过90%的碳赋存于深部,因此地球深部过程的些许波动便会影响到地表碳含量,进而深刻影响着地球的环境气候变化。以往的研究注重地表碳循环对环境气候的影响,对深部碳的贡献考虑不足。最近十余年全球开展了详细的深部碳循环研究,基于已经取得的重要成果,本文从大火成岩省、裂谷和俯冲带的视角对深部碳循环驱动的环境气候效应进行了系统回顾。认为未来的研究需要对地球深部碳循环通量和碳同位素组成进行更精确的定量,这是我们认识深部碳循环对地表环境气候影响的基础;除了碳元素本身我们还需要关注其他挥发性元素和有害金属元素的综合效应;俯冲带作为全球壳-幔相互作用和物质交换循环最重要的场所,应该是进行深部碳循环观察和环境气候效应研究的重点。

  • 加载中
  • 图 1 

    大气CO2浓度随时间的变化趋势

    Figure 1. 

    Variation of atmospheric CO2 concentration with time

    图 2 

    全球深部碳循环示意图(据Wong et al., 2019修改)

    Figure 2. 

    Schematic illustration of the global deep carbon cycle (modified after Wong et al., 2019)

    图 3 

    裂谷对古大气中CO2浓度的控制(据Brune et al., 2017修改)

    Figure 3. 

    CO2 concentration in the paleo-atmosphere is controlled by rifts (modified after Brune et al., 2017)

    图 4 

    全球成冰纪(Cryogenian)以来沉积物中年轻碎屑锆石年龄统计结果揭示的大陆弧活动强度与气候和大气CO2浓度变化的耦合关系(据McKenzie et al., 2016修改)

    Figure 4. 

    The statistical results of young detrital zircon ages in sediments demonstrate the coupled continental arc activity and climate and atmospheric CO2 concentration since the Cryogenian (modified after McKenzie et al., 2016)

    图 5 

    碳酸盐岩在俯冲带发生脱碳、熔融与喷发再沉积模型(据Liu et al., 2021修改)

    Figure 5. 

    A model of decarbonation, melting, eruption, and redeposition of carbonate rocks in the subduction zone (modified after Liu et al., 2021)

  •  

    Ague JJ and Nicolescu S. 2014. Carbon dioxide released from subduction zones by fluid-mediated reactions. Nature Geoscience, 7(5): 355-360 doi: 10.1038/ngeo2143

     

    Aiuppa A, Fischer TP, Plank T, Robidoux P and Di Napoli R. 2017. Along-arc, inter-arc and arc-to-arc variations in volcanic gas CO2/ST ratios reveal dual source of carbon in arc volcanism. Earth-Science Reviews, 168: 24-47 doi: 10.1016/j.earscirev.2017.03.005

     

    Alt JC and Teagle DAH. 1999. The uptake of carbon during alteration of ocean crust. Geochimica et Cosmochimica Acta, 63(10): 1527-1535 doi: 10.1016/S0016-7037(99)00123-4

     

    Aurell M, Bosence D and Waltham D. 1995. Carbonate ramp depositional systems from a Late Jurassic epeiric platform (Iberian Basin, Spain): A combined computer modelling and outcrop analysis. Sedimentology, 42(1): 75-94 doi: 10.1111/j.1365-3091.1995.tb01272.x

     

    Bataille CP, Willis A, Yang X and Liu XM. 2017. Continental igneous rock composition: A major control of past global chemical weathering. Science Advances, 3(3): e1602183 doi: 10.1126/sciadv.1602183

     

    Beerling DJ, Kantzas EP, Lomas MR, Wade P, Eufrasio RM, Renforth P, Sarkar B, Andrews MG, James RH, Pearce CR, Mercure JF, Pollitt H, Holden PB, Edwards NR, Khanna M, Koh L, Quegan S, Pidgeon NF, Janssens IA, Hansen J and Banwart SA. 2020. Potential for large-scale CO2 removal via enhanced rock weathering with croplands. Nature, 583(7815): 242-248 doi: 10.1038/s41586-020-2448-9

