从大陆火山岩视角了解深部地幔化学储库的属性

陈立辉, 曾罡, 刘建强, 王小均, 张超. 2022. 从大陆火山岩视角了解深部地幔化学储库的属性. 岩石学报, 38(12): 3703-3711. doi: 10.18654/1000-0569/2022.12.10
引用本文: 陈立辉, 曾罡, 刘建强, 王小均, 张超. 2022. 从大陆火山岩视角了解深部地幔化学储库的属性. 岩石学报, 38(12): 3703-3711. doi: 10.18654/1000-0569/2022.12.10
CHEN LiHui, ZENG Gang, LIU JianQiang, WANG XiaoJun, ZHANG Chao. 2022. The nature of the deep mantle chemical reservoirs: Perspective from continental intraplate volcanic rocks. Acta Petrologica Sinica, 38(12): 3703-3711. doi: 10.18654/1000-0569/2022.12.10
Citation: CHEN LiHui, ZENG Gang, LIU JianQiang, WANG XiaoJun, ZHANG Chao. 2022. The nature of the deep mantle chemical reservoirs: Perspective from continental intraplate volcanic rocks. Acta Petrologica Sinica, 38(12): 3703-3711. doi: 10.18654/1000-0569/2022.12.10

从大陆火山岩视角了解深部地幔化学储库的属性

  • 基金项目:

    本文受国家自然科学基金项目(42130310)资助

详细信息
    作者简介:

    陈立辉, 男, 1972年生, 教授, 博士生导师, 岩石学专业, 主要从事火成岩成因与地幔地球化学研究, E-mail: chenlh@nwu.edu.cn

  • 中图分类号: P588.14;P591

The nature of the deep mantle chemical reservoirs: Perspective from continental intraplate volcanic rocks

  • 洋岛玄武岩(OIB)在同位素组成上的显著变化表明深部地幔在化学上是高度不均一的,存在EM1、EM2和HIMU等地幔端元。现有OIB的地球化学证据支持EM1、EM2和HIMU源区多存在再循环地壳物质,因此对地幔端元属性的精准约束是探讨壳幔物质循环和地球深部过程的关键。基于近年来来自OIB的Mg、Fe、Zn等金属稳定同位素和橄榄石斑晶元素地球化学方面的观察,本文在重新梳理不同地幔端元在成因上的联系和区别的基础上,把EM1和EM2归类为残余型富集储库(residual-type enriched reservoir)、HIMU归为交代型富集储库(metasomatic-type enriched reservoir)。相对于OIB,大陆幔源火山岩的熔融程度普遍要低得多,更有利于保存富集组分的地球化学信息。另外,洋岛玄武岩主要分布在南半球,大陆火山岩主要分布于北半球,后者可以弥补前者在空间上代表性不足的缺陷。因此,大陆火山岩有潜力成为观察深部地幔储库的新视角。

  • 加载中
  • 图 1 

    洋岛玄武岩与大陆火山岩在Pb-Nd同位素相关图上的对比(a)以及再循环地壳与各地幔储库之间的成因联系(b)

    Figure 1. 

    206Pb/204Pb vs. εNd for OIBs and continental volcanic rocks in Northeast China (a) and genetic relationship between recycled crusts and mantle reservoirs (b)

    图 2 

    橄榄石斑晶成分(Ni/(Mg/Fe)-Mn/Fe相关图)示踪地幔端元的岩性

    Figure 2. 

    Plot of 100(Mn/Fe vs. Ni/(Mg/Fe)/1000 of olivine phenocrysts for tracing the source lithology of various mantle endmembers

    图 3 

    东北新生代火山岩的分布(a)及其在TAS图上的成分分类(b)

    Figure 3. 

    Distribution (a) and TAS (b) diagrams for Cenozoic volcanic rocks in Northeast China

    图 4 

    两类EM1型板内玄武岩在Mg稳定同位素-放射成因Sr同位素相关图上的对比(据王小均等, 2019修改)

    Figure 4. 

    Comparison of two species of EM1-type intraplate basalts on δ26Mg vs. 87Sr/86Sr (modified after Wang et al., 2019)

    图 5 

    两类富集型板内玄武岩在εNd-La/Yb比值相关图上的对比

    Figure 5. 

