碳酸盐化榴辉岩对板内碱性玄武岩源区的贡献

徐荣, 刘勇胜, 张艳飞, 邹宗琪, 张军波. 2022. 碳酸盐化榴辉岩对板内碱性玄武岩源区的贡献. 岩石学报, 38(12): 3771-3784. doi: 10.18654/1000-0569/2022.12.15
引用本文: 徐荣, 刘勇胜, 张艳飞, 邹宗琪, 张军波. 2022. 碳酸盐化榴辉岩对板内碱性玄武岩源区的贡献. 岩石学报, 38(12): 3771-3784. doi: 10.18654/1000-0569/2022.12.15
XU Rong, LIU YongSheng, ZHANG YanFei, ZOU ZongQi, ZHANG JunBo. 2022. Carbonated eclogite in the mantle source of intraplate alkaline basalts. Acta Petrologica Sinica, 38(12): 3771-3784. doi: 10.18654/1000-0569/2022.12.15
Citation: XU Rong, LIU YongSheng, ZHANG YanFei, ZOU ZongQi, ZHANG JunBo. 2022. Carbonated eclogite in the mantle source of intraplate alkaline basalts. Acta Petrologica Sinica, 38(12): 3771-3784. doi: 10.18654/1000-0569/2022.12.15

碳酸盐化榴辉岩对板内碱性玄武岩源区的贡献

  • 基金项目:

    本文受国家重点研发计划项目(2019YFA0708400)和国家自然科学基金项目(41903035)联合资助

详细信息
    作者简介:

    徐荣, 男, 1987年生, 副研究员, 从事岩石地球化学研究, E-mail: xurong@mail.gyig.ac.cn

    通讯作者: 刘勇胜, 男, 1971年生, 教授, 从事岩石地球化学和分析地球化学研究, E-mail: yshliu@cug.edu.cn
  • 中图分类号: P581;P589.1;P595

Carbonated eclogite in the mantle source of intraplate alkaline basalts

More Information
  • 碳在地球表层和内部圈层之间的循环控制了地球的环境气候变化。海底热液蚀变以及变质作用会使得碳酸盐沉淀到玄武质洋壳中,之后它们在俯冲带经历高压榴辉岩相变质作用会形成碳酸盐化的榴辉岩。俯冲过程可以将这些碳酸盐化的玄武质洋壳榴辉岩带入深部地幔,从而导致地幔在地球化学和岩石学上存在显著的不均一性,并深刻影响着包括部分熔融在内的地幔深部动力学过程。早期对碳酸盐化榴辉岩的实验研究多集中在俯冲带地温梯度下碳酸盐化洋壳榴辉岩的命运,近年来的实验开始研究地幔温压条件下碳酸盐化榴辉岩部分熔融对板内碱性玄武质岩浆源区的潜在影响。本文简要梳理了碳酸盐化榴辉岩在上地幔温压条件下的部分熔融实验,并结合一些天然样品的研究实例,说明碳酸盐化榴辉岩熔体不仅可以作为潜在的地幔交代介质,还可能是板内碱性玄武岩源区的重要组分,它们与橄榄岩发生反应或者与橄榄岩熔体发生混合可以解释板内碱性玄武岩的成分变化。

  • 加载中
  • 图 1 

    中国东部新生代低硅碱性玄武岩原始岩浆成分与模拟的碳酸盐化MORB榴辉岩熔体-橄榄岩反应后熔体成分(Mallik and Dasgupta, 2014)的对比(据Xu et al., 2020b修改)

    Figure 1. 

    Primary magma compositions of alkali basalts from eastern China compared with modeled isopleths (Mallik and Dasgupta, 2014) of melt compositions from MORB-eclogite melt-peridotite reaction (modified after Xu et al., 2020b)

    图 2 

    简单的相图模型(据Xu et al., 2020b修改)

    Figure 2. 

    P-T plot showing the solidus of volatile-free peridotite, carbonated peridotite, volatile-free eclogite (G2, GA2, NAM-7 and Res2), carbonated eclogite (SLEC1, GA1 and a model composition) and silica-deficient pyroxenite MIX1G (modified after Xu et al., 2020b)

    图 3 

    汉诺坝新生代碱性玄武岩和拉斑玄武岩的主量元素成分以及与不同实验熔体成分的对比(据Zou et al., 2022修改)

    Figure 3. 

    Major element composition of Hannuoba Cenozoic alkaline basalts and tholeiitic basalts, also shown for comparison are experimental silicate melts and carbonated silicate melts (modified after Zou et al., 2022)

    图 4 

    汉诺坝玄武岩元素比值相关图解(据Zou et al., 2022修改)

    Figure 4. 