     

    Behn MD, Kelemen PB, Hirth G, Hacker BR and Massonne HJ. 2011. Diapirs as the source of the sediment signature in arc lavas. Nature Geoscience, 4(9): 641-646 doi: 10.1038/ngeo1214

     

    Bekaert DV, Turner SJ, Broadley MW, Barnes JD, Halldórsson SA, Labidi J, Wade J, Walowski KJ and Barry PH. 2021. Subduction-driven volatile recycling: A global mass balance. Annual Review of Earth and Planetary Sciences, 49: 37-70 doi: 10.1146/annurev-earth-071620-055024

     

    Berner RA. 2004. The Phanerozoic Carbon Cycle: CO2 and O2. Oxford: Oxford University Press

     

    Berner RA. 2006. GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et Cosmochimica Acta, 70(23): 5653-5664 doi: 10.1016/j.gca.2005.11.032

     

    Black BA and Manga M. 2017. Volatiles and the tempo of flood basalt magmatism. Earth and Planetary Science Letters, 458: 130-140 doi: 10.1016/j.epsl.2016.09.035

     

    Black BA, Neely RR, Lamarque JF, Elkins-Tanton LT, Kiehl JT, Shields CA, Mills MJ and Bardeen C. 2018. Systemic swings in end-Permian climate from Siberian Traps carbon and sulfur outgassing. Nature Geoscience, 11(12): 949-954 doi: 10.1038/s41561-018-0261-y

     

    Bo HZ and Zhang ZC. 2020. Genesis of silicic large igneous provinces and effects of resources and environment. Acta Petrologica Sinica, 36(7): 1973-1985 (in Chinese with English abstract) doi: 10.18654/1000-0569/2020.07.03

     

    Brune S, Williams SE and Müller RD. 2017. Potential links between continental rifting, CO2 degassing and climate change through time. Nature Geoscience, 10(12): 941-946 doi: 10.1038/s41561-017-0003-6

     

    Burgess SD, Muirhead JD and Bowring SA. 2017. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nature Communications, 8(1): 164 doi: 10.1038/s41467-017-00083-9

     

    Burton MR, Sawyer GM and Granieri D. 2013. Deep carbon emissions from volcanoes. Reviews in Mineralogy and Geochemistry, 75(1): 323-354 doi: 10.2138/rmg.2013.75.11

     

    Cao WR, Lee CTA and Lackey JS. 2017. Episodic nature of continental arc activity since 750Ma: A global compilation. Earth and Planetary Science Letters, 461: 85-95 doi: 10.1016/j.epsl.2016.12.044

     

    Capriolo M, Marzoli A, Aradi LE, Callegaro S, Dal Corso J, Newton RJ, Mills BJW, Wignall PB, Bartoli O, Baker DR, Youbi N, Remusat L, Spiess R and Szabó C. 2020. Deep CO2 in the end-Triassic central Atlantic magmatic province. Nature Communications, 11(1): 1670 doi: 10.1038/s41467-020-15325-6

     

    Capriolo M, Marzoli A, Aradi LE, Ackerson MR, Bartoli O, Callegaro S, Dal Corso J, Ernesto M, Gouvêa Vasconcellos EM, De Min A, Newton RJ and Szabó C. 2021. Massive methane fluxing from magma-sediment interaction in the end-Triassic Central Atlantic Magmatic Province. Nature Communications, 12(1): 5534 doi: 10.1038/s41467-021-25510-w

     

    Cather SM, Dunbar NW, McDowell FW, McIntosh WC, and Scholle PA. 2009. Climate forcing by iron fertilization from repeated ignimbrite eruptions: The icehouse-silicic large igneous province (SLIP) hypothesis. Geosphere, 5(3): 315-324 doi: 10.1130/GES00188.1