    Comparison of two species of EM1-type intraplate basalts on εNd vs. La/Yb

  •  

    Abouchami W, Hofmann AW, Galer SJG, Frey FA, Eisele J and Feigenson M. 2005. Lead isotopes reveal bilateral asymmetry and vertical continuity in the Hawaiian mantle plume. Nature, 434(7035): 851-856 doi: 10.1038/nature03402

     

    Adams JV, Spera FJ and Jackson MG. 2021. Trachytic melt inclusions hosted in Clinopyroxene offer a glimpse into Samoan EM2-endmember melts. Geochemistry, Geophysics, Geosystems, 22(3): e2020GC009212, doi: 10.1029/2020GC009212

     

    Basu AR, Wang JW, Huang WK, Xie GH and Tatsumoto M. 1991. Major element, REE, and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China: Implications for their origin from suboceanic-type mantle reservoirs. Earth and Planetary Science Letters, 105(1-3): 149-169 doi: 10.1016/0012-821X(91)90127-4

     

    Blusztajn J, Nielsen SG, Marschall HR, Shu YC, Ostrander CM and Hanyu T. 2018. Thallium isotope systematics in volcanic rocks from St. Helena: Constraints on the origin of the HIMU reservoir. Chemical Geology, 476: 292-301 doi: 10.1016/j.chemgeo.2017.11.025

     

    Cabral RA, Jackson MG, Rose-Koga EF, Koga KT, Whitehouse MJ, Antonelli MA, Farquhar J, Day JMD and Hauri EH. 2013. Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust. Nature, 496(7446): 490-493 doi: 10.1038/nature12020

     

    Cabral RA, Jackson MG, Koga KT, Rose-Koga EF, Hauri EH, Whitehouse MJ, Price AA, Day JMD, Shimizu N and Kelley KA. 2014. Volatile cycling of H2O, CO2, F and Cl in the HIMU mantle: A new window provided by melt inclusions from oceanic hot spot lavas at Mangaia, Cook Islands. Geochemistry, Geophysics, Geosystems, 15(11): 4445-4467 doi: 10.1002/2014GC005473

     

    Chauvel C, Hofmann AW and Vidal P. 1992. HIMU-EM: The French Polynesian connection. Earth and Planetary Science Letters, 110(1-4): 99-119 doi: 10.1016/0012-821X(92)90042-T

     

    Chen LH, Wang XJ and Liu SA. 2022. Probing recycled carbonate in the lower mantle. National Science Review, 9(6): nwac061 doi: 10.1093/nsr/nwac061

     

    Chen Y, Zhang YX, Graham D, Su SG and Deng JF. 2007. Geochemistry of Cenozoic basalts and mantle xenoliths in Northeast China. Lithos, 96(1-2): 108-126 doi: 10.1016/j.lithos.2006.09.015

     

    Chu ZY, Harvey J, Liu CZ, Guo JH, Wu FY, Tian W, Zhang YL and Yang YH. 2013. Source of highly potassic basalts in Northeast China: Evidence from Re-Os, Sr-Nd-Hf isotopes and PGE geochemistry. Chemical Geology, 357: 52-66 doi: 10.1016/j.chemgeo.2013.08.007

     

    Dasgupta R and Hirschmann MM. 2010. The deep carbon cycle and melting in Earth's interior. Earth and Planetary Science Letters, 298(1-2): 1-13 doi: 10.1016/j.epsl.2010.06.039

     

    Delavault H, Chauvel C, Thomassot E, Devey CW and Dazas B. 2016. Sulfur and lead isotopic evidence of relic Archean sediments in the Pitcairn mantle plume. Proceedings of the National Academy of Sciences of the United States of America, 113(46): 12952-12956 doi: 10.1073/pnas.1523805113

     

    Eguchi J, Seales J and Dasgupta R. 2020. Great Oxidation and Lomagundi events linked by deep cycling and enhanced degassing of carbon. Nature Geoscience, 13(1): 71-76, doi: 10.1038/s41561-019-0492-6

     

    Erdmann S, Chen LH, Liu JQ, Xue XQ and Wang XJ. 2019. Hot, volatile-poor, and oxidized magmatism above the stagnant Pacific plate in eastern China in the Cenozoic. Geochemistry, Geophysics, Geosystems, 20(11): 4849-4868, doi: 10.1029/2019GC008425

     

    Farley KA, Netland JH and Craig H. 1992. Binary mixing of enriched and undegassed (primitive?) mantle components (He, Sr, Nd, Pb) in Samoan lavas. Earth and Planetary Science Letters, 111(1): 183-199 doi: 10.1016/0012-821X(92)90178-X