    Element ratio diagrams for Hannuoba basalts (modified after Zou et al., 2022)

    图 5 

    浙江新生代高Mg玄武岩的Zn-Sr-Nd同位素组成(据Xu et al., 2022修改)

    Figure 5. 

    Zn-Sr-Nd isotopic composition for the Zhejiang high-Mg basalts (modified after Xu et al., 2022)

    图 6 

    CaTs-An-Q-En-Fo投影图展示了浙江新生代玄武岩成分、实验熔体成分以及模拟的不同比例和不同CO2含量的碳酸盐化榴辉岩熔体-橄榄岩反应后熔体成分(据Xu et al., 2022修改)

    Figure 6. 

    The studied Zhejiang basalts compared to experimentally derived partial melt compositions on the Ca-Tschermak-Anorthite-Quartz-Enstatite-Forsterite (CaTs-An-Q-En-Fo) plane from Diopside (Di) (modified after Xu et al., 2022)

    表 1 

    碳酸盐化榴辉岩高温高压实验中初始物质成分(wt%)

    Table 1. 

    Composition of experimental starting materials for partial melting of carbonated eclogite (wt%)

    初始物质 ATCM1 SLEC1 G2C GA1cc Volga-cc ABC BAC
    SiO2 50.35 41.21 44.38 45.32 42.22 44.22 56.46
    TiO2 1.33 2.16 1.75 1.34 1.43 2.87 5.66
    Al2O3 13.66 10.89 13.98 14.88 15.91 13.45 15.61
    Cr2O3 0.05 0.01
    FeO* 11.35 12.83 10.11 8.85 9.46 15.28 8.17
    MnO 0.21 0.12 0.25 0.15 0.14 0.33 0.09
    MgO 7.15 12.87 8.54 7.15 7.64 6.87 2.51
    CaO 10.8 13.09 12.69 14.24 14.85 12.38 7.5
    Na2O 2.48 1.63 3.29 3.14 3.36 4.21 3.76
    K2O 0.06 0.11 0.03 0.4 0.42 0.33 0.21
    P2O5 0.1 0.14 0.15
    CO2 2.52 5 5 4.4 4.4 11.7 2.6
    Mg# 0.53 0.64 0.6 0.59 0.59 44.5 35.42
    Sum 100 99.91 100.02 100.01 99.98 100 100
    注:*所有Fe都表示为FeO. Mg#=Mg/(Mg+Fe). 初始物质ATCM1、SLEC1、G2C、GA1cc、Volga-c分别代表不同成分和CO2含量的碳酸盐化榴辉岩. ABC和BAC分别代表碱性玄武质初始熔体和玄武安山质初始熔体
    下载: 导出CSV
  •  

    Alt JC and Teagle DAH. 1999. The uptake of carbon during alteration of ocean crust. Geochimica et Cosmochimica Acta, 63(10): 1527-1535 doi: 10.1016/S0016-7037(99)00123-4

     

    Beunon H, Mattielli N, Doucet LS, Moine B and Debret B. 2020. Mantle heterogeneity through Zn systematics in oceanic basalts: Evidence for a deep carbon cycling. Earth-Science Reviews, 205: 103174 doi: 10.1016/j.earscirev.2020.103174

     

    Cai RH, Xu S, Ionov DA, Huang J, Liu SA, Li SG and Liu JG. 2022. Carbonated big mantle wedge extending to the NE edge of the stagnant Pacific slab: Constraints from Late Mesozoic-Cenozoic basalts from far eastern Russia. Journal of Earth Science, 33(1): 121-132 doi: 10.1007/s12583-021-1516-x

     

    Cheng ZG, Zhang ZC, Xie QH, Hou T and Ke S. 2018. Subducted slab-plume interaction traced by magnesium isotopes in the northern margin of the Tarim Large Igneous Province. Earth and Planetary Science Letters, 489: 100-110 doi: 10.1016/j.epsl.2018.02.039

     

    Dasgupta R, Hirschmann MM and Withers AC. 2004. Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth and Planetary Science Letters, 227(1-2): 73-85 doi: 10.1016/j.epsl.2004.08.004

     

    Dasgupta R, Hirschmann MM and Dellas N. 2005. The effect of bulk composition on the solidus of carbonated eclogite from partial melting experiments at 3GPa. Contributions to Mineralogy and Petrology, 149(3): 288-305 doi: 10.1007/s00410-004-0649-0

     

    Dasgupta R, Hirschmann MM and Stalker K. 2006. Immiscible transition from carbonate-rich to silicate-rich melts in the 3GPa melting interval of eclogite+CO2 and genesis of silica-undersaturated ocean island lavas. Journal of Petrology, 47(4): 647-671 doi: 10.1093/petrology/egi088

