松花江新生代斜斑玄武岩中斜长石巨斑晶的成因及其对长白山天池造盾期岩浆储运系统的制约

张叶凡, 陈立辉, 王小均, 刘建强, 曾罡, 周中彪. 2024. 松花江新生代斜斑玄武岩中斜长石巨斑晶的成因及其对长白山天池造盾期岩浆储运系统的制约. 岩石学报, 40(7): 2019-2036. doi: 10.18654/1000-0569/2024.07.02
引用本文: 张叶凡, 陈立辉, 王小均, 刘建强, 曾罡, 周中彪. 2024. 松花江新生代斜斑玄武岩中斜长石巨斑晶的成因及其对长白山天池造盾期岩浆储运系统的制约. 岩石学报, 40(7): 2019-2036. doi: 10.18654/1000-0569/2024.07.02
ZHANG YeFan, CHEN LiHui, WANG XiaoJun, LIU JianQiang, ZENG Gang, ZHOU ZhongBiao. 2024. Genesis of giant plagioclase phenocrysts in Cenozoic basalts from Songhuajiang River, Northeast China: Implications for the magma plumbing system of the shield-forming stage beneath Changbaishan-Tianchi Volcano. Acta Petrologica Sinica, 40(7): 2019-2036. doi: 10.18654/1000-0569/2024.07.02
Citation: ZHANG YeFan, CHEN LiHui, WANG XiaoJun, LIU JianQiang, ZENG Gang, ZHOU ZhongBiao. 2024. Genesis of giant plagioclase phenocrysts in Cenozoic basalts from Songhuajiang River, Northeast China: Implications for the magma plumbing system of the shield-forming stage beneath Changbaishan-Tianchi Volcano. Acta Petrologica Sinica, 40(7): 2019-2036. doi: 10.18654/1000-0569/2024.07.02

松花江新生代斜斑玄武岩中斜长石巨斑晶的成因及其对长白山天池造盾期岩浆储运系统的制约

  • 基金项目:

    本文受国家自然科学基金项目(42130310)资助

详细信息
    作者简介:

    张叶凡,女,1999年生,硕士生,地球化学专业,E-mail: 2484319249@qq.com

    通讯作者: 陈立辉,男,1972年生,教授,博士生导师,岩石学、地球化学专业,E-mail: chenlh@nwu.edu.cn
  • 中图分类号: P578.968;P588.11

Genesis of giant plagioclase phenocrysts in Cenozoic basalts from Songhuajiang River, Northeast China: Implications for the magma plumbing system of the shield-forming stage beneath Changbaishan-Tianchi Volcano

More Information
  • 岩浆岩中斜长石的结构和成分可以记录其晶体的生长过程中岩浆演化的丰富信息, 从而可以灵敏反映岩浆储运系统的历史。东北地区新生代玄武岩一般多发育橄榄石和单斜辉石斑晶, 斜长石斑晶少见, 但在长白山天池造盾期(5~1Ma)玄武岩中常见有斜长石斑晶。最近我们在松花江两岸新发现一套上新世含斜长石巨斑晶(粒径为1~2cm)的玄武岩。这些沿松花江分布的斜斑玄武岩具有高Ba/Th比和K/U比的微量元素特征、EM1型的Sr-Nd-Pb同位素组成, 与长白山天池造盾期玄武岩一致。它们在主量元素上具有低镁(MgO=3.86%~4.23%)、高钛(TiO2=3.15%~4.25%)的特征, 说明其与长白山天池造盾期玄武岩中的斜斑玄武岩一样都经历了较高程度的演化。时间、空间以及地球化学特征上的紧密联系说明松花江斜斑玄武岩也是长白山天池造盾期岩浆作用的产物, 即长白山天池造盾期玄武质岩浆当时流入了松花江古河道, 向西北方向流动的距离达到了150km左右。背散射电子图像显示松花江斜斑玄武岩中斜长石巨斑晶多数具有核-边结构, 部分无环带结构, 少数具熔蚀结构。斜长石巨斑晶的化学成分变化大, 其中核-幔部主要为拉长石(An48-65), 边部为钠长石-拉长石(An4-61)。基质斜长石的化学成分也不均一, 核-幔部的组成为中长石-拉长石(An41-53), 边部为钠长石-中长石(An4-46)。多数斜长石巨斑晶的核-幔部具有细密振荡环带, An值仅呈较小幅度振荡变化, 暗示其前期生长过程中物理化学条件较为稳定, 地壳岩浆房持续受到同源岩浆的补给作用, 岩浆房持续的时间较长, 有利于斜长石巨斑晶的形成。在岩浆对流过程中晶体可被运移至温度更高的区域, 形成熔蚀结构。斜长石巨斑晶的边部An值突降以及熔蚀结构的发育, 表明斜长石巨斑晶生长后期所处的物理化学条件发生了突变, 对应于岩浆快速上升的减压过程。因此, 松花江斜斑玄武岩中的斜长石巨斑晶记录了长白山天池造盾期玄武岩在喷发前经历了较长时间的岩浆房存留过程。