     

    Gale A, Dalton CA, Langmuir CH, Su YJ and Schilling JG. 2013. The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems, 14(3): 489-518, doi: 10.1029/2012GC004334

     

    Gibson SA, Thompson RN, Day JA, Humphris SE and Dickin AP. 2005. Melt-generation processes associated with the Tristan mantle plume: Constraints on the origin of EM-1. Earth and Planetary Science Letters, 237(3-4): 744-767 doi: 10.1016/j.epsl.2005.06.015

     

    Hanan BB and Graham DW. 1996. Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes. Science, 272(5264): 991-995 doi: 10.1126/science.272.5264.991

     

    Hanyu T, Shimizu K, Ushikubo T, Kimura JI, Chang Q, Hamada M, Ito M, Iwamori H and Ishikawa T. 2019. Tiny droplets of ocean island basalts unveil Earth's deep chlorine cycle. Nature Communications, 10: 60 doi: 10.1038/s41467-018-07955-8

     

    Hanyu T and Chen LH. 2021. Geochemical diversity in the mantle. In: Marquardt H, Ballmer M, Cottaar S and Konter J (eds. ). Mantle Convection and Surface Expressions. Washington, DC: American Geophysical Union, 121-150, doi: 10.1002/9781119528609.ch5

     

    Hart SR, Hauri EH, Oschmann LA and Whitehead JA. 1992. Mantle plumes and entrainment: Isotopic evidence. Science, 256(5056): 517-520 doi: 10.1126/science.256.5056.517

     

    He Y, Chen LH, Shi JH, Zeng G, Wang XJ, Xue XQ, Zhong Y, Erdmann S and Xie LW. 2019. Light Mg isotopic composition in the mantle beyond the Big Mantle Wedge beneath eastern Asia. Journal of Geophysical Research: Solid Earth, 124(8): 8043-8056, doi: 10.1029/2018JB016857

     

    Herzberg C, Cabral RA, Jackson MG, Vidito C, Day JMD and Hauri EH. 2014. Phantom Archean crust in Mangaia hotspot lavas and the meaning of heterogeneous mantle. Earth and Planetary Science Letters, 396: 97-106 doi: 10.1016/j.epsl.2014.03.065

     

    Hofmann AW and White WM. 1982. Mantle plumes from ancient oceanic crust. Earth and Planetary Science Letters, 57(2): 421-436 doi: 10.1016/0012-821X(82)90161-3

     

    Hofmann AW. 1997. Mantle geochemistry: The message from oceanic volcanism. Nature, 385(6613): 219-229 doi: 10.1038/385219a0

     

    Hofmann AW, Class C and Goldstein SL. 2022. Size and composition of the MORB+OIB mantle reservoir. Geochemistry, Geophysics, Geosystems, 23(8): e2022GC010339

     

    Homrighausen S, Hoernle K, Zhou H, Geldmacher J, Wartho JA, Hauff F, Werner R, Jung S and Morgan JP. 2020. Paired EMI-HIMU hotspots in the South Atlantic: Starting plume heads trigger compositionally distinct secondary plumes? Science Advances, 6(28): eaba0282 doi: 10.1126/sciadv.aba0282

     

    Huang SC, Hall PS and Jackson MG. 2011. Geochemical zoning of volcanic chains associated with Pacific hotspots. Nature Geoscience, 4(12): 874-878 doi: 10.1038/ngeo1263

     

    Huang SC and Zheng YF. 2017. Mantle geochemistry: Insights from ocean island basalts. Science China (Earth Sciences), 60(11): 1976-2000 doi: 10.1007/s11430-017-9090-4

     

    Jackson MG, Hart SR, Koppers AA, Staudigel H, Konter J, Blusztajn J, Kurz M and Russell JA. 2007. The return of subducted continental crust in Samoan lavas. Nature, 448(7154): 684-687 doi: 10.1038/nature06048

     

    Jackson MG and Shirey SB. 2011. Re-Os isotope systematics in Samoan shield lavas and the use of Os-isotopes in olivine phenocrysts to determine primary magmatic compositions. Earth and Planetary Science Letters, 312(1-2): 91-101 doi: 10.1016/j.epsl.2011.09.046

     