     

    Dasgupta R and Hirschmann MM. 2010. The deep carbon cycle and melting in Earth's interior. Earth and Planetary Science Letters, 298(1-2): 1-13 doi: 10.1016/j.epsl.2010.06.039

     

    Dasgupta R, Jackson MG and Lee CTA. 2010. Major element chemistry of ocean island basalts: Conditions of mantle melting and heterogeneity of mantle source. Earth and Planetary Science Letters, 289(3-4): 377-392 doi: 10.1016/j.epsl.2009.11.027

     

    Gerbode C and Dasgupta R. 2010. Carbonate-fluxed melting of MORB-like pyroxenite at 2.9GPa and genesis of HIMU ocean island basalts. Journal of Petrology, 51(10): 2067-2088

     

    Goes S, Agrusta R, van Hunen J and Garel F. 2017. Subduction-transition zone interaction: A review. Geosphere, 13(3): 644-664 doi: 10.1130/GES01476.1

     

    Grassi D and Schmidt MW. 2011a. Melting of carbonated pelites at 8~13GPa: Generating K-rich carbonatites for mantle metasomatism. Contributions to Mineralogy and Petrology, 162(1): 169-191 doi: 10.1007/s00410-010-0589-9

     

    Grassi D and Schmidt MW. 2011b. The melting of carbonated pelites from 70 to 700km depth. Journal of Petrology, 52(4): 765-789 doi: 10.1093/petrology/egr002

     

    Grassi D, Schmidt MW and Günther D. 2012. Element partitioning during carbonated pelite melting at 8, 13 and 22GPa and the sediment signature in the EM mantle components. Earth and Planetary Science Letters, 327-328: 84-96 doi: 10.1016/j.epsl.2012.01.023

     

    Hammouda T. 2003. High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle. Earth and Planetary Science Letters, 214(1-2): 357-368 doi: 10.1016/S0012-821X(03)00361-3

     

    Hammouda T and Keshav S. 2015. Melting in the mantle in the presence of carbon: Review of experiments and discussion on the origin of carbonatites. Chemical Geology, 418: 171-188 doi: 10.1016/j.chemgeo.2015.05.018

     

    He Y, Chen LH, Shi JH, Zeng G, Wang XJ, Xue XQ, Zhong Y, Erdmann S and Xie LW. 2019. Light Mg isotopic composition in the mantle beyond the big mantle wedge beneath eastern Asia. Journal of Geophysical Research: Solid Earth, 124(8): 8043-8056 doi: 10.1029/2018JB016857

     

    He Y, Chen LH, Zeng G and Wang XJ. 2020. Genesis and characteristics of mantle sources of Cenozoic Jiande basalts from Zhejiang Province. Geological Journal of China Universities, 26(3): 241-254 (in Chinese with English Abstract)

     

    Herzberg C. 2011. Identification of source lithology in the Hawaiian and Canary Islands: Implications for origins. Journal of Petrology, 52(1): 113-146 doi: 10.1093/petrology/egq075

     

    Hoernle K, White JDL, van den Bogaard P, Hauff F, Coombs DS, Werner R, Timm C, Garbe-Schönberg D, Reay A and Cooper AF. 2006. Cenozoic intraplate volcanism on New Zealand: Upwelling induced by lithospheric removal. Earth and Planetary Science Letters, 248(1-2): 350-367 doi: 10.1016/j.epsl.2006.06.001

     

    Hofmann AW. 1997. Mantle geochemistry: The message from oceanic volcanism. Nature, 385(6613): 219-229 doi: 10.1038/385219a0

     

    Howarth GH and Harris C. 2017. Discriminating between pyroxenite and peridotite sources for continental flood basalts (CFB) in southern Africa using olivine chemistry. Earth and Planetary Science Letters, 475: 143-151 doi: 10.1016/j.epsl.2017.07.043

     

    Huang J, Li SG, Xiao YL, Ke S, Li WY and Tian Y. 2015. Origin of low δ26Mg Cenozoic basalts from South China Block and their geodynamic implications. Geochimica et Cosmochimica Acta, 164: 298-317 doi: 10.1016/j.gca.2015.04.054

     

    Huang JL and Zhao DP. 2006. High-resolution mantle tomography of China and surrounding regions. Journal of Geophysical Research: Solid Earth, 111(B9): B09305

     

    Jackson MG and Dasgupta R. 2008. Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts. Earth and Planetary Science Letters, 276(1-2): 175-186 doi: 10.1016/j.epsl.2008.09.023

     

