实时在线氧校正205Pb-233U-236U稀释剂单颗粒锆石ID-TIMS U-Pb高精度年龄测定方法

储著银, 许俊杰, 凌潇潇, 张普, 程海, 郭敬辉, 周新华. 2022. 实时在线氧校正205Pb-233U-236U稀释剂单颗粒锆石ID-TIMS U-Pb高精度年龄测定方法. 岩石学报, 38(12): 3695-3702. doi: 10.18654/1000-0569/2022.12.09
引用本文: 储著银, 许俊杰, 凌潇潇, 张普, 程海, 郭敬辉, 周新华. 2022. 实时在线氧校正205Pb-233U-236U稀释剂单颗粒锆石ID-TIMS U-Pb高精度年龄测定方法. 岩石学报, 38(12): 3695-3702. doi: 10.18654/1000-0569/2022.12.09
CHU ZhuYin, XU JunJie, LING XiaoXiao, ZHANG Pu, CHENG Hai, GUO JingHui, ZHOU XinHua. 2022. Precise ID-TIMS U-Pb dating of single zircons using 205Pb-233U-236U tracers: Isobaric oxide corrections for UO2+ with in-run measured 18O/16O. Acta Petrologica Sinica, 38(12): 3695-3702. doi: 10.18654/1000-0569/2022.12.09
Citation: CHU ZhuYin, XU JunJie, LING XiaoXiao, ZHANG Pu, CHENG Hai, GUO JingHui, ZHOU XinHua. 2022. Precise ID-TIMS U-Pb dating of single zircons using 205Pb-233U-236U tracers: Isobaric oxide corrections for UO2+ with in-run measured 18O/16O. Acta Petrologica Sinica, 38(12): 3695-3702. doi: 10.18654/1000-0569/2022.12.09

实时在线氧校正205Pb-233U-236U稀释剂单颗粒锆石ID-TIMS U-Pb高精度年龄测定方法

  • 基金项目:

    本文受国家自然科学基金项目(42073050、41673061)和国家重点研发计划项目(2020YFA0714803)联合资助

详细信息
    作者简介:

    储著银, 男, 1970年生, 研究员, 主要从事同位素地球化学研究工作, E-mail: zhychu@mail.iggcas.ac.cn

  • 中图分类号: P597

Precise ID-TIMS U-Pb dating of single zircons using 205Pb-233U-236U tracers: Isobaric oxide corrections for UO2+ with in-run measured 18O/16O

  • 单颗粒锆石化学溶蚀同位素稀释热电离质谱(CA-ID-TIMS)U-Pb法是目前精度最高的同位素地质年代学方法,由于存在236U16O18O+236U18O16O+238U16O2+的干扰问题,目前国际上通用的U-Pb定年稀释剂是205Pb-233U-235U而不采用205Pb-233U-236U。针对该问题,本文详细探讨了热电离质谱法(TIMS)测定U同位素过程中,236U16O18O+236U18O16O+238U16O2+的干扰对U-Pb年龄测定结果的影响程度,指出ID-TIMS U-Pb分析过程中控制233U-236U稀释剂的加入量,保证样品-稀释剂238U/236U混合比>0.5,236U16O18O+236U18O16O+238U16O2+的干扰对定年结果的影响并不显著。此外,详细探讨了热电离质谱(TIMS)U、Pb同位素测定过程中二次电子倍增器(SEM)死时间的准确设定对高精度CA-ID-TIMS U-Pb定年的重要性。在此基础上,建立了在线氧校正205Pb-233U-236U稀释剂CA-ID-TIMS单颗粒锆石U-Pb年龄高精度测定方法。最后,采用所建立方法对标准锆石ZS进行了测定,获得的206Pb/238U年龄加权平均值为559.91±0.25Ma(2σ,仅分析误差),与文献报道值在误差范围内一致。由于采用了233U-236U双稀释剂内部校正U同位素分馏效应,该标样年龄测定精度达到0.05%,优于其205Pb-235U单稀释剂法年龄测定结果的精度。

  • 加载中
  • 图 1 

    SEM Pb死时间

    Figure 1. 

    SEM deadtime for Pb

    图 2 

    SEM U死时间

    Figure 2. 

    SEM deadtime for U

    图 3 

    ZS锆石U-Pb谐和图(a)和206Pb/238U年龄加权平均值(b)

    Figure 3. 

    Concordia and Weighted mean 206Pb/238U ages for ZS zircon

    表 1 

    U同位素测定数据采集参数

    Table 1. 