    Jackson MG, Becker TW and Konter JG. 2018a. Geochemistry and distribution of recycled domains in the mantle inferred from Nd and Pb isotopes in oceanic hot spots: Implications for storage in the large low shear wave velocity provinces. Geochemistry, Geophysics, Geosystems, 19(9): 3496-3519 doi: 10.1029/2018GC007552

     

    Jackson MG, Becker TW and Konter JG. 2018b. Evidence for a deep mantle source for EM and HIMU domains from integrated geochemical and geophysical constraints. Earth and Planetary Science Letters, 484: 154-167 doi: 10.1016/j.epsl.2017.11.052

     

    Janney PE, Le Roex AP, Carlson RW and Viljoen KS. 2002. A chemical and multi-isotope study of the western Cape Olivine Melilitite Province, South Africa: Implications for the sources of kimberlites and the origin of the HIMU signature in Africa. Journal of Petrology, 43(12): 2339-2370 doi: 10.1093/petrology/43.12.2339

     

    Kendrick MA, Jackson MG, Kent AJR, Hauri EH, Wallace PJ and Woodhead J. 2014. Contrasting behaviours of CO2, S, H2O and halogens (F, Cl, Br, and I) in enriched-mantle melts from Pitcairn and Society seamounts. Chemical Geology, 370: 69-81 doi: 10.1016/j.chemgeo.2014.01.019

     

    Kendrick MA, Hémond C, Kamenetsky VS, Danyushevsky L, Devey CW, Rodemann T, Jackson MG and Perfit MR. 2017. Seawater cycled throughout Earth's mantle in partially serpentinized lithosphere. Nature Geoscience, 10(3): 222-228 doi: 10.1038/ngeo2902

     

    Krienitz MS, Garbe-Schönberg CD, Romer RL, Meixner A, Haase KM and Stroncik NA. 2012. Lithium isotope variations in ocean island basalts-implications for the development of mantle heterogeneity. Journal of Petrology, 53(11): 2333-2347 doi: 10.1093/petrology/egs052

     

    Kuritani T, Ohtani E and Kimura JI. 2011. Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation. Nature Geoscience, 4(10): 713-716 doi: 10.1038/ngeo1250

     

    Kuritani T, Kimura JI, Ohtani E, Miyamoto H and Furuyama K. 2013. Transition zone origin of potassic basalts from Wudalianchi volcano, Northeast China. Lithos, 156-159: 1-12 doi: 10.1016/j.lithos.2012.10.010

     

    Li SG, Yang W, Ke S, Meng XN, Tian HC, Xu LJ, He YS, Huang J, Wang XC, Xia QK, Sun WD, Yang XY, Ren ZY, Wei HQ, Liu YS, Meng FC and Yan J. 2017. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China. National Science Review, 4(1): 111-120 doi: 10.1093/nsr/nww070

     

    Lin WH, Chen LH, Liu JQ, Wang XJ, Zhong Y and Zeng G. 2017. Discovery of Cenozoic high-magnesium andesites in the Greater Khingan Range, Northeast China. Geological Journal of China Universities, 23(1): 16-25 (in Chinese with English abstract)

     

    Liu JQ, Chen LH, Zeng G, Wang XJ, Zhong Y and Yu X. 2016. Lithospheric thickness controlled compositional variations in potassic basalts of Northeast China by melt-rock interactions. Geophysical Research Letters, 43(6): 2582-2589 doi: 10.1002/2016GL068332

     

    Liu JQ, Chen LH, Wang XJ, Zhong Y, Yu X, Zeng G and Erdmann S. 2017. The role of melt-rock interaction in the formation of Quaternary high-MgO potassic basalt from the Greater Khingan Range, Northeast China. Journal of Geophysical Research: Solid Earth, 122(1): 262-280, doi: 10.1002/2016JB013605

     

    Liu JQ, Chen LH, Zhong Y, Lin WH and Wang XJ. 2017. Petrological, K-Ar chronological and volcanic geological characteristics of Quaternary Xunke high-Mg# andesites from the Lesser Khingan Range. Acta Petrologica Sinica, 33(1): 31-40 (in Chinese with English abstract)

     

    Liu JQ, Erdmann S, Chen LH, Zhang HL, Wu B, Zeng G, Wang XJ, Lei ZL and Yu X. 2021. Petrological evidence for magma recharge and mixing beneath the Ma'anshan monogenetic volcano of Xiaogulihe in Northeast China. Lithos, 382-383: 105928 doi: 10.1016/j.lithos.2020.105928

