华北地幔捕虏体Fe-Mg-Ca同位素研究进展

赵新苗, 贾喜良, 易春霞, 张兆峰, 朱祥坤. 2022. 华北地幔捕虏体Fe-Mg-Ca同位素研究进展. 岩石学报, 38(12): 3683-3694. doi: 10.18654/1000-0569/2022.12.08
引用本文: 赵新苗, 贾喜良, 易春霞, 张兆峰, 朱祥坤. 2022. 华北地幔捕虏体Fe-Mg-Ca同位素研究进展. 岩石学报, 38(12): 3683-3694. doi: 10.18654/1000-0569/2022.12.08
ZHAO XinMiao, JIA XiLiang, YI ChunXia, ZHANG ZhaoFeng, ZHU XiangKun. 2022. Progress in Fe, Ca and Mg isotopes of mantle xenoliths from the North China Craton. Acta Petrologica Sinica, 38(12): 3683-3694. doi: 10.18654/1000-0569/2022.12.08
Citation: ZHAO XinMiao, JIA XiLiang, YI ChunXia, ZHANG ZhaoFeng, ZHU XiangKun. 2022. Progress in Fe, Ca and Mg isotopes of mantle xenoliths from the North China Craton. Acta Petrologica Sinica, 38(12): 3683-3694. doi: 10.18654/1000-0569/2022.12.08

华北地幔捕虏体Fe-Mg-Ca同位素研究进展

  • 基金项目:

    本文受国家自然科学基金面上项目(41973015)、优秀青年基金(42122020)和国家重点研发计划项目(2019YFA0708400)联合资助

详细信息
    作者简介:

    赵新苗, 女, 1981年生, 研究员, 从事地幔地球化学研究, E-mail: xinmiao312@mail.iggcas.ac.cn

  • 中图分类号: P588.125;P597.2

Progress in Fe, Ca and Mg isotopes of mantle xenoliths from the North China Craton

  • 近年来,得益于同位素分析技术和质谱仪器性能的提高,使得铁(Fe)、镁(Mg)和钙(Ca)等非传统稳定同位素的高精度测量成为可能,并很快在地球化学、天体化学和生物地球化学等研究领域取得了丰硕的成果。本文通过对比分析来自华北克拉通不同地区不同类型地幔捕虏体的Fe、Mg和Ca位素组成特征,揭示华北克拉通岩石圈地幔Fe、Mg和Ca同位素组成不均一性的成因,并在此基础上,探讨华北大陆岩石圈地幔演化过程如部分熔融、橄榄岩-熔体反应过程、熔体的性质和来源等科学问题,为华北克拉通岩石圈的演化过程提供新证据。

  • 加载中
  • 图 1 

    华北地幔橄榄岩和辉石岩捕虏体的Fe同位素组成

    Figure 1. 

    Fe isotopic compositions of mantle peridotite and pyroxene xenoliths from the North China Craton

    图 2 

    华北地幔橄榄岩和辉石岩中共存单矿物的Fe同位素组成变化

    Figure 2. 

    Fe isotopic compositions of coexisting minerals in mantle peridotites and pyroxene xenoliths from the North China Craton

    图 3 

    华北地幔橄榄岩和辉石岩捕虏体Mg同位素组成

    Figure 3. 

    Mg isotopic compositions of mantle peridotite and pyroxene xenoliths from the North China Craton

    图 4 

    华北地幔橄榄岩和辉石岩中共存单矿物的Mg同位素组成变化

    Figure 4. 

    Mg isotopic composition of coexisting minerals in mantle peridotites and pyroxene xenoliths from the North China Craton

    图 5 

    华北地幔橄榄岩和辉石岩捕虏体Ca同位素组成

    Figure 5. 

    Ca isotopic composition of mantle peridotite and pyroxene xenoliths from the North China Craton

    图 6 

    华北地幔橄榄岩和辉石岩中共存单矿物的Ca同位素组成

    Figure 6. 