    Data acquisition parameters for U isotope ratio measurement

    质量数(amu) 265 267 268 270 272
    主同位素 233U16O2 235U16O2 236U16O2 238U16O2 238U16O18O、238U18O16O
    积分时间(s) 4 4 4 4 8
    跳扫等待时间(s) 2 1 1 1 1
    下载: 导出CSV

    表 2 

    205Pb-233U-236U稀释剂Pb、U同位素比值

    Table 2. 

    Pb, U isotope compositions for the 205Pb-233U-236U spike

    同位素比值 205Pb/206Pb 204Pb/206Pb 207Pb/206Pb 208Pb/206Pb 235U/236U 238U/236U
    平均值(n=5) 2456 0.151 1.053 2.011 0.0000637 0.0002768
    标准差 33 0.008 0.068 0.009 0.0000086 0.0000079
    下载: 导出CSV

    表 3 

    205Pb-233U-236U稀释剂205Pb、233U和236U浓度

    Table 3. 

    205Pb, 233U and 236U concentration for the 205Pb-233U-236U spike

    分析次数 233U 236U 205Pb 236U/205Pb
    (pmol/g)
    1 361.70 354.94 10.540 33.71
    2 361.81 355.04 10.541 33.72
    3 361.95 355.18 10.540 33.73
    4 361.67 354.90 10.552 33.67
    5 362.25 355.48 10.548 33.73
    平均值 361.88 355.11 10.544 33.71
    相对误差(%) 0.058 0.058 0.048 0.073
    下载: 导出CSV

    表 4 

    全流程Pb、U本底

    Table 4. 

    Procedural blanks for Pb and U

    分析次数 1 2 3 4 5 6 7 8 9 10 平均值 标准差
    Pb (pg) 3.7 2.4 4.0 3.4 2.2 3.1 1.3 2.6 1.9 2.1 2.7 0.8
    U (pg) 0.66 0.47 0.59 0.90 0.57 0.60 0.41 0.56 0.68 0.56 0.60 0.13
    下载: 导出CSV

    表 5 

    不同238U/236U混合比条件下236U16O18O和236U18O16O对238U16O2干扰程度及氧校正误差

    Table 5. 

    The interferences of 236U16O18O and 236U18O16O on 238U16O2 and oxide correction errors for different 238U/236U mixed ratios

    238U/236U 干扰 18O/16O误差 氧校正误差
    2 0.20% 5% 0.010%
    1 0.41% 5% 0.020%
    0.5 0.82% 5% 0.041%
    0.4 1.0% 5% 0.051%
    0.1 4.1% 5% 0.20%
    下载: 导出CSV

    表 6 

    标准锆石ZS U-Pb年龄测定结果

    Table 6. 

    Analytical results for ZS standard zircon

    测点号 同位素比值 相关系数 年龄(Ma)
    Th/U 2RSE (%) 2RSE (%) 2RSE (%) 2SE 2SE 2SE
    (a) (a) (b) (c) (d) (d) (d) (d) (e) (e) (e)
    ZS-1 63 2.70 0.217 4121 0.0678 0.05891 0.23 0.7368 0.32 0.09070 0.18 0.72 563.9 5.0 560.5 1.4 559.70 0.94
    ZS-2 69 3.04 0.221 4500 0.0689 0.05876 0.19 0.7351 0.26 0.09072 0.11 0.74 558.3 4.2 559.5 1.1 559.82 0.61
    ZS-3 117 3.71 0.307 7423 0.0959 0.058910 0.12 0.7378 0.22 0.09084 0.14 0.87 563.8 2.6 561.13 0.94 560.48 0.72
    ZS-4 46 5.15 0.212 3030 0.0664 0.05891 0.19 0.7367 0.32 0.09070 0.22 0.81 563.7 4.2 560.5 1.4 559.7 1.2
    ZS-5 102 3.45 0.199 6708 0.0622 0.058926 0.13 0.7371 0.22 0.09072 0.13 0.86 564.4 2.8 560.7 1.0 559.79 0.71
    ZS-6 60 4.36 0.311 3801 0.0970 0.05876 0.19 0.7352 0.26 0.09075 0.12 0.73 558.0 4.2 559.6 1.1 559.97 0.63
    ZS-7 47 5.68 0.206 3061 0.0644 0.058920 0.15 0.7369 0.25 0.09071 0.15 0.84 564.2 3.3 560.6 1.1 559.71 0.82
    ZS-8 101 6.01 0.204 6588 0.0638 0.05894 0.22 0.7373 0.28 0.09074 0.14 0.65 564.8 4.7 560.9 1.2 559.89 0.75
    ZS-9 128 3.72 0.300 8156 0.0938 0.058976 0.083 0.7380 0.30 0.09075 0.26 0.97 566.2 1.8 561.2 1.3 560.0 1.4
    ZS-10 50 4.38 0.292 3235 0.0913 0.058931 0.16 0.7372 0.32 0.09073 0.24 0.88 564.5 3.4 560.8 1.4 559.8 1.3
    注:(a) Pb*和Pbc分别代表放射成因铅和普通铅;(b)根据208Pb*/206Pb*207Pb/235U年龄计算得到Th/U比值;(c)扣除稀释剂和分馏后206Pb/204Pb比值;(d)扣除稀释剂、分馏和本底贡献后同位素比值;普通铅被认为全部来自流程本底: 206Pb/204Pb=18.46±1.4% (RSD), 207Pb/204Pb=15.53±1.1% (RSD); 208Pb/204Pb=38.21±0.74% (RSD);U本底,0.60±0.30pg (SD);(e)衰变常数采用Jaffey et al. (1971)206Pb/238U和207Pb/206Pb年龄经过230Th校正(假定岩浆Th/U=3)
    下载: 导出CSV
  •  