     

    Nebel O, Arculus RJ, van Westrenen W, Woodhead JD, Jenner FE, Nebel-Jacobsen YJ, Wille M and Eggins SM. 2013. Coupled Hf-Nd-Pb isotope co-variations of HIMU oceanic island basalts from Mangaia, Cook-Austral islands, suggest an Archean source component in the mantle transition zone. Geochimica et Cosmochimica Acta, 112: 87-101 doi: 10.1016/j.gca.2013.03.005

     

    Nebel O, Sossi PA, Bénard A, Arculus RJ, Yaxley GM, Woodhead JD, Rhodri Davies D and Ruttor S. 2019. Reconciling petrological and isotopic mixing mechanisms in the Pitcairn mantle plume using stable Fe isotopes. Earth and Planetary Science Letters, 521: 60-67 doi: 10.1016/j.epsl.2019.05.037

     

    Niu YL, Wilson M, Humphreys ER and O'Hara MJ. 2011. The origin of intra-plate ocean island basalts (OIB): The lid effect and its geodynamic implications. Journal of Petrology, 52(7-8): 1443-1468 doi: 10.1093/petrology/egr030

     

    Ren ZY, Ingle S, Takahashi E, Hirano N and Hirata T. 2005. The chemical structure of the Hawaiian mantle plume. Nature, 436(7052): 837-840 doi: 10.1038/nature03907

     

    Rose-Koga EF, Bouvier AS, Gaetani GA, Wallace PJ, Allison CM, Andrys JA, Angeles De la torre CA, Barth A, Bodnar RJ, Bracco Gartner AJJ, Butters D, Castillejo A, Chilson-Parks B, Choudhary BR, Cluzel N, Cole M, Cottrell E, Daly A, Danyushevsky LV, Devitre CL, Drignon MJ, France L, Gaborieau M, Garcia MO, Gatti E, Genske FS, Hartley ME, Hughes EC, Iveson AA, Johnson ER, Jones M, Kagoshima T, Katzir Y, Kawaguchi M, Kawamoto T, Kelley KA, Koornneef JM, Kurz MD, Laubier M, Layne GD, Lerner A, Lin KY, Liu PP, Lorenzo-Merino A, Luciani N, Magalhães N, Marschall HR, Michael PJ, Monteleone BD, Moore LR, Moussallam Y, Muth M, Myers ML, Narváez DF, Navon O, Newcombe ME, Nichols ARL, Nielsen RL, Pamukcu A, Plank T, Rasmussen DJ, Roberge J, Schiavi F, Schwartz D, Shimizu K, Shimizu K, Shimizu N, Thomas JB, Thompson GT, Tucker JM, Ustunisik G, Waelkens C, Zhang Y and Zhou T. 2021. Silicate melt inclusions in the new millennium: A review of recommended practices for preparation, analysis, and data presentation. Chemical Geology, 570: 120145, doi: 10.1016/j.chemgeo.2021.120145

     

    Saal AE, Hart SR, Shimizu N, Hauri EH, Layne GD and Eiler JM. 2005. Pb isotopic variability in melt inclusions from the EMI-EMII-HIMU mantle end-members and the role of the oceanic lithosphere. Earth and Planetary Science Letters, 240(3-4): 605-620 doi: 10.1016/j.epsl.2005.10.002

     

    Shi JH, Zeng G, Chen LH, Hanyu T, Wang XJ, Zhong Y, Xie LW and Xie WL. 2022. An eclogitic component in the Pitcairn mantle plume: Evidence from olivine compositions and Fe isotopes of basalts. Geochimica et Cosmochimica Acta, 318: 415-427 doi: 10.1016/j.gca.2021.12.017

     

    Sobolev AV, Hofmann AW, Sobolev SV and Nikogosian IK. 2005. An olivine-free mantle source of Hawaiian shield basalts. Nature, 434(7033): 590-597 doi: 10.1038/nature03411

     

    Sobolev AV, Hofmann AW, Kuzmin DV, Yaxley GM, Arndt NT, Chung SL, Danyushevsky LV, Elliott T, Frey FA, Garcia MO, Gurenko AA, Kamenetsky VS, Kerr AC, Krivolutskaya NA, Matvienkov VV, Nikogosian IK, Rocholl A, Sigurdsson IA, Sushchevskaya NM and Teklay M. 2007. The amount of recycled crust in sources of mantle-derived melts. Science, 316(5823): 412-417 doi: 10.1126/science.1138113