    Ca isotopic compositions of coexisting minerals in mantle peridotites and pyroxene xenoliths from the North China Craton

    图 7 

    华北阳原地区富铁橄榄岩中含交代矿物金云母(Phl)和角闪石(Amp)及交代熔蚀结构

    Figure 7. 

    Fe-rich lherzolites bearing-phlogopite (Phl) and -amphibole (Amp) (plane-polarized light) with resorbed orthopyroxene relics inside newly formed sieve-textured clinopyroxene

  •  

    An YJ, Huang JX, Griffin WL, Liu CZ and Huang F. 2017. Isotopic composition of Mg and Fe in garnet peridotites from the Kaapvaal and Siberian cratons. Geochimica et Cosmochimica Acta, 200: 167-185 doi: 10.1016/j.gca.2016.11.041

     

    Antonelli MA, Schiller M, Schauble EA, Mittal T, DePaolo DJ, Chacko T, Grew ES and Tripoli B. 2019. Kinetic and equilibrium Ca isotope effects in high-T rocks and minerals. Earth and Planetary Science Letters, 517: 71-82 doi: 10.1016/j.epsl.2019.04.013

     

    Antonelli MA and Simon JI. 2020. Calcium isotopes in high-temperature terrestrial processes. Chemical Geology, 548: 119651 doi: 10.1016/j.chemgeo.2020.119651

     

    Beard BL and Johnson CM. 2004. Inter-mineral Fe isotope variations in mantle-derived rocks and implications for the Fe geochemical cycle. Geochimica et Cosmochimica Acta, 68(22): 4727-4743 doi: 10.1016/j.gca.2004.04.023

     

    Berglund M and Wieser ME. 2011. Isotopic compositions of the elements 2009 (IUPAC Technical Report). Pure and Applied Chemistry, 83(2): 397-410 doi: 10.1351/PAC-REP-10-06-02

     

    Bigeleisen J and Mayer MG. 1947. Calculation of equilibrium constants for isotopic exchange reactions. The Journal of Chemical Physics, 15(5): 261-267 doi: 10.1063/1.1746492

     

    Bourdon B, Tipper ET, Fitoussi C and Stracke A. 2010. Chondritic Mg isotope composition of the Earth. Geochimica et Cosmochimica Acta, 74(17): 5069-5083 doi: 10.1016/j.gca.2010.06.008

     

    Carlson RW, Pearson DG and James DE. 2005. Physical, chemical, and chronological characteristics of continental mantle. Reviews of Geophysics, 43(1): RG1001, doi: 10.1029/2004RG000156

     

    Chen CF, Liu YS, Feng LP, Foley SF, Zhou L, Ducea MN and Hu ZC. 2018. Calcium isotope evidence for subduction-enriched lithospheric mantle under the northern North China Craton. Geochimica et Cosmochimica Acta, 238: 55-67 doi: 10.1016/j.gca.2018.06.038

     

    Chen CF, Dai W, Wang ZC, Liu YS, Li M, Becker H and Foley SF. 2019. Calcium isotope fractionation during magmatic processes in the upper mantle. Geochimica et Cosmochimica Acta, 249: 121-137 doi: 10.1016/j.gca.2019.01.031

     

    Coplen TB. 2011. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Communications in Mass Spectrometry, 25(17): 2538-2560 doi: 10.1002/rcm.5129

     

    Craddock PR and Dauphas N. 2011. Iron isotopic compositions of geological reference materials and chondrites. Geostandards and Geoanalytical Research, 35(1): 101-123 doi: 10.1111/j.1751-908X.2010.00085.x

     

    Dai W, Wang ZC, Liu YS, Chen CF, Zong KQ, Zhou L, Zhang GL, Li M, Moynier F and Hu ZC. 2020. Calcium isotope compositions of mantle pyroxenites. Geochimica et Cosmochimica Acta, 270: 144-159 doi: 10.1016/j.gca.2019.11.024

     