  • 加载中
  • 图 1 

    中国东北地区(a)和长白山-松花江一带(b)新生代火山岩的分布图

    Figure 1. 

    Distribution of Cenozoic volcanic rocks in Northeast China (a) and Changbaishan-Songhuajiang River area (b)

    图 2 

    松花江斜斑玄武岩的手标本(a)和岩石薄片全幅面图(b,正交偏光下)

    Figure 2. 

    Hand specimen (a) and microphotograph of rock thin section (b, under cross-polarized light) of the plagioclase-phyric basalt from Songhuajiang River

    图 3 

    松花江斜斑玄武岩中斜长石巨斑晶的显微镜下特征

    Figure 3. 

    Micrographs of giant plagioclase phenocryst in plagioclase-phyric basalts from Songhuajiang River

    图 4 

    松花江斜斑玄武岩的主量元素协变图

    Figure 4. 

    Correlations of major element compositions for plagioclase-phyric basalts from Songhuajiang River in Northeast China

    图 5 

    松花江斜斑玄武岩球粒陨石标准化稀土元素配分图(a,标准化值据Anders and Grevesse, 1989)和原始地幔标准化微量元素蛛网图(b,标准化值据McDonough and Sun, 1995)

    Figure 5. 

    Chondrite-normalized rare earth element patterns (a, normalization values after Anders and Grevesse, 1989) and primitive mantle-normalized trace element spider diagrams (b, normalization values after McDonough and Sun, 1995) for the plagioclase-phyric basalts from Songhuajiang River

    图 6 

    松花江斜斑玄武岩的87Sr/86Sr-206Pb/204Pb(a)和εNd(t)-206Pb/204Pb(b)相关图

    Figure 6. 

    87Sr/86Sr vs. 206Pb/204Pb (a) and εNd(t) vs. 206Pb/204Pb (b) for the plagioclase-phyric basalt from Songhuajiang River in Northeast China

    图 7 

    松花江斜斑玄武岩中斜长石巨斑晶(a-c)和基质斜长石(d)的BSE图像和地球化学剖面图

    Figure 7. 

    BSE image and geochemical profile of giant plagioclase phenocrysts (a-c) and matrix plagioclase (d) in plagioclase-phyric basalts from Songhuajiang River

    图 8 

    松花江斜斑玄武岩中斜长石巨斑晶的阴极发光显微图像

    Figure 8. 

    Cathodoluminescence microphotographs of giant plagioclase phenocrysts of plagioclase-phyric basalts in Songhuajiang River

    图 9 

    松花江斜斑玄武岩中斜长石的三角分类图

    Figure 9. 

    Ternary classification diagram of plagioclase in plagioclase-phyric basalts from Songhuajiang River

    图 10 

    斜长石巨斑晶的Ca/Na分子比与熔体的比较

    Figure 10. 