    Baker J, Peate D, Waight T and Meyzen C. 2004. Pb isotopic analysis of standards and samples using a 207Pb-204Pb double spike and thallium to correct for mass bias with a double-focusing MC-ICP-MS. Chemical Geology, 211(3-4): 275-303 doi: 10.1016/j.chemgeo.2004.06.030

     

    Chu ZY, Li CF, Chen Z, Xu JJ, Di YK and Guo JH. 2015. High-precision measurement of 186Os/188Os and 187Os/188Os: Isobaric oxide corrections with in-run measured oxygen isotope ratios. Analytical Chemistry, 87(17): 8765-8771 doi: 10.1021/acs.analchem.5b01689

     

    Chu ZY, Xu JJ, Chen Z, Li CF, Li XH, He HY, Li XH and Guo JH. 2016. Ultra-low blank analytical procedure for high precision CA-ID-TIMS U-Pb dating of single grain zircons. Chinese Science Bulletin, 61(10): 1121-1129 (in Chinese) doi: 10.1360/N972015-01048

     

    Condon DJ, Schoene B, McLean NM, Bowring SA and Parrish RR. 2015. Metrology and traceability of U-Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I). Geochimica et Cosmochimica Acta, 164: 464-480 doi: 10.1016/j.gca.2015.05.026

     

    Connelly JN, Bizzarro M, Krot AN, Nordlund Å, Wielandt D and Ivanova MA. 2012. The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science, 338(6107): 651-655 doi: 10.1126/science.1226919

     

    Gao HT, Zhao DM, Du AD, Qu WJ and Liu DY. 1999. Study on Os-Os dating method. Rock and Mineral Analysis, 18(3): 176-181 (in Chinese with English abstract) doi: 10.3969/j.issn.0254-5357.1999.03.004

     

    Harvey J and Baxter EF. 2009. An improved method for TIMS high precision neodymium isotope analysis of very small aliquots (1~10ng). Chemical Geology, 258(3-4): 251-257 doi: 10.1016/j.chemgeo.2008.10.024

     

    Hiess J, Condon DJ, McLean N and Noble SR. 2012. 238U/235U systematics in terrestrial uranium-bearing minerals. Science, 335(6076): 1610-1614 doi: 10.1126/science.1215507

     

    Huyskens MH, Zink S and Amelin Y. 2016. Evaluation of temperature-time conditions for the chemical abrasion treatment of single zircons for U-Pb geochronology. Chemical Geology, 438: 25-35 doi: 10.1016/j.chemgeo.2016.05.013

     

    Jaffey AH, Flynn KF, Glendenin LE, Bentley WC and Essling AM. 1971. Precision measurement of half-lives and specific activities of 235U and 238U. Physical Review C, 4(5): 1889-1906 doi: 10.1103/PhysRevC.4.1889

     

    Krogh TE. 1973. A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochimica et Cosmochimica Acta, 37(3): 485-494 doi: 10.1016/0016-7037(73)90213-5

     

    Li XH, Li Y, Li QL, Wu LG, Wang H, Yang C, Wei GJ and Zhang WF. 2022. Progress and prospects of radiometric geochronology. Acta Geologica Sinica, 96(1): 104-122 (in Chinese with English abstract)

     