    Dauphas N, Pourmand A and Teng FZ. 2009. Routine isotopic analysis of iron by HR-MC-ICPMS: How precise and how accurate? Chemical Geology, 267(3-4): 175-184 doi: 10.1016/j.chemgeo.2008.12.011

     

    Dauphas N, John SG and Rouxel O. 2017. Iron isotope systematics. Reviews in Mineralogy and Geochemistry, 82(1): 415-510 doi: 10.2138/rmg.2017.82.11

     

    DePaolo DJ. 2004. Calcium isotopic variations produced by biological, kinetic, radiogenic and nucleosynthetic processes. Reviews in Mineralogy and Geochemistry, 55(1): 255-288 doi: 10.2138/gsrmg.55.1.255

     

    Fan WM, Zhang HF, Baker J, Jarvis KE, Mason PRD and Menzies MA. 2000. On and off the North China Craton: Where is the Archaean Keel? Journal of Petrology, 41(7): 933-950 doi: 10.1093/petrology/41.7.933

     

    Fantle MS and Tipper ET. 2014. Calcium isotopes in the global biogeochemical Ca cycle: Implications for development of a Ca isotope proxy. Earth-Science Reviews, 129: 148-177 doi: 10.1016/j.earscirev.2013.10.004

     

    Feng CQ, Qin T, Huang SC, Wu ZQ and Huang F. 2014. First-principles investigations of equilibrium calcium isotope fractionation between clinopyroxene and Ca-doped orthopyroxene. Geochimica et Cosmochimica Acta, 143: 132-142 doi: 10.1016/j.gca.2014.06.002

     

    Galy A, Yoffe O, Janney PE, Williams RW, Cloquet C, Alard O, Halicz L, Wadhwa M, Hutcheon ID, Ramon E and Carignan J. 2003. Magnesium isotope heterogeneity of the isotopic standard SRM980 and new reference materials for magnesium-isotope-ratio measurements. Journal of Analytical Atomic Spectrometry, 18(11): 1352-1356 doi: 10.1039/b309273a

     

    Gao S, Zhang JF, Xu WL and Liu YS. 2009. Delamination and destruction of the North China Craton. Chinese Science Bulletin, 54(19): 3367-3378

     

    Griffin WL, Zhang AD, O'Reilly SY and Ryan CG. 1998. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. In: Flower MFJ, Chung SL, Lo CH and Lee TY (eds. ). Mantle Dynamics and Plate Interactions in East Asia. Washington DC: American Geophysical Union, 27: 107-126

     

    Handler MR, Baker JA, Schiller M, Bennett VC and Yaxley GM. 2009. Magnesium stable isotope composition of Earth's upper mantle. Earth and Planetary Science Letters, 282(1-4): 306-313 doi: 10.1016/j.epsl.2009.03.031

     

    He YS, Ke S, Teng FZ, Wang TT, Wu HJ, Lu YH and Li SG. 2015. High-precision iron isotope analysis of geological reference materials by high-resolution MC-ICP-MS. Geostandards and Geoanalytical Research, 39(3): 341-356 doi: 10.1111/j.1751-908X.2014.00304.x

     

    Hu J, Jiang N, Carlson RW, Guo JH, Fan WB, Huang F, Zhang SQ, Zong KQ, Li TJ and Yu HM. 2019. Metasomatism of the crust-mantle boundary by melts derived from subducted sedimentary carbonates and silicates. Geochimica et Cosmochimica Acta, 260: 311-328 doi: 10.1016/j.gca.2019.06.033

     

    Hu Y, Teng FZ, Zhang HF, Xiao Y and Su BX. 2016. Metasomatism-induced mantle magnesium isotopic heterogeneity: Evidence from pyroxenites. Geochimica et Cosmochimica Acta, 185: 88-111 doi: 10.1016/j.gca.2015.11.001

     