     

    Cawood PA, Kröner A, Collins WJ, Kusky TM, Mooney WD and Windley BF. 2009. Accretionary orogens through Earth history. In: Cawood PA and Kröner A (eds.). Earth Accretionary Systems in Space and Time. Geological Society, London, Special Publications, 318(1): 1-36

     

    Chapman JB, Ducea MN, DeCelles PG and Profeta L. 2015. Tracking changes in crustal thickness during orogenic evolution with Sr/Y: An example from the North American Cordillera. Geology, 43(10): 919-922 doi: 10.1130/G36996.1

     

    Chen CF, Förster MW, Foley SF and Liu YS. 2021. Massive carbon storage in convergent margins initiated by subduction of limestone. Nature Communications, 12(1): 4463 doi: 10.1038/s41467-021-24750-0

     

    Chu X, Lee CTA, Dasgupta R and Cao WR. 2019. The contribution to exogenic CO2 by contact metamorphism at continental arcs: A coupled model of fluid flux and metamorphic decarbonation. American Journal of Science, 319(8): 631-657 doi: 10.2475/08.2019.01

     

    Cooper CL, Swindles GT, Savov IP, Schmidt A and Bacon KL. 2018. Evaluating the relationship between climate change and volcanism. Earth-Science Reviews, 177: 238-247 doi: 10.1016/j.earscirev.2017.11.009

     

    Crowley TJ and Berner RA. 2001. CO2 and climate change. Science, 292(5518): 870-872 doi: 10.1126/science.1061664

     

    Dasgupta R and Hirschmann MM. 2010. The deep carbon cycle and melting in Earth's interior. Earth and Planetary Science Letters, 298(1-2): 1-13 doi: 10.1016/j.epsl.2010.06.039

     

    Dasgupta R. 2013. Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Reviews in Mineralogy and Geochemistry, 75(1): 183-229 doi: 10.2138/rmg.2013.75.7

     

    de Silva SL, Riggs NR and Barth AP. 2015. Quickening the pulse: Fractal tempos in continental arc magmatism. Elements, 11(2): 113-118 doi: 10.2113/gselements.11.2.113

     

    Deegan FM, Troll VR, Freda C, Misiti V, Chadwick JP, McLeod CL and Davidson JP. 2010. Magma-carbonate interaction processes and associated CO2 release at Merapi volcano, indonesia: Insights from experimental petrology. Journal of Petrology, 51(5): 1027-1051 doi: 10.1093/petrology/egq010

     

    Dielforder A, Hetzel R and Oncken O. 2020. Megathrust shear force controls mountain height at convergent plate margins. Nature, 582(7811): 225-229 doi: 10.1038/s41586-020-2340-7

     

    Donnadieu Y, Goddéris Y, Ramstein G, Nédélec A and Meert J. 2004. A 'snowball Earth' climate triggered by continental break-up through changes in runoff. Nature, 428(6980): 303-306 doi: 10.1038/nature02408

     

    Ducea MN, Saleeby JB and Bergantz G. 2015. The architecture, chemistry, and evolution of continental magmatic arcs. Annual Review of Earth and Planetary Sciences, 43: 299-331 doi: 10.1146/annurev-earth-060614-105049

     

    Eby GN, Lloyd FE and Woolley AR. 2009. Geochemistry and petrogenesis of the Fort Portal, Uganda, extrusive carbonatite. Lithos, 113(3-4): 785-800 doi: 10.1016/j.lithos.2009.07.010

     

    Ernst RE and Youbi N. 2017. How large igneous provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record? Palaeogeography, Palaeoclimatology, Palaeoecology, 478: 30-52 doi: 10.1016/j.palaeo.2017.03.014

     

    Fischer TP, Burnard P, Marty B, Hilton DR, Füri E, Palhol F, Sharp ZD and Mangasini F. 2009. Upper-mantle volatile chemistry at Oldoinyo Lengai volcano and the origin of carbonatites. Nature, 459(7243): 77-80 doi: 10.1038/nature07977