    Ling XX, Li QL, Yang CA, Chu ZY, Feng LJ, Huang C, Huang LL, Zhang H, Hou ZH, Xu JJ, Liu Y, Tang GQ, Li J and Li XH. 2022. Zircon ZS: A homogenous natural reference material for U-Pb age and O-Hf isotope microanalyses. Atomic Spectroscopy, 43(2): 134-144

     

    Luguet A, Nowell GM and Pearson DG. 2008. 184Os/188Os and 186Os/188Os measurements by Negative Thermal Ionisation Mass Spectrometry (N-TIMS): Effects of interfering element and mass fractionation corrections on data accuracy and precision. Chemical Geology, 248(3-4): 342-362 doi: 10.1016/j.chemgeo.2007.10.013

     

    Mattinson JM. 2005. Zircon U-Pb chemical abrasion ("CA-TIMS") method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chemical Geology, 220(1-2): 47-66 doi: 10.1016/j.chemgeo.2005.03.011

     

    McLean NM, Condon DJ, Schoene B and Bowring SA. 2015. Evaluating uncertainties in the calibration of isotopic reference materials and multi-element isotopic tracers (EARTHTIME Tracer Calibration Part Ⅱ). Geochimica et Cosmochimica Acta, 164: 481-501 doi: 10.1016/j.gca.2015.02.040

     

    Mundil R, Ludwig KR, Metcalfe I and Renne PR. 2004. Age and timing of the Permian mass extinctions: U/Pb dating of closed-system zircons. Science, 305(5691): 1760-1763 doi: 10.1126/science.1101012

     

    Roddick JC, Loveridge WD and Parrish RR. 1987. Precise U/Pb dating of zircon at the sub-nanogram Pb level. Chemical Geology, 66(1-2): 111-121

     

    Schmitz MD and Kuiper KF. 2013. High-precision geochronology. Elements, 9(1): 25-30 doi: 10.2113/gselements.9.1.25

     

    Schoene B. 2014. U-Th-Pb geochronology. In: Holland HD and Turekian KK (eds. ). Treatise on Geochemistry. 2nd Edition. Oxford: Elsevier, 4: 341-378

     

    Sturm M, Richter S, Aregbe Y, Wellum R and Prohaska T. 2016. Optimized chemical separation and measurement by TE TIMS using carburized filaments for uranium isotope ratio measurements applied to plutonium chronometry. Analytical Chemistry, 88(12): 6223-6230 doi: 10.1021/acs.analchem.5b03852

     

    Sun WD, Peng ZC and Wang ZR. 1997. Oxygen corrections in negative thermal ionization mass spectrometry determination of Rhenium and Osminum. Journal of Chinese Mass Spectrometry Society, 18(3): 1-6 (in Chinese with English abstract)

     

    Trinquier A, Maden C, Fauré AL, Hubert A, Pointurier F, Bourdon B and Schönbächler M. 2019. More than five percent ionization efficiency by cavity source thermal ionization mass spectrometry for uranium subnanogram amounts. Analytical Chemistry, 91(9): 6190-6199 doi: 10.1021/acs.analchem.9b00849

     

    Tu JR, Xiao ZB, Zhou HY, An SQ, Li GZ, Cui YR, Liu WG and Li HM. 2019. U-Pb dating of single-grain uraninite by isotope dilution thermal ionization mass spectrometry. Ore Geology Reviews, 109: 407-412 doi: 10.1016/j.oregeorev.2019.05.001

     

    Vanhaecke F, de Wannemacker G, Moens L, Dams R, Latkoczy C, Prohaska T and Stingeder G. 1998. Dependence of detector dead time on analyte mass number in inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 13(6): 567-571 doi: 10.1039/a709001c

     

    Verbruggen A, Alonso A, Eykens R, Kehoe F, Kühn H, Richter S and Aregbe Y. 2008. Preparation and certification of IRMM-3636, IRMM-3636a and IRMM-3636b. JRC Scientific and Technical Reports. European Commission, Joint Research Centre, Institute for Reference Materials and Measurements

     

    Wang W, Zhou MZ, Chu ZY, Xu JJ, Li CF, Luo TY and Guo JH. 2020. Constraints on the Ediacaran-Cambrian boundary in deep-water realm in South China: Evidence from zircon CA-ID-TIMS U-Pb ages from the topmost Liuchapo Formation. Science China (Earth Sciences), 63(8): 1176-1187 doi: 10.1007/s11430-019-9590-0

     