    Huang F, Zhang ZF, Lundstrom CC and Zhi XC. 2011. Iron and magnesium isotopic compositions of peridotite xenoliths from eastern China. Geochimica et Cosmochimica Acta, 75(12): 3318-3334 doi: 10.1016/j.gca.2011.03.036

     

    Huang F, Chen LJ, Wu ZQ and Wang W. 2013. First-principles calculations of equilibrium Mg isotope fractionations between garnet, clinopyroxene, orthopyroxene, and olivine: Implications for Mg isotope thermometry. Earth and Planetary Science Letters, 367: 61-70 doi: 10.1016/j.epsl.2013.02.025

     

    Huang F, Zhou C, Wang WZ, Kang JT and Wu ZQ. 2019. First-principles calculations of equilibrium Ca isotope fractionation: Implications for oldhamite formation and evolution of lunar magma ocean. Earth and Planetary Science Letters, 510: 153-160 doi: 10.1016/j.epsl.2018.12.034

     

    Huang SC, Farkaš J and Jacobsen SB. 2010. Calcium isotopic fractionation between clinopyroxene and orthopyroxene from mantle peridotites. Earth and Planetary Science Letters, 292(3-4): 337-344 doi: 10.1016/j.epsl.2010.01.042

     

    Ionov DA, Qi YH, Kang JT, Golovin AV, Oleinikov OB, Zheng W, Anbar AD, Zhang ZF and Huang F. 2019. Calcium isotopic signatures of carbonatite and silicate metasomatism, melt percolation and crustal recycling in the lithospheric mantle. Geochimica et Cosmochimica Acta, 248: 1-13 doi: 10.1016/j.gca.2018.12.023

     

    Johnson C, Beard B and Weyer S. 2020. Iron Geochemistry: An Isotopic Perspective. Advances in Isotope Geochemistry. Switzerland: Springer

     

    Kang JT, Zhu HL, Liu YF, Liu F, Wu F, Hao YT, Zhi XC, Zhang ZF and Huang F. 2016. Calcium isotopic composition of mantle xenoliths and minerals from eastern China. Geochimica et Cosmochimica Acta, 174: 335-344 doi: 10.1016/j.gca.2015.11.039

     

    Kang JT, Ionov DA, Liu F, Zhang CL, Golovin AV, Qin LP, Zhang ZF and Huang F. 2017. Calcium isotopic fractionation in mantle peridotites by melting and metasomatism and Ca isotope composition of the Bulk Silicate Earth. Earth and Planetary Science Letters, 474: 128-137 doi: 10.1016/j.epsl.2017.05.035

     

    Kang JT, Ionov DA, Zhu HL, Liu F, Zhang ZF, Liu Z and Huang F. 2019. Calcium isotope sources and fractionation during melt-rock interaction in the lithospheric mantle: Evidence from pyroxenites, wehrlites, and eclogites. Chemical Geology, 524: 272-282 doi: 10.1016/j.chemgeo.2019.06.010

     

    Kang JT, Zhou C, Huang JY, Hao YT, Liu F, Zhu HL, Zhang ZF and Huang F. 2020. Diffusion-driven Ca-Fe isotope fractionations in the upper mantle: Implications for mantle cooling and melt infiltration. Geochimica et Cosmochimica Acta, 290: 41-58 doi: 10.1016/j.gca.2020.08.033

     

    Lai YJ, Pogge von Strandmann PAE, Dohmen R, Takazawa E and Elliott T. 2015. The influence of melt infiltration on the Li and Mg isotopic composition of the Horoman peridotite massif. Geochimica et Cosmochimica Acta, 164: 318-332 doi: 10.1016/j.gca.2015.05.006

     

    Li YH, Wu ZQ, Huang SC and Wang WZ. 2022. Pressure and concentration effects on inter-mineral calcium isotope fractionation involving garnet. Chemical Geology, 591: 120722 doi: 10.1016/j.chemgeo.2022.120722

     