     

    Fischer TP, Arellano S, Carn S, Aiuppa A, Galle B, Allard P, Lopez T, Shinohara H, Kelly P, Werner C, Cardellini C and Chiodini G. 2019. The emissions of CO2 and other volatiles from the world's subaerial volcanoes. Scientific Reports, 9(1): 18716 doi: 10.1038/s41598-019-54682-1

     

    Fischer TP and Aiuppa A. 2020. AGU centennial grand challenge: Volcanoes and deep carbon global CO2 emissions from subaerial volcanism: Recent progress and future challenges. Geochemistry, Geophysics, Geosystems, 21(3): e2019GC008690

     

    Foley SF. 2008. Rejuvenation and erosion of the cratonic lithosphere. Nature Geoscience, 1(8): 503-510 doi: 10.1038/ngeo261

     

    Foley SF. 2011. A reappraisal of redox melting in the earth's mantle as a function of tectonic setting and time. Journal of Petrology, 52(7-8): 1363-1391 doi: 10.1093/petrology/egq061

     

    Foley SF, Link K, Tiberindwa JV and Barifaijo E. 2012. Patterns and origin of igneous activity around the Tanzanian Craton. Journal of African Earth Sciences, 62(1): 1-18 doi: 10.1016/j.jafrearsci.2011.10.001

     

    Foley SF and Fischer TP. 2017. An essential role for continental rifts and lithosphere in the deep carbon cycle. Nature Geoscience, 10(12): 897-902 doi: 10.1038/s41561-017-0002-7

     

    Galvez ME and Pubellier M. 2019. How do subduction zones regulate the carbon cycle? In: Orcutt BN, Daniel I and Dasgupta R (eds.). Deep Carbon: Past to Present. Cambridge: Cambridge University Press, 276-312

     

    Ganino C and Arndt NT. 2009. Climate changes caused by degassing of sediments during the emplacement of large igneous provinces. Geology, 37(4): 323-326 doi: 10.1130/G25325A.1

     

    Gattuso J and Buddemeier RW. 2000. Calcification and CO2. Nature, 407(6802): 311-313 doi: 10.1038/35030280

     

    Gernon TM, Hincks TK, Merdith AS, Rohling EJ, Palmer MR, Foster GL, Bataille CP and Müller RD. 2021. Global chemical weathering dominated by continental arcs since the Mid-Palaeozoic. Nature Geoscience, 14(9): 690-696 doi: 10.1038/s41561-021-00806-0

     

    Gillis KM and Coogan LA. 2011. Secular variation in carbon uptake into the ocean crust. Earth and Planetary Science Letters, 302(3-4): 385-392 doi: 10.1016/j.epsl.2010.12.030

     

    Grassi D and Schmidt MW. 2011. The melting of carbonated pelites from 70 to 700km depth. Journal of Petrology, 52(4): 765-789 doi: 10.1093/petrology/egr002

     

    Hazen RM and Schiffries CM. 2013. Why deep carbon? Reviews in Mineralogy and Geochemistry, 75(1): 1-6 doi: 10.2138/rmg.2013.75.1

     

    Hernandez Nava A, Black BA, Gibson SA, Bodnar RJ, Renne PR and Vanderkluysen L. 2021. Reconciling early deccan traps CO2 outgassing and pre-KPB global climate. Proceedings of the National Academy of Sciences of the United States of America, 118(14): e2007797118 doi: 10.1073/pnas.2007797118

     

    Iacono Marziano G, Gaillard F and Pichavant M. 2008. Limestone assimilation by basaltic magmas: An experimental re-assessment and application to Italian volcanoes. Contributions to Mineralogy and Petrology, 155(6): 719-738 doi: 10.1007/s00410-007-0267-8

     