    Ca/Na molecular ratio of plagioclase phenocrysts compared to that of melt

    图 11 

    松花江斜斑玄武岩的岩浆储运系统

    Figure 11. 

    Magma plumbing system of the plagioclase-phyric basalts from Songhuajiang River

    表 1 

    松花江斜斑玄武岩全岩的主量元素和微量元素及Sr-Nd-Pb同位素组成

    Table 1. 

    Major element (wt%), trace element (×10-6) and Sr-Nd-Pb isotopic compositions of Songhuajiang River plagioclase-phyric basalts

    样品号 19DBN-62 19DBN-63 19DBS-68 19DBS-64 19DBS-65 19DBS-61 19DBS-62
    采样位置 N43°45′57.78″、E126°38′18.77″ N43°45′50.43″、E126°38′53.67″ N43°18′44.55″、E127°09′13.71″ N43°13′59.74″、E127°02′28.63″ N43°13′14.60″、E127°04′20.48″ N43°05′39.85″、E127°00′37.77″ N43°05′00.98″、E127°00′50.29″
    采样高度(m) 185.1 151.7 325.0 301.0 270.0 298.0 308.0
    SiO2 51.26 51.82 50.60 50.30 50.12 50.07 50.89
    TiO2 3.20 3.15 4.25 4.25 4.22 4.20 3.40
    Al2O3 14.93 15.25 12.95 12.98 12.93 12.78 14.15
    Fe2O3T 12.91 12.73 14.88 14.83 15.04 15.34 13.91
    MnO 0.15 0.15 0.16 0.18 0.17 0.17 0.16
    MgO 3.86 3.94 4.15 4.13 4.22 4.23 4.16
    CaO 8.32 8.34 8.24 8.23 8.19 8.15 8.16
    Na2O 3.39 3.50 3.29 3.20 3.16 3.11 3.33
    K2O 1.45 1.47 1.72 1.67 1.71 1.70 1.54
    P2O5 0.46 0.46 0.64 0.64 0.64 0.64 0.49
    LOI -0.05 -0.48 -0.61 -0.37 -0.6 -0.57 -0.41
    Total 99.88 100.33 100.27 100.04 99.80 99.82 99.78
    Li 10.1 10.4 11.0 9.77 9.98 11.2 10.5
    Be 1.63 1.59 1.70 1.68 1.64 1.68 1.58
    Sc 23.8 23.0 26.7 25.8 25.7 26.1 23.9
    V 240 231 295 289 287 290 250
    Cr 39.7 37.4 8.34 7.77 7.87 7.88 34.1
    Co 38.2 39.7 45.1 46.5 43.1 46.6 40.6
    Ni 37.8 40.5 34.9 33.9 31.0 33.5 35.3
    Cu 43.7 47.2 56.8 55.7 54.3 54.6 38.1
    Zn 123 123 160 149 145 150 134
    Ga 23.8 23.7 24.6 24.2 23.9 24.3 23.4
    Ge 1.52 1.48 1.78 1.61 1.70 1.68 1.46
    Rb 23.7 24.8 30.6 28.9 29.0 29.6 25.7
    Sr 520 526 491 486 478 481 488
    Y 30.0 29.5 33.9 33.8 33.2 33.7 30.9
    Zr 223 222 252 250 248 252 229
    Nb 21.4 20.7 23.6 23.4 23.2 23.4 21.9
    Cs 0.27 0.24 0.35 0.34 0.33 0.34 0.28
    Ba 497 465 519 539 521 514 489
    La 22.2 21.7 25.9 26.3 25.8 25.7 22.4
    Ce 47.8 48.0 59.0 60.1 59.1 58.9 49.5
    Pr 6.46 6.27 7.88 8.00 7.79 7.77 6.30
    Nd 31.2 30.3 37.8 38.3 37.7 37.4 31.7
    Sm 7.98 7.67 9.48 9.64 9.50 9.48 8.11
    Eu 2.67 2.60 3.13 3.14 3.09 3.08 2.67
    Gd 7.62 7.45 8.89 9.04 8.81 8.82 7.63
    Tb 1.11 1.08 1.29 1.30 1.28 1.28 1.13
    Dy 6.18 6.00 7.03 7.12 6.99 6.99 6.26
    Ho 1.11 1.09 1.25 1.27 1.23 1.24 1.14
    Er 2.87 2.82 3.14 3.19 3.14 3.15 2.92
    Tm 0.39 0.37 0.41 0.41 0.40 0.41 0.39
    Yb 2.29 2.25 2.41 2.45 2.41 2.41 2.32
    Lu 0.32 0.32 0.34 0.34 0.33 0.34 0.32
    Hf 5.50 5.45 6.22 6.22 6.16 6.16 5.56
    Ta 1.31 1.27 1.43 1.45 1.42 1.42 1.32
    Pb 4.04 3.95 4.61 4.47 4.54 4.31 3.85
    Th 2.20 2.14 2.56 2.57 2.52 2.56 2.27
    U 0.42 0.44 0.50 0.51 0.50 0.57 0.49
    87Sr/86Sr 0.704985 0.704911 0.705098 0.705112 0.705100 0.705085 0.704918
    2SE 0.000005 0.000008 0.000006 0.000013 0.000006 0.000008 0.000009
    143Nd/144Nd 0.512611 0.512614 0.512589 0.512580 0.512594 0.512583 0.512603
    2SE 0.000005 0.000008 0.000014 0.000007 0.000008 0.000005 0.000005
    206Pb/204Pb 17.310 17.309 17.264 17.263 17.265 17.266 17.312
    2SE 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    207Pb/204Pb 15.531 15.531 15.536 15.534 15.535 15.536 15.531
    2SE 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    208Pb/204Pb 37.514 37.515 37.498 37.4960 37.499 37.500 37.515
    2SE 0.002 0.002 0.002 0.002 0.002 0.002 0.002
    注:LOI表示烧矢量. Fe2O3T表示全铁以Fe2O3的形式表达
    下载: 导出CSV
  •  