    Liu SA, Teng FZ, Yang W and Wu FY. 2011. High-temperature inter-mineral magnesium isotope fractionation in mantle xenoliths from the North China Craton. Earth and Planetary Science Letters, 308(1-2): 131-140 doi: 10.1016/j.epsl.2011.05.047

     

    Macris CA, Manning CE and Young ED. 2015. Crystal chemical constraints on inter-mineral Fe isotope fractionation and implications for Fe isotope disequilibrium in San Carlos mantle xenoliths. Geochimica et Cosmochimica Acta, 154: 168-185 doi: 10.1016/j.gca.2015.01.024

     

    Magna T, Gussone N and Mezger K. 2015. The calcium isotope systematics of Mars. Earth and Planetary Science Letters, 430: 86-94 doi: 10.1016/j.epsl.2015.08.016

     

    Menzies MA, Fan WM and Zhang M. 1993. Palaeozoic and Cenozoic lithoprobes and the loss of >120km of Archaean lithosphere, Sino-Korean Craton, China. Geological Society, London, Special Publications, 76(1): 71-81 doi: 10.1144/GSL.SP.1993.076.01.04

     

    Pogge von Strandmann PA E, Elliott T, Marschall HR, Coath C, Lai YJ, Jeffcoate AB and Ionov DA. 2011. Variations of Li and Mg isotope ratios in bulk chondrites and mantle xenoliths. Geochimica et Cosmochimica Acta, 75(18): 5247-5268 doi: 10.1016/j.gca.2011.06.026

     

    Poitrasson F and Freydier R. 2005. Heavy iron isotope composition of granites determined by high resolution MC-ICP-MS. Chemical Geology, 222(1-2): 132-147 doi: 10.1016/j.chemgeo.2005.07.005

     

    Poitrasson F, Delpech G and Grégoire M. 2013. On the iron isotope heterogeneity of lithospheric mantle xenoliths: Implications for mantle metasomatism, the origin of basalts and the iron isotope composition of the Earth. Contributions to Mineralogy and Petrology, 165(6): 1243-1258 doi: 10.1007/s00410-013-0856-7

     

    Schauble EA. 2004. Applying stable isotope fractionation theory to new systems. Reviews in Mineralogy and Geochemistry, 55(1): 65-111 doi: 10.2138/gsrmg.55.1.65

     

    Schoenberg R and von Blanckenburg F. 2006. Modes of planetary-scale Fe isotope fractionation. Earth and Planetary Science Letters, 252(3-4): 342-359 doi: 10.1016/j.epsl.2006.09.045

     

    Stracke A, Tipper ET, Klemme S and Bizimis M. 2018. Mg isotope systematics during magmatic processes: Inter-mineral fractionation in mafic to ultramafic Hawaiian xenoliths. Geochimica et Cosmochimica Acta, 226: 192-205 doi: 10.1016/j.gca.2018.02.002

     

    Tang YJ, Zhang HF, Ying JF and Su BX. 2013. Widespread refertilization of cratonic and circum-cratonic lithospheric mantle. Earth-Science Reviews, 118: 45-68 doi: 10.1016/j.earscirev.2013.01.004

     

    Tang YJ, Ying JF, Zhao YP and Xu XR. 2021. Nature and secular evolution of the lithospheric mantle beneath the North China Craton. Science China (Earth Sciences), 64(9): 1492-1503 doi: 10.1007/s11430-020-9737-4

     

    Teng FZ, Li WY, Ke S, Marty B, Dauphas N, Huang SC, Wu FY and Pourmand A. 2010. Magnesium isotopic composition of the Earth and chondrites. Geochimica et Cosmochimica Acta, 74(14): 4150-4166 doi: 10.1016/j.gca.2010.04.019

     

    Teng FZ. 2017. Magnesium isotope geochemistry. Reviews in Mineralogy and Geochemistry, 82(1): 219-287 doi: 10.2138/rmg.2017.82.7

     

    Urey HC. 1947. The thermodynamic properties of isotopic substances. Journal of the Chemical Society, 562-581 doi: 10.1039/jr9470000562