    Jiang HH and Lee CTA. 2017. Coupled magmatism-erosion in continental arcs: Reconstructing the history of the Cretaceous Peninsular Ranges batholith, southern California through detrital hornblende barometry in forearc sediments. Earth and Planetary Science Letters, 472: 69-81 doi: 10.1016/j.epsl.2017.05.009

     

    Jiang HH and Lee CTA. 2019. On the role of chemical weathering of continental arcs in long-term climate regulation: A case study of the Peninsular Ranges batholith, California (USA). Earth and Planetary Science Letters, 525: 115733 doi: 10.1016/j.epsl.2019.115733

     

    Johnston FKB, Turchyn AV and Edmonds M. 2011. Decarbonation efficiency in subduction zones: Implications for warm Cretaceous climates. Earth and Planetary Science Letters, 303(1-2): 143-152 doi: 10.1016/j.epsl.2010.12.049

     

    Kelemen PB and Manning CE. 2015. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proceedings of the National Academy of Sciences of the United States of America, 112(30): E3997-E4006

     

    Kerr AC. 2005. Oceanic LIPs: The kiss of death. Elements, 1(5): 289-292 doi: 10.2113/gselements.1.5.289

     

    Kerrick DM. 2001. Present and past nonanthropogenic CO2 degassing from the solid earth. Reviews of Geophysics, 39(4): 565-585 doi: 10.1029/2001RG000105

     

    Kerrick DM and Connolly JAD. 2001. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth's mantle. Nature, 411(6835): 293-296 doi: 10.1038/35077056

     

    Kiehl JT and Shields CA. 2005. Climate simulation of the latest Permian: Implications for mass extinction. Geology, 33(9): 757-760 doi: 10.1130/G21654.1

     

    Kim SS and Wessel P. 2011. New global seamount census from altimetry-derived gravity data. Geophysical Journal International, 186(2): 615-631 doi: 10.1111/j.1365-246X.2011.05076.x

     

    Kjarsgaard B and Peterson T. 1991. Nephelinite-carbonatite liquid immiscibility at Shombole volcano, East Africa: Petrographic and experimental evidence. Mineralogy and Petrology, 43(4): 293-314 doi: 10.1007/BF01164532

     

    Knauth LP. 2005. Temperature and salinity history of the Precambrian ocean: Implications for the course of microbial evolution. In: Noffke N (ed.). Geobiology: Objectives, Concepts, Perspectives. Amsterdam: Elsevier, 53-69

     

    Larson RL. 1991a. Geological consequences of superplumes. Geology, 19(10): 963-966 doi: 10.1130/0091-7613(1991)019<0963:GCOS>2.3.CO;2

     

    Larson RL. 1991b. Latest pulse of Earth: Evidence for a Mid-Cretaceous superplume. Geology, 19(6): 547-550 doi: 10.1130/0091-7613(1991)019<0547:LPOEEF>2.3.CO;2

     

    Le Voyer M, Hauri EH, Cottrell E, Kelley KA, Salters VJM, Langmuir CH, Hilton DR, Barry PH and Füri E. 2019. Carbon fluxes and primary magma CO2 contents along the global mid-ocean ridge system. Geochemistry, Geophysics, Geosystems, 20(3): 1387-1424 doi: 10.1029/2018GC007630

     

    Lee CTA, Luffi P and Chin EJ. 2011. Building and destroying continental mantle. Annual Review of Earth and Planetary Sciences, 39: 59-90 doi: 10.1146/annurev-earth-040610-133505

     

    Lee CTA, Shen B, Slotnick BS, Liao K, Dickens GR, Yokoyama Y, Lenardic A, Dasgupta R, Jellinek M, Lackey JS, Schneider T and Tice MM. 2013. Continental arc-island arc fluctuations, growth of crustal carbonates, and long-term climate change. Geosphere, 9(9): 21-36

     