    Jin QZ, Huang J, Liu SC and Huang F. 2020. Magnesium and zinc isotope evidence for recycled sediments and oceanic crust in the mantle sources of continental basalts from eastern China. Lithos, 370-371: 105627 doi: 10.1016/j.lithos.2020.105627

     

    Kiseeva ES, Yaxley GM, Hermann J, Litasov KD, Rosenthal A and Kamenetsky VS. 2012. An experimental study of carbonated eclogite at 3.5~5.5GPa: Implications for silicate and carbonate metasomatism in the cratonic mantle. Journal of Petrology, 53(4): 727-759 doi: 10.1093/petrology/egr078

     

    Kiseeva ES, Litasov KD, Yaxley GM, Ohtani E and Kamenetsky VS. 2013. Melting and phase relations of carbonated eclogite at 9~21GPa and the petrogenesis of alkali-rich melts in the deep mantle. Journal of Petrology, 54(8): 1555-1583 doi: 10.1093/petrology/egt023

     

    Lambart S, Laporte D, Provost A and Schiano P. 2012. Fate of pyroxenite-derived melts in the peridotitic mantle: Thermodynamic and experimental constraints. Journal of Petrology, 53(3): 451-476 doi: 10.1093/petrology/egr068

     

    Lambart S, Laporte D and Schiano P. 2013. Markers of the pyroxenite contribution in the major-element compositions of oceanic basalts: Review of the experimental constraints. Lithos, 160-161: 14-36 doi: 10.1016/j.lithos.2012.11.018

     

    Lei ZL, Zeng G, Liu JQ, Wang XJ, Chen LH, Zhang XY and Shi JH. 2021. Melt-lithosphere interaction controlled compositional variations in mafic dikes from Fujian Province, southeastern China. Journal of Earth Science, 32(6): 1445-1453 doi: 10.1007/s12583-020-1358-y

     

    Li HY, Xu YG, Ryan JG, Huang XL, Ren ZY, Guo H and Ning ZG. 2016. Olivine and melt inclusion chemical constraints on the source of intracontinental basalts from the eastern North China Craton: Discrimination of contributions from the subducted Pacific slab. Geochimica et Cosmochimica Acta, 178: 1-19 doi: 10.1016/j.gca.2015.12.032

     

    Li SG, Yang W, Ke S, Meng X, Tian HC, Xu LJ, He YS, Huang J, Wang XC, Xia QK, Sun WD, Yang XY, Ren ZY, Wei HQ, Liu YS, Meng FC and Yan J. 2017. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China. National Science Review, 4(1): 111-120 doi: 10.1093/nsr/nww070

     

    Li SG and Wang Y. 2018. Formation time of the big mantle wedge beneath eastern China and a new lithospheric thinning mechanism of the North China craton: Geodynamic effects of deep recycled carbon. Science China (Earth Sciences), 61(7): 853-868 doi: 10.1007/s11430-017-9217-7

     

    Litasov KD and Shatskiy A. 2018. Carbon-bearing magmas in the Earth's deep interior. In: Kono Y and Sanloup C (eds. ). Magmas Under Pressure. Amsterdam: Elsevier, 43-82

     

    Liu JQ, Chen LH, Zeng G, Wang XJ, Zhong Y and Yu X. 2016a. Lithospheric thickness controlled compositional variations in potassic basalts of Northeast China by melt-rock interactions. Geophysical Research Letters, 43(6): 2582-2589 doi: 10.1002/2016GL068332

     

    Liu JQ, Chen LH, Wang XJ, Zhong Y, Yu X, Zeng G and Erdmann S. 2017. The role of melt-rock interaction in the formation of Quaternary high-MgO potassic basalt from the Greater Khingan Range, Northeast China. Journal of Geophysical Research: Solid Earth, 122(1): 262-280 doi: 10.1002/2016JB013605

     

    Liu SA, Wang ZZ, Li SG, Huang J and Yang W. 2016b. Zinc isotope evidence for a large-scale carbonated mantle beneath eastern China. Earth and Planetary Science Letters, 444: 169-178 doi: 10.1016/j.epsl.2016.03.051

     

    Liu SA, Wang ZZ, Yang C, Li SG and Ke S. 2020. Mg and Zn isotope evidence for two types of mantle metasomatism and deep recycling of magnesium carbonates. Journal of Geophysical Research: Solid Earth, 125(11): e2020JB020684

     

    Liu SC, Xia QK, Choi SH, Deloule E, Li P and Liu J. 2016c. Continuous supply of recycled Pacific oceanic materials in the source of Cenozoic basalts in SE China: The Zhejiang case. Contributions to Mineralogy and Petrology, 171(12): 100 doi: 10.1007/s00410-016-1310-4

     