     

    Sun Y, Ying JF, Zhou XH, Shao JA, Chu ZY and Su BX. 2014. Geochemistry of ultrapotassic volcanic rocks in Xiaogulihe NE China: Implications for the role of ancient subducted sediments. Lithos, 208-209: 53-66 doi: 10.1016/j.lithos.2014.08.026

     

    Sun Y, Ying JF, Su BX, Zhou XH and Shao JA. 2015. Contribution of crustal materials to the mantle sources of Xiaogulihe ultrapotassic volcanic rocks, Northeast China: New constraints from mineral chemistry and oxygen isotopes of olivine. Chemical Geology, 405: 10-18 doi: 10.1016/j.chemgeo.2015.04.005

     

    Sun Y, Teng FZ, Ying JF, Su BX, Hu Y, Fan QC and Zhou XH. 2017. Magnesium isotopic evidence for ancient subducted oceanic crust in LOMU-like potassium-rich volcanic rocks. Journal of Geophysical Research: Solid Earth, 122(10): 7562-7572 doi: 10.1002/2017JB014560

     

    Tang YC, Obayashi M, Niu FL, Grand SP, Chen YJ, Kawakatsu H, Tanaka S, Ning JY and Ni JF. 2014. Changbaishan volcanism in Northeast China linked to subduction-induced mantle upwelling. Nature Geoscience, 7(6): 470-475 doi: 10.1038/ngeo2166

     

    Teng FZ. 2017. Magnesium isotope geochemistry. Reviews in Mineralogy and Geochemistry, 82(1): 219-287 doi: 10.2138/rmg.2017.82.7

     

    Tian HC, Yang W, Li SG, Ke S and Chu ZY. 2016. Origin of low δ26Mg basalts with EM-I component: Evidence for interaction between enriched lithosphere and carbonated asthenosphere. Geochimica et Cosmochimica Acta, 188: 93-105 doi: 10.1016/j.gca.2016.05.021

     

    Wang XJ, Chen LH, Hofmann AW, Mao FG, Liu JQ, Zhong Y, Xie LW and Yang YH. 2017. Mantle transition zone-derived EM1 component beneath NE China: Geochemical evidence from Cenozoic potassic basalts. Earth and Planetary Science Letters, 465: 16-28 doi: 10.1016/j.epsl.2017.02.028

     

    Wang XJ, Chen LH, Hofmann AW, Hanyu T, Kawabata H, Zhong Y, Xie LW, Shi JH, Miyazaki T, Hirahara Y, Takahashi T, Senda R, Chang Q, Vaglarov BS and Kimura JI. 2018. Recycled ancient ghost carbonate in the Pitcairn mantle plume. Proceedings of the National Academy of Sciences of the United States of America, 115(35): 8682-8687 doi: 10.1073/pnas.1719570115

     

    Wang XJ, Chen LH and Liu JQ. 2019. The genetic relationship and difference between typical EM1-type oceanic and continental intraplate basalts. Bulletin of Mineralogy, Petrology and Geochemistry, 38(2): 237-247 (in Chinese with English abstract)

     

    Wang XJ, Chen LH, Hanyu T, Shi JH, Zhong Y, Kawabata H, Miyazaki T, Hirahara Y, Takahashi T, Senda R, Chang Q, Vaglarov BS and Kimura JI. 2021. Linking chemical heterogeneity to lithological heterogeneity of the Samoan mantle plume with Fe-Sr-Nd-Pb isotopes. Journal of Geophysical Research: Solid Earth, 126: e2021JB022887, doi. 10.1029/2021JB022887 doi: 10.1029/2021JB022887

     

    Weaver BL, Wood DA, Tarney J and Joron JL. 1986. Role of subducted sediment in the genesis of ocean-island basalts: Geochemical evidence from South Atlantic Ocean islands. Geology, 14(4): 275-278 doi: 10.1130/0091-7613(1986)14<275:ROSSIT>2.0.CO;2

     

    Weis D, Garcia MO, Rhodes JM, Jellinek M and Scoates JS. 2011. Role of the deep mantle in generating the compositional asymmetry of the Hawaiian mantle plume. Nature Geoscience, 4(12): 831-838 doi: 10.1038/ngeo1328