     

    Wang WZ, Zhou C, Qin T, Kang JT, Huang SC, Wu ZQ and Huang F. 2017. Effect of Ca content on equilibrium Ca isotope fractionation between orthopyroxene and clinopyroxene. Geochimica et Cosmochimica Acta, 219: 44-56 doi: 10.1016/j.gca.2017.09.022

     

    Weyer S and Schwieters JB. 2003. High precision Fe isotope measurements with high mass resolution MC-ICPMS. International Journal of Mass Spectrometry, 226(3): 355-368 doi: 10.1016/S1387-3806(03)00078-2

     

    Weyer S and Ionov DA. 2007. Partial melting and melt percolation in the mantle: The message from Fe isotopes. Earth and Planetary Science Letters, 259(1-2): 119-133 doi: 10.1016/j.epsl.2007.04.033

     

    Williams HM, Peslier AH, McCammon C, Halliday AN, Levasseur S, Teutsch N and Burg JP. 2005. Systematic iron isotope variations in mantle rocks and minerals: The effects of partial melting and oxygen fugacity. Earth and Planetary Science Letters, 235(1-2): 435-452 doi: 10.1016/j.epsl.2005.04.020

     

    Williams HM and Bizimis M. 2014. Iron isotope tracing of mantle heterogeneity within the source regions of oceanic basalts. Earth and Planetary Science Letters, 404: 396-407 doi: 10.1016/j.epsl.2014.07.033

     

    Xiao Y, Teng FZ, Zhang HF and Yang W. 2013. Large magnesium isotope fractionation in peridotite xenoliths from eastern North China craton: Product of melt-rock interaction. Geochimica et Cosmochimica Acta, 115: 241-261 doi: 10.1016/j.gca.2013.04.011

     

    Xu YG, Li HY, Pang CJ and He B. 2009. On the timing and duration of the destruction of the North China Craton. Chinese Science Bulletin, 54(19): 3379-3396

     

    Yang W, Teng FZ and Zhang HF. 2009. Chondritic magnesium isotopic composition of the terrestrial mantle: A case study of peridotite xenoliths from the North China craton. Earth and Planetary Science Letters, 288(3-4): 475-482 doi: 10.1016/j.epsl.2009.10.009

     

    Young ED, Manning CE, Schauble EA, Shahar A, Macris CA, Lazar C and Jordan M. 2015. High-temperature equilibrium isotope fractionation of non-traditional stable isotopes: Experiments, theory, and applications. Chemical Geology, 395: 176-195 doi: 10.1016/j.chemgeo.2014.12.013

     

    Zhang HF. 2005. Transformation of lithospheric mantle through peridotite-melt reaction: A case of Sino-Korean craton. Earth and Planetary Science Letters, 237(3-4): 768-780 doi: 10.1016/j.epsl.2005.06.041

     

    Zhang HF, Tang YJ, Zhao XM and Yang YH. 2007. Significance and prospective of non-traditional isotopic systems in mantle geochemistry. Earth Science Frontiers, 14(2): 37-57 (in Chinese with English abstract) doi: 10.3321/j.issn:1005-2321.2007.02.004

     

    Zhang HF. 2009. Peridotite-melt interaction: A key point for the destruction of cratonic lithospheric mantle. Chinese Science Bulletin, 54(19): 3417-3437

     

    Zhang HF and Chen LH. 2021. On the way to the "Deep Earth" and "Deep Sea": Ten years' progresses in mineralogy, petrology and geochemistry of the mantle. Bulletin of Mineralogy, Petrology and Geochemistry, 40(4): 775-801 (in Chinese with English abstract)

     

    Zhang HM, Wang Y, He YS, Teng FZ, Jacobsen SB, Helz RT, Marsh BD and Huang SC 2018. No measurable calcium isotopic fractionation during crystallization of Kilauea Iki lava lake. Geochemistry, Geophysics, Geosystems, 19(9): 3128-3139 doi: 10.1029/2018GC007506