    Mallik A and Dasgupta R. 2012. Reaction between MORB-eclogite derived melts and fertile peridotite and generation of ocean island basalts. Earth and Planetary Science Letters, 329-330: 97-108 doi: 10.1016/j.epsl.2012.02.007

     

    Mallik A and Dasgupta R. 2013. Reactive infiltration of MORB-eclogite-derived carbonated silicate melt into fertile peridotite at 3GPa and genesis of alkalic magmas. Journal of Petrology, 54(11): 2267-2300 doi: 10.1093/petrology/egt047

     

    Mallik A and Dasgupta R. 2014. Effect of variable CO2 on eclogite-derived andesite and lherzolite reaction at 3GPa: Implications for mantle source characteristics of alkalic ocean island basalts. Geochemistry, Geophysics, Geosystems, 15(4): 1533-1557 doi: 10.1002/2014GC005251

     

    Matzen AK, Baker MB, Beckett JR and Stolper EM. 2013. The temperature and pressure dependence of nickel partitioning between olivine and silicate melt. Journal of Petrology, 54(12): 2521-2545 doi: 10.1093/petrology/egt055

     

    Matzen AK, Wood BJ, Baker MB and Stolper EM. 2017. The roles of pyroxenite and peridotite in the mantle sources of oceanic basalts. Nature Geoscience, 10(7): 530-535 doi: 10.1038/ngeo2968

     

    McGee LE, Millet MA, Beier C, Smith IEM and Lindsay JM. 2015. Mantle heterogeneity controls on small-volume basaltic volcanism: Reply. Geology, 43(11): e371 doi: 10.1130/G37100Y.1

     

    McKenzie NR, Horton BK, Loomis SE, Stockli DF, Planavsky NJ and Lee CTA. 2016. Continental arc volcanism as the principal driver of icehouse-greenhouse variability. Science, 352(6284): 444-447 doi: 10.1126/science.aad5787

     

    O'Hara MJ. 1968. The bearing of phase equilibria studies in synthetic and natural systems on the origin and evolution of basic and ultrabasic rocks. Earth-Science Reviews, 4: 69-133 doi: 10.1016/0012-8252(68)90147-5

     

    Oostingh KF, Jourdan F, Merle R and Chiaradia M. 2016. Spatio-temporal geochemical evolution of the SE Australian Upper Mantle deciphered from the Sr, Nd and Pb isotope compositions of cenozoic intraplate volcanic rocks. Journal of Petrology, 57(8): 1509-1530

     

    Pfänder JA, Jung S, Münker C, Stracke A and Mezger K. 2012. A possible high Nb/Ta reservoir in the continental lithospheric mantle and consequences on the global Nb budget: Evidence from continental basalts from Central Germany. Geochimica et Cosmochimica Acta, 77: 232-251 doi: 10.1016/j.gca.2011.11.017

     

    Pilet S. 2015. Generation of low-silica alkaline lavas: Petrological constraints, models, and thermal implications. Geological Society of America Special Papers, 514: 281-304

     

    Sakuyama T, Tian W, Kimura JI, Fukao Y, Hirahara Y, Takahashi T, Senda R, Chang Q, Miyazaki T, Obayashi M, Kawabata H and Tatsumi Y. 2013. Melting of dehydrated oceanic crust from the stagnant slab and of the hydrated mantle transition zone: Constraints from Cenozoic alkaline basalts in eastern China. Chemical Geology, 359: 32-48 doi: 10.1016/j.chemgeo.2013.09.012

     

    Shen XJ and Zhang LF. 2009. Current research progress in petrology of carbonated eclogites. Earth Science Frontiers, 16(3): 374-384 (in Chinese with English abstract) doi: 10.3321/j.issn:1005-2321.2009.03.032

     

    Shi JH, Zeng G, Chen LH, Hanyu T, Wang XJ, Zhong Y, Xie LW and Xie WL. 2022. An eclogitic component in the Pitcairn mantle plume: Evidence from olivine compositions and Fe isotopes of basalts. Geochimica et Cosmochimica Acta, 318: 415-427 doi: 10.1016/j.gca.2021.12.017

     

    Sobolev AV, Hofmann AW, Sobolev SV and Nikogosian IK. 2005. An olivine-free mantle source of Hawaiian shield basalts. Nature, 434(7033): 590-597 doi: 10.1038/nature03411

     

    Sobolev AV, Hofmann AW, Kuzmin DV, Yaxley GM, Arndt NT, Chung SL, Danyushevsky LV, Elliott T, Frey FA, Garcia MO, Gurenko AA, Kamenetsky VS, Kerr AC, Krivolutskaya NA, Matvienkov VV, Nikogosian IK, Rocholl A, Sigurdsson IA, Sushchevskaya NM and Teklay M. 2007. The amount of recycled crust in sources of mantle-derived melts. Science, 316(5823): 412-417 doi: 10.1126/science.1138113