    Anders E and Grevesse N. 1989. Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta, 53(1): 197-214 doi: 10.1016/0016-7037(89)90286-X

     

    Anderson AT. 1984. Probable relations between plagioclase zoning and magma dynamics, Fuego Volcano, Guatemala. American Mineralogist, 69(7-8): 660-676

     

    Bennett EN, Lissenberg CJ and Cashman KV. 2019. The significance of plagioclase textures in mid-ocean ridge basalt (Gakkel Ridge, Arctic Ocean). Contributions to Mineralogy and Petrology, 174(6): 49 doi: 10.1007/s00410-019-1587-1

     

    Blundy J and Cashman K. 2001. Ascent-driven crystallisation of dacite magmas at Mount St Helens, 1980-1986. Contributions to Mineralogy and Petrology, 140(6): 631-650 doi: 10.1007/s004100000219

     

    Borges MR, Sen G, Hart GL, Wolff JA and Chandrasekharam D. 2014. Plagioclase as recorder of magma chamber processes in the Deccan Traps: Sr-isotope zoning and implications for Deccan eruptive event. Journal of Asian Earth Sciences, 84: 95-101 doi: 10.1016/j.jseaes.2013.10.034

     

    Cao MJ, Qin KZ, Li GM, Yang YH, Evans NJ, Zhang R and Jin LY. 2014. Magmatic process recorded in plagioclase at the Baogutu reduced porphyry Cu deposit, western Junggar, NW-China. Journal of Asian Earth Sciences, 82: 136-150 doi: 10.1016/j.jseaes.2013.12.019

     

    Cashman K and Blundy J. 2013. Petrological cannibalism: the chemical and textural consequences of incremental magma body growth. Contributions to Mineralogy and Petrology, 166(3): 703-729 doi: 10.1007/s00410-013-0895-0

     

    Chandrasekharam D, Mahoney JJ, Sheth HC and Duncan RA. 1999. Elemental and