     

    Zhao XM, Zhang HF, Zhu XK, Tang SH and Tang YJ. 2010. Iron isotope variations in spinel peridotite xenoliths from North China Craton: Implications for mantle metasomatism. Contributions to Mineralogy and Petrology, 160(1): 1-14 doi: 10.1007/s00410-009-0461-y

     

    Zhao XM, Zhang HF, Zhu XK, Tang SH and Yan B. 2012. Iron isotope evidence for multistage melt-peridotite interactions in the lithospheric mantle of eastern China. Chemical Geology, 292-293: 127-139 doi: 10.1016/j.chemgeo.2011.11.016

     

    Zhao XM, Zhang HF, Zhu XK, Zhu B and Cao HH. 2015. Effects of melt percolation on iron isotopic variation in peridotites from Yangyuan, North China Craton. Chemical Geology, 401: 96-110 doi: 10.1016/j.chemgeo.2015.02.031

     

    Zhao XM, Cao HH, Mi X, Evans NJ, Qi YH, Huang F and Zhang HF. 2017a. Combined iron and magnesium isotope geochemistry of pyroxenite xenoliths from Hannuoba, North China Craton: Implications for mantle metasomatism. Contributions to Mineralogy and Petrology, 172(6): 40 doi: 10.1007/s00410-017-1356-y

     

    Zhao XM, Zhang ZF, Huang SC, Liu YF, Li X and Zhang HF. 2017b. Coupled extremely light Ca and Fe isotopes in peridotites. Geochimica et Cosmochimica Acta, 208: 368-380 doi: 10.1016/j.gca.2017.03.024

     

    Zhao XM. 2019. Effects of mantle refertilization on Fe-Mg-Ca isotopic compositions of the Lithospheric mantle. Bulletin of Mineralogy, Petrology and Geochemistry, 38(4): 713-724 (in Chinese with English abstract)

     

    Zhao XM, Li ZH, Jia XL, Evans NJ, Zhang ZF and Zhang HF. 2021. Multi-stage metasomatism revealed by trace element content and Fe isotopic composition of minerals in peridotite xenoliths from Niutoushan in the Cathaysia Block, South China. Lithos, 406-407: 106506 doi: 10.1016/j.lithos.2021.106506

     

    Zheng JP. 2009. Comparison of mantle-derived matierals from different spatiotemporal settings: Implications for destructive and accretional processes of the North China Craton. Chinese Science Bulletin, 54(19): 3397-3416

     

    Zheng YF and Wu FY. 2009. Growth and reworking of cratonic lithosphere. Chinese Science Bulletin, 54(19): 3347-3353

     

    Zhou XH, Zhang HF, Zheng JP, Xia QK, Liu YS, Tang YJ, Huang F and Liu CZ. 2013. Progresses of mantle geochemistry in China during the first decade of the 21th century. Bulletin of Mineralogy, Petrology and Geochemistry, 32(4): 379-391 (in Chinese with English abstract) doi: 10.3969/j.issn.1007-2802.2013.04.001

     

    Zhu HL, Liu F, Li X, Wang GQ, Zhang ZF and Sun WD. 2018. Calcium isotopic compositions of normal Mid-Ocean Ridge basalts from the southern Juan de Fuca Ridge. Journal of Geophysical Research: Solid Earth, 123(2): 1303-1313 doi: 10.1002/2017JB014699

     

    Zhu HL, Ionov DA, Du L, Zhang ZF and Sun WD. 2021. Ca-Sr isotope and chemical evidence for distinct sources of carbonatite and silicate mantle metasomatism. Geochimica et Cosmochimica Acta, 312: 158-179 doi: 10.1016/j.gca.2021.08.004

     

    Zhu RX, Chen L, Wu FY and Liu JL. 2011. Timing, scale and mechanism of the destruction of the North China Craton. Science China (Earth Sciences), 54(6): 789-797 doi: 10.1007/s11430-011-4203-4