     

    Staudigel H. 2003. Hydrothermal alteration processes in the oceanic crust. In: Holland HD and Turekian KK (eds. ). Treatise on Geochemistry. Oxford: Pergamon, 511-535

     

    Stracke A. 2012. Earth's heterogeneous mantle: A product of convection-driven interaction between crust and mantle. Chemical Geology, 330-331: 274-299 doi: 10.1016/j.chemgeo.2012.08.007

     

    Sun CG and Dasgupta R. 2019. Slab-mantle interaction, carbon transport, and kimberlite generation in the deep upper mantle. Earth and Planetary Science Letters, 506: 38-52 doi: 10.1016/j.epsl.2018.10.028

     

    Sun Y, Teng FZ, Ying JF, Su BX, Hu Y, Fan QC and Zhou XH. 2017. Magnesium isotopic evidence for ancient subducted oceanic crust in LOMU-like potassium-rich volcanic rocks. Journal of Geophysical Research: Solid Earth, 122(10): 7562-7572 doi: 10.1002/2017JB014560

     

    Thomsen TB and Schmidt MW. 2008. Melting of carbonated pelites at 2.5~5.0GPa, silicate-carbonatite liquid immiscibility, and potassium-carbon metasomatism of the mantle. Earth and Planetary Science Letters, 267(1-2): 17-31

     

    Thomson AR, Walter MJ, Kohn SC and Brooker RA. 2016. Slab melting as a barrier to deep carbon subduction. Nature, 529(7584): 76-79 doi: 10.1038/nature16174

     

    Timm C, Hoernle K, Van Den Bogaard P, Bindeman I and Weaver S. 2009. Geochemical evolution of intraplate volcanism at Banks Peninsula, New Zealand: Interaction between asthenospheric and lithospheric melts. Journal of Petrology, 50(6): 989-1023 doi: 10.1093/petrology/egp029

     

    Timm C, Hoernle K, Werner R, Hauff F, den Bogaard Pv, White J, Mortimer N and Garbe-Schönberg D. 2010. Temporal and geochemical evolution of the Cenozoic intraplate volcanism of Zealandia. Earth-Science Reviews, 98(1-2): 38-64 doi: 10.1016/j.earscirev.2009.10.002

     

    Treiman AH and Essene EJ. 1983. Mantle eclogite and carbonate as sources of sodic carbonatites and alkalic magmas. Nature, 302(5910): 700-703 doi: 10.1038/302700a0

     

    Tsuno K and Dasgupta R. 2012. The effect of carbonates on near-solidus melting of pelite at 3GPa: Relative efficiency of H2O and CO2 subduction. Earth and Planetary Science Letters, 319-320: 185-196 doi: 10.1016/j.epsl.2011.12.007

     

    Tsuno K, Dasgupta R, Danielson L and Righter K. 2012. Flux of carbonate melt from deeply subducted pelitic sediments: Geophysical and geochemical implications for the source of Central American volcanic arc. Geophysical Research Letters, 39(6): L16307

     

    Wang SJ, Teng FZ and Scott JM. 2016. Tracing the origin of continental HIMU-like intraplate volcanism using magnesium isotope systematics. Geochimica et Cosmochimica Acta, 185: 78-87 doi: 10.1016/j.gca.2016.01.007

     

    Wang XJ, Chen LH, Hofmann AW, Mao FG, Liu JQ, Zhong Y, Xie LW and Yang YH. 2017. Mantle transition zone-derived EM1 component beneath NE China: Geochemical evidence from Cenozoic potassic basalts. Earth and Planetary Science Letters, 465: 16-28 doi: 10.1016/j.epsl.2017.02.028

     

    Wang XJ, Chen LH, Hofmann AW, Hanyu T, Kawabata H, Zhong Y, Xie LW, Shi JH, Miyazaki T, Hirahara Y, Takahashi T, Senda R, Chang Q, Vaglarov BS and Kimura JI. 2018a. Recycled ancient ghost carbonate in the Pitcairn mantle plume. Proceedings of the National Academy of Sciences of the United States of America, 115(35): 8682-8687 doi: 10.1073/pnas.1719570115

     

    Wang ZZ, Liu SA, Chen LH, Li SG and Zeng G. 2018b. Compositional transition in natural alkaline lavas through silica-undersaturated melt-lithosphere interaction. Geology, 46(9): 771-774 doi: 10.1130/G45145.1

     