     

    Weiss Y, Class C, Goldstein SL and Hanyu T. 2016. Key new pieces of the HIMU puzzle from olivines and diamond inclusions. Nature, 537(7622): 666-670 doi: 10.1038/nature19113

     

    White WM. 2015. Probing the Earth's deep interior through geochemistry. Geochemical Perspectives, 4(2): 95-251

     

    Willbold M and Stracke A. 2010. Formation of enriched mantle components by recycling of upper and lower continental crust. Chemical Geology, 276(3-4): 188-197 doi: 10.1016/j.chemgeo.2010.06.005

     

    Xu WL, Chen JH, Weng AH, Tang J, Wang F, Wang CG, Guo P, Wang YN, Yang H and Sorokin AA. 2021. Stagnant slab front within the mantle transition zone controls the formation of Cenozoic intracontinental high-Mg andesites in Northeast Asia. Geology, 49(1): 19-24 doi: 10.1130/G47917.1

     

    Xu YG, Li HY, Hong LB, Ma L, Ma Q and Sun MD. 2018. Generation of Cenozoic intraplate basalts in the big mantle wedge under eastern Asia. Science China (Earth Sciences), 61(7): 869-886 doi: 10.1007/s11430-017-9192-y

     

    Xue XQ, Chen LH, Liu JQ, He Y, Wang XJ, Zeng G and Zhong Y. 2019. Primordial peridotitic mantle component in asthenosphere beneath Northeast China: Geochemical evidence from Cenozoic basalts of Greater Khingan Range. Earth Science, 44(4): 1143-1158 (in Chinese with English abstract)

     

    Zhang M, Suddaby P, Thompson RN, Thirlwall MF and Menzies MA. 1995. Potassic volcanic rocks in NE China: Geochemical constraints on mantle source and magma genesis. Journal of Petrology, 36(5): 1275-1303 doi: 10.1093/petrology/36.5.1275

     

    Zhang XY, Chen LH, Wang XJ, Hanyu T, Hofmann AW, Komiya T, Nakamura K, Kato Y, Zeng G, Gou WX and Li WQ. 2022. Zinc isotopic evidence for recycled carbonate in the deep mantle. Nature Communications, 13: 6085 doi: 10.1038/s41467-022-33789-6

     

    Zindler A and Hart S. 1986. Chemical geodynamics. Annual Review of Earth Planetary Sciences, 14: 493-571 doi: 10.1146/annurev.ea.14.050186.002425

     

    Zou HB, Reid MR, Liu YS, Yao YP, Xu XS and Fan QC. 2003. Constraints on the origin of historic potassic basalts from Northeast China by U-Th disequilibrium data. Chemical Geology, 200(1-2): 189-201 doi: 10.1016/S0009-2541(03)00188-8

     

    林蔚涵, 陈立辉, 刘建强, 王小均, 钟源, 曾罡. 2017. 大兴安岭新生代高镁安山岩的确认. 高校地质学报, 23(1): 16-25 https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201701002.htm

     

    刘建强, 陈立辉, 钟源, 林蔚涵, 王小均. 2017. 小兴安岭逊克地区第四纪高镁安山岩的岩石学、K-Ar年代学及火山地质特征. 岩石学报, 33(1): 31-40 https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201701003.htm

     

    王小均, 陈立辉, 刘建强. 2019. 大洋与大陆板内典型EM1型玄武岩的成因联系和区别. 矿物岩石地球化学通报, 38(2): 237-247 https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201902006.htm

     

    徐义刚, 李洪颜, 洪路兵, 马亮, 马强, 孙明道. 2018. 东亚大地幔楔与中国东部新生代板内玄武岩成因. 中国科学(地球科学), 48(7): 825-843 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201807003.htm

     

    薛笑秋, 陈立辉, 刘建强, 何叶, 王小均, 曾罡, 钟源. 2019. 中国东北软流圈地幔中的原始橄榄岩质地幔: 来自大兴安岭地区新生代玄武岩的地球化学证据. 地球科学, 44(4): 1143-1158 https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201904007.htm

  • 加载中

(5)

计量
  • 文章访问数:  1273
  • PDF下载数:  290
  • 施引文献:  0
出版历程
收稿日期:  2022-08-28
修回日期:  2022-10-28
刊出日期:  2022-12-01

目录