    Lee CTA and Lackey JS. 2015. Global continental arc flare-ups and their relation to long-term greenhouse conditions. Elements, 11(2): 125-130 doi: 10.2113/gselements.11.2.125

     

    Lee CTA, Thurner S, Paterson S and Cao WR. 2015. The rise and fall of continental arcs: Interplays between magmatism, uplift, weathering, and climate. Earth and Planetary Science Letters, 425: 105-119 doi: 10.1016/j.epsl.2015.05.045

     

    Lee CTA, Jiang HH, Ronay E, Minisini D, Stiles J and Neal M. 2018. Volcanic ash as a driver of enhanced organic carbon burial in the Cretaceous. Scientific Reports, 8(1): 4197 doi: 10.1038/s41598-018-22576-3

     

    Lee H, Muirhead JD, Fischer TP, Ebinger CJ, Kattenhorn SA, Sharp ZD and Kianji G. 2016. Massive and prolonged deep carbon emissions associated with continental rifting. Nature Geoscience, 9(2): 145-149 doi: 10.1038/ngeo2622

     

    Liu YS, Chen CF, He DT and Chen W. 2019. Deep carbon cycle in subduction zones. Science China (Earth Sciences), 62(11): 1764-1782 doi: 10.1007/s11430-018-9426-1

     

    Liu YS, Chen W, Foley SF, Shen YA, Chen CF, Li JH, Ou XB, He DT, Feng QL and Lin J. 2021. The largest negative carbon isotope excursions in Neoproterozoic carbonates caused by recycled carbonatite volcanic ash. Science Bulletin, 66(18): 1925-1931 doi: 10.1016/j.scib.2021.04.021

     

    Macdonald FA and Wordsworth R. 2017. Initiation of Snowball Earth with volcanic sulfur aerosol emissions. Geophysical Research Letters, 44(4): 1938-1946

     

    Marty B and Tolstikhin IN. 1998. CO2 fluxes from mid-ocean ridges, arcs and plumes. Chemical Geology, 145(3-4): 233-248 doi: 10.1016/S0009-2541(97)00145-9

     

    Mason E, Edmonds M and Turchyn AV. 2017. Remobilization of crustal carbon may dominate volcanic arc emissions. Science, 357(6348): 290-294 doi: 10.1126/science.aan5049

     

    McKenzie NR, Horton BK, Loomis SE, Stockli DF, Planavsky NJ and Lee CTA. 2016. Continental arc volcanism as the principal driver of icehouse-greenhouse variability. Science, 352(6284): 444-447 doi: 10.1126/science.aad5787

     

    Orcutt BN, Daniel I, Dasgupta R, Crist DT and Edmonds M. 2019. Introduction to deep carbon: Past to present. In: Orcutt BN, Daniel I and Dasgupta R (eds.). Deep Carbon: Past to Present. Cambridge: Cambridge University Press, 1-3

     

    Palfy J and Smith PL. 2000. Synchrony between Early Jurassic extinction, oceanic anoxic event, and the Karoo-Ferrar flood basalt volcanism. Geology, 28(8): 747-750 doi: 10.1130/0091-7613(2000)28<747:SBEJEO>2.0.CO;2

     

    Palme H, Lodders K and Jones A. 2014. Solar system abundances of the elements. Treatise on Geochemistry, 2: 15-36

     

    Paterson SR and Ducea MN. 2015. Arc magmatic tempos: Gathering the evidence. Elements, 11(2): 91-98 doi: 10.2113/gselements.11.2.91

     

    Paulsen T, Deering C, Sliwinski J, Bachmann O and Guillong M. 2017. Evidence for a spike in mantle carbon outgassing during the Ediacaran Period. Nature Geoscience, 10(12): 930-934 doi: 10.1038/s41561-017-0011-6

     

    Plank T and Manning CE. 2019. Subducting carbon. Nature, 574(7778): 343-352 doi: 10.1038/s41586-019-1643-z

     