    Wang ZZ and Liu SA. 2021. Evolution of intraplate alkaline to tholeiitic basalts via interaction between carbonated melt and lithospheric mantle. Journal of Petrology, 62(4): 1-25

     

    Wei W, Xu JD, Zhao DP and Shi YL. 2012. East Asia mantle tomography: New insight into plate subduction and intraplate volcanism. Journal of Asian Earth Sciences, 60: 88-103 doi: 10.1016/j.jseaes.2012.08.001

     

    White WM. 2010. Oceanic island basalts and mantle plumes: The geochemical perspective. Annual Review of Earth and Planetary Sciences, 38(1): 133-160 doi: 10.1146/annurev-earth-040809-152450

     

    Xu R and Liu YS. 2016. Al-in-olivine thermometry evidence for the mantle plume origin of the Emeishan large igneous province. Lithos, 266-267: 362-366 doi: 10.1016/j.lithos.2016.10.016

     

    Xu R, Liu YS, Wang XH, Zong KQ, Hu ZC, Chen HH and Zhou L. 2017. Crust recycling induced compositional-temporal-spatial variations of Cenozoic basalts in the Trans-North China Orogen. Lithos, 274-275: 383-396 doi: 10.1016/j.lithos.2016.12.024

     

    Xu R, Liu YS and Lambart S. 2020a. Melting of a hydrous peridotite mantle source under the Emeishan large igneous province. Earth-Science Reviews, 207: 103253 doi: 10.1016/j.earscirev.2020.103253

     

    Xu R, Liu YS, Wang XC, Foley SF, Zhang YF and Yuan HY. 2020b. Generation of continental intraplate alkali basalts and implications for deep carbon cycle. Earth-Science Reviews, 201: 103073 doi: 10.1016/j.earscirev.2019.103073

     

    Xu R, Liu YS, Lambart S, Hoernle K, Zhu YT, Zou ZQ, Zhang JB, Wang ZC, Li M, Moynier F, Zong KQ, Chen HH and Hu ZC. 2022. Decoupled Zn-Sr-Nd isotopic composition of continental intraplate basalts caused by two-stage melting process. Geochimica et Cosmochimica Acta, 326: 234-252 doi: 10.1016/j.gca.2022.03.014

     

    Xu YG, Ma JL, Frey FA, Feigenson MD and Liu JF. 2005. Role of lithosphere-asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton. Chemical Geology, 224(4): 247-271 doi: 10.1016/j.chemgeo.2005.08.004

     

    Xu YG, Li HY, Hong LB, Ma L, Ma Q and Sun MD. 2018. Generation of Cenozoic intraplate basalts in the big mantle wedge under eastern Asia. Science China (Earth Sciences), 61(7): 869-886 doi: 10.1007/s11430-017-9192-y

     

    Yang ZF and Zhou JH. 2013. Can we identify source lithology of basalt? Scientific Reports, 3: 1856 doi: 10.1038/srep01856

     

    Yaxley GM and Green DH. 1994. Experimental demonstration of refractory carbonate-bearing eclogite and siliceous melt in the subduction regime. Earth and Planetary Science Letters, 128(3-4): 313-325 doi: 10.1016/0012-821X(94)90153-8

     

    Yaxley GM and Green DH. 1998. Reactions between eclogite and peridotite: Mantle refertilisation by subduction of oceanic crust. Schweiz. Mineral. Petrogr. Mitt, 78(2): 243-255

     

    Yaxley GM and Brey GP. 2004. Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: Implications for petrogenesis of carbonatites. Contributions to Mineralogy and Petrology, 146(5): 606-619

     

    Yaxley GM, Ghosh S, Kiseeva ES, Mallik A, Spandler C, Thomson AR and Walter MJ. 2019. CO2-rich melts in Earth. In: Orcutt BN, Daniel I and Dasgupta R (eds. ). Deep Carbon. Cambridge: Cambridge University Press, 129-162

     

    Yu SY, Xu YG, Huang KJ, Lan JB, Chen LM and Zhou SH. 2021. Magnesium isotope constraints on contributions of recycled oceanic crust and lithospheric mantle to generation of intraplate basalts in a big mantle wedge. Lithos, 398-399: 106327 doi: 10.1016/j.lithos.2021.106327

     

    Yu X, Chen LH and Zeng G. 2015. Growing magma chambers control the distribution of small-scale flood basalts. Scientific Reports, 5: 16824 doi: 10.1038/srep16824

     

    Zeng G, Chen LH, Xu XS, Jiang SY and Hofmann AW. 2010. Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China. Chemical Geology, 273(1-2): 35-45 doi: 10.1016/j.chemgeo.2010.02.009

     