    Wasserburg GJ, Jacobsen SB, Depaolo DJ, McCulloch MT and Wen T. 1981. Precise determination of Sm/Nd ratios, Sm and Nd isotopic abundances in standard solutions. Geochimica et Cosmochimica Acta, 45(12): 2311-2323 doi: 10.1016/0016-7037(81)90085-5

     

    Wotzlaw JF, Buret Y, Large SJE, Szymanowski D and von Quadt A. 2017. ID-TIMS U-Pb geochronology at the 0.1‰ level using 1013Ω resistors and simultaneous U and 18O/16O isotope ratio determination for accurate UO2 interference correction. Journal of Analytical Atomic Spectrometry, 32(3): 579-586 doi: 10.1039/C6JA00278A

     

    Yang JH and Yin HF. 2014. One-decade development of high-precision zircon U-Pb dating: Chances and challenges for Chinese scientists. Earth Science Frontiers, 21(2): 93-101

     

    Zhang L, Xiong PH, Zhang HL, Chen LM, Xu J, Wu HX and Qin Z. 2019. Graphene oxide carburization enhanced ionization efficiency for TIMS isotope ratio analysis of uranium at trace level. Analytical Chemistry, 91(11): 7215-7225 doi: 10.1021/acs.analchem.9b00543

     

    Zheng L, Zhi XC and Jin YB. 2004. Mass fractionation correction of Osmium isotopic compositions in negative thermal ionization mass spectrometric measurement. Journal of Chinese Mass Spectrometry Society, 25(4): 193-197 (in Chinese with English abstract)

     

    Zhong YT, Mundil R, Xu YG, Wang GQ, Zhang ZF and Ma JL. 2017. Development of CA-ID-TIMS zircon U-Pb dating technique at Guangzhou Institute of Geochemistry, Chinese Academy of Sciences. Solid Earth Sciences, 2(2): 55-61 doi: 10.1016/j.sesci.2017.03.001

     

    Zhong YT, Huyskens MH, Yin QZ, Wang YQ, Ma Q and Xu YG. 2021. High-precision geochronological constraints on the duration of 'Dinosaur Pompeii' and the Yixian Formation. National Science Review, 8(6): nwab063, doi: 10.1093/nsr/nwab063

     

    Zhou CM, Huyskens MH, Lang XG, Xiao SH and Yin QZ. 2019. Calibrating the terminations of Cryogenian global glaciations. Geology, 47(3): 251-254 doi: 10.1130/G45719.1

     

    储著银, 许俊杰, 陈知, 李潮峰, 李向辉, 贺怀宇, 李献华, 郭敬辉. 2016. 超低本底单颗粒锆石CA-ID-TIMS U-Pb高精度定年方法. 科学通报, 61(10): 1121-1129 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201610014.htm

     

    高洪涛, 赵敦敏, 杜安道, 屈文俊, 刘敦一. 1999. 锇-锇测年方法研究. 岩矿测试, 18(3): 176-181 doi: 10.3969/j.issn.0254-5357.1999.03.004

     

    李献华, 李扬, 李秋立, 吴黎光, 王浩, 杨传, 韦刚健, 张万峰. 2022. 同位素地质年代学新进展与发展趋势. 地质学报, 96(1): 104-122 https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202201007.htm

     

    孙卫东, 彭子成, 王兆荣. 1997. 铼饿负热电离质谱测定中的氧同位素校正. 质谱学报, 18(3): 1-6 https://www.cnki.com.cn/Article/CJFDTOTAL-ZPXB199703000.htm

     

    王伟, 周明忠, 储著银, 许俊杰, 李潮峰, 罗泰义, 郭敬辉. 2020. 华南深水区埃迪卡拉系-寒武系界线制约: 来自留茶坡组顶部锆石CA-ID-TIMS U-Pb年龄证据. 中国科学(地球科学), 50(6): 819-831 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202006008.htm

     

    杨江海, 殷鸿福. 2014. 高精度锆石U-Pb年代学10年发展: 浅谈中国科学家的机遇和挑战. 地学前缘, 21(2): 93-101 https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201402009.htm

     

    郑磊, 支霞臣, 靳永斌. 2004. 负热电离质谱法测量Os同位素组成的质量分馏校正. 质谱学报, 25(4): 193-197 https://www.cnki.com.cn/Article/CJFDTOTAL-ZPXB200404000.htm

  • 加载中

(3)

(6)

计量
  • 文章访问数:  1108
  • PDF下载数:  135
  • 施引文献:  0
出版历程
收稿日期:  2022-06-10
修回日期:  2022-08-14
刊出日期:  2022-12-01

目录