    Pomar L. 2001. Types of carbonate platforms: A genetic approach. Basin Research, 13(3): 313-334 doi: 10.1046/j.0950-091x.2001.00152.x

     

    Ramos EJ, Lackey JS, Barnes JD and Fulton AA. 2020. Remnants and rates of metamorphic decarbonation in continental arcs. GSA Today, 30(5): 4-10 doi: 10.1130/GSATG432A.1

     

    Read JF. 1982. Carbonate platforms of passive (extensional) continental margins: Types, characteristics and evolution. Tectonophysics, 81(3-4): 195-212 doi: 10.1016/0040-1951(82)90129-9

     

    Self S, Thordarson T and Widdowson M. 2005. Gas fluxes from flood basalt eruptions. Elements, 1(5): 283-287 doi: 10.2113/gselements.1.5.283

     

    Self S, Widdowson M, Thordarson T and Jay AE. 2006. Volatile fluxes during flood basalt eruptions and potential effects on the global environment: A Deccan perspective. Earth and Planetary Science Letters, 248(1-2): 518-532 doi: 10.1016/j.epsl.2006.05.041

     

    Sheldon ND. 2006. Precambrian paleosols and atmospheric CO2 levels. Precambrian Research, 147(1-2): 148-155 doi: 10.1016/j.precamres.2006.02.004

     

    Sundquist ET and Visser K. 2003. The geologic history of the carbon cycle. Treatise on Geochemistry, 8: 425-472

     

    Svensen H, Planke S, Malthe-Sørenssen A, Jamtveit B, Myklebust R, Eidem TR and Rey SS. 2004. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature, 429(6991): 542-545 doi: 10.1038/nature02566

     

    Tamburello G, Pondrelli S, Chiodini G and Rouwet D. 2018. Global-scale control of extensional tectonics on CO2 earth degassing. Nature Communications, 9(1): 4608 doi: 10.1038/s41467-018-07087-z

     

    Ueno K, Wang YJ and Wang XD. 2003. Fusulinoidean faunal succession of a Paleo-Tethyan oceanic seamount in the Changning-Menglian Belt, West Yunnan, Southwest China: An overview. Island Arc, 12(2): 145-161 doi: 10.1046/j.1440-1738.2003.00387.x

     

    Werner C, Fischer TP, Aiuppa A, Edmonds M, Cardellini C, Carn S, Chiodini G, Cottrell E, Burton M, Shinohara H and Allard P. 2019. Carbon dioxide emissions from subaerial volcanic regions: Two decades in review. In: Orcutt BN, Daniel I and Dasgupta R (eds.). Deep Carbon: Past to Present. Cambridge: Cambridge University Press, 188-236

     

    Wignall P. 2005. The link between large igneous province eruptions and mass extinctions. Elements, 1(5): 293-297 doi: 10.2113/gselements.1.5.293

     

    Wignall PB. 2001. Large igneous provinces and mass extinctions. Earth-Science Reviews, 53(1-2): 1-33 doi: 10.1016/S0012-8252(00)00037-4

     

    Wong K, Mason E, Brune S, East M, Edmonds M and Zahirovic S. 2019. Deep carbon cycling over the past 200 million years: A review of fluxes in different tectonic settings. Frontiers in Earth Science, 7: 263 doi: 10.3389/feart.2019.00263

     

    薄弘泽, 张招崇. 2020. 硅质大火成岩省的形成机制及其与资源环境的关系. 岩石学报, 36(7): 1973-1985 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2020.07.03

     

    刘勇胜, 陈春飞, 何德涛, 陈唯. 2019. 俯冲带地球深部碳循环作用. 中国科学(地球科学), 49(12): 1982-2003 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201912009.htm

  • 加载中

(5)

计量
  • 文章访问数:  3368
  • PDF下载数:  426
  • 施引文献:  0
出版历程
收稿日期:  2022-01-15
修回日期:  2022-03-21
刊出日期:  2022-05-01

目录