    Zeng G, He ZY, Li Z, Xu XS and Chen LH. 2016. Geodynamics of paleo-Pacific plate subduction constrained by the source lithologies of Late Mesozoic basalts in southeastern China. Geophysical Research Letters, 43(19): 10189-10197 doi: 10.1002/2016GL070346

     

    Zeng G, Chen LH, Yu X, Liu JQ, Xu XS and Erdmann S. 2017. Magma-magma interaction in the mantle beneath eastern China. Journal of Geophysical Research: Solid Earth, 122(4): 2763-2779 doi: 10.1002/2017JB014023

     

    Zeng G, Zhang HL, Liu JQ, Chen LH, Wu B, Lei ZL, Wang XJ, Shi JH and Liu XW. 2020. Carbonated eclogite in the source of nephelinites: Evidence from olivine phenocrysts and melt inclusions. In: Annual Meeting of Chinese Geoscience Union. Chongqing, 3787 (in Chinese)

     

    Zeng G, Chen LH, Hofmann AW, Wang XJ, Liu JQ, Yu X and Xie LW. 2021. Nephelinites in eastern China originating from the mantle transition zone. Chemical Geology, 576: 120276 doi: 10.1016/j.chemgeo.2021.120276

     

    Zhang GL, Chen LH, Jackson MG and Hofmann AW. 2017. Evolution of carbonated melt to alkali basalt in the South China Sea. Nature Geoscience, 10(3): 229-235 doi: 10.1038/ngeo2877

     

    Zhang GL, Wang S, Zhang J, Zhan MJ and Zhao ZH. 2020. Evidence for the essential role of CO2 in the volcanism of the waning Caroline mantle plume. Geochimica et Cosmochimica Acta, 290: 391-407 doi: 10.1016/j.gca.2020.09.018

     

    Zhang PF, Tang YJ, Hu Y, Zhang HF, Su BX, Xiao Y and Santosh M. 2012. Review of melting experiments on carbonated eclogite and peridotite: Insights into mantle metasomatism. International Geology Review, 54(12): 1443-1455 doi: 10.1080/00206814.2012.663645

     

    Zhao DP. 2004. Global tomographic images of mantle plumes and subducting slabs: Insight into deep Earth dynamics. Physics of the Earth and Planetary Interiors, 146(1-2): 3-34 doi: 10.1016/j.pepi.2003.07.032

     

    Zhi XC, Song Y, Frey FA, Feng JL and Zhai MZ. 1990. Geochemistry of Hannuoba basalts, eastern China: Constraints on the origin of continental alkalic and tholeiitic basalt. Chemical Geology, 88(1-2): 1-33 doi: 10.1016/0009-2541(90)90101-C

     

    Zhou XH, Zhu BQ, Liu RX and Chen WJ. 1988. Cenozoic basaltic rocks in eastern China. In: Macdougall JD (ed. ). Continental Flood Basalts. Dordrecht: Springer, 311-330

     

    Zhu YT, Liu YS, Xu R, Moynier F, Li M and Chen HH. 2021. Deciphering the origin of a basanite-alkali basalt-tholeiite suite using Zn isotopes. Chemical Geology, 585: 120585 doi: 10.1016/j.chemgeo.2021.120585

     

    Zindler A and Hart S. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14(1): 493-571 doi: 10.1146/annurev.ea.14.050186.002425

     

    Zou ZQ, Wang ZC, Foley S, Xu R, Geng XL, Liu YN, Liu YS and Hu ZC. 2022. Origin of low-MgO primitive intraplate alkaline basalts from partial melting of carbonate-bearing eclogite sources. Geochimica et Cosmochimica Acta, 324: 240-261 doi: 10.1016/j.gca.2022.02.022

     

    何叶, 陈立辉, 曾罡, 王小均. 2020. 浙江建德新生代玄武岩源区特征及其成因. 高校地质学报, 26(3): 241-254 doi: 10.16108/j.issn1006-7493.2019043

     

    沈晓洁, 张立飞. 2009. 碳酸盐化榴辉岩的岩石学研究进展. 地学前缘, 16(3): 374-384 doi: 10.3321/j.issn:1005-2321.2009.03.032

     

    曾罡, 张慧丽, 刘建强, 陈立辉, 邬斌, 雷祝梁, 王小均, 施金华, 刘晓文. 2020. 霞石岩源区存在碳酸盐化榴辉岩: 来自橄榄石斑晶和熔体包裹体组成的证据. 见: 中国地球科学联合学术年会. 重庆, 3787

  • 加载中

(6)

(1)

计量
  • 文章访问数:  1256
  • PDF下载数:  183
  • 施引文献:  0
出版历程
收稿日期:  2022-08-14
修回日期:  2022-10-22
刊出日期:  2022-12-01

目录