     

    Zhu RX, Xu YG, Zhu G, Zhang HF, Xia QK and Zheng TY. 2012. Destruction of the North China Craton. Science China (Earth Sciences), 55(10): 1565-1587 doi: 10.1007/s11430-012-4516-y

     

    Zhu RX, Zhu G, Li JW et al. 2020. The North China Craton Destruction. Beijing: Science Press (in Chinese)

     

    Zhu XK, O'Nions RK, Guo YL and Reynolds BC. 2000. Secular variation of iron isotopes in North Atlantic deep water. Science, 287(5460): 2000-2002 doi: 10.1126/science.287.5460.2000

     

    Zhu XK, Wang Y, Yan B, Li J, Dong AG, Li ZH and Sun J. 2013. Developments of non-traditional stable isotope geochemistry. Bulletin of Mineralogy, Petrology and Geochemistry, 32(6): 651-688 (in Chinese with English abstract)

     

    高山, 章军锋, 许文良, 刘勇胜. 2009. 拆沉作用与华北克拉通破坏. 科学通报, 54(14): 1962-1973 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200914004.htm

     

    徐义刚, 李洪颜, 庞崇进, 何斌. 2009. 论华北克拉通破坏的时限. 科学通报, 54(14): 1974-1989 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200914005.htm

     

    张宏福, 汤艳杰, 赵新苗, 杨岳衡. 2007. 非传统同位素体系在地幔地球化学研究中的重要性及其前景. 地学前缘, 14(2): 37-57 doi: 10.3321/j.issn:1005-2321.2007.02.004

     

    张宏福. 2009. 橄榄岩-熔体相互作用: 克拉通型岩石圈地幔能够被破坏之关键. 科学通报, 54(14): 2008-2026 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200914007.htm

     

    张宏福, 陈立辉. 2021. 向"深地"和"深海"进军征途中——地幔矿物学岩石学地球化学十年进展. 矿物岩石地球化学通报, 40(4): 775-801 https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202104001.htm

     

    赵新苗. 2019. 地幔再富集作用对岩石圈地幔Fe-Mg-Ca同位素组成的影响. 矿物岩石地球化学通报, 38(4): 713-724 https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201904006.htm

     

    郑建平. 2009. 不同时空背景幔源物质对比与华北深部岩石圈破坏和增生置换过程. 科学通报, 54(14): 1990-2007 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200914006.htm

     

    郑永飞, 吴福元. 2009. 克拉通岩石圈的生长和再造. 科学通报, 54(14): 1945-1949 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200914002.htm

     

    周新华, 张宏福, 郑建平, 夏群科, 刘勇胜, 汤艳杰, 黄方, 刘传周. 2013. 新世纪十年地幔地球化学研究进展. 矿物岩石地球化学通报, 32(4): 379-391 doi: 10.3969/j.issn.1007-2802.2013.04.001

     

    朱日祥, 陈凌, 吴福元, 刘俊来. 2011. 华北克拉通破坏的时间、范围与机制. 中国科学(地球科学), 41(5): 583-592 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201105001.htm

     

    朱日祥, 徐义刚, 朱光, 张宏福, 夏群科, 郑天愉. 2012. 华北克拉通破坏. 中国科学(地球科学), 42(8): 1135-1159 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201208002.htm

     

    朱日祥, 朱光, 李建威等. 2020. 华北克拉通破坏. 北京: 科学出版社

     

    朱祥坤, 王跃, 闫斌, 李津, 董爱国, 李志红, 孙剑. 2013. 非传统稳定同位素地球化学的创建与发展. 矿物岩石地球化学通报, 32(6): 651-688 https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201306002.htm

  • 加载中

(7)

计量
  • 文章访问数:  1070
  • PDF下载数:  193
  • 施引文献:  0
出版历程
收稿日期:  2022-07-23
修回日期:  2022-10-13
刊出日期:  2022-12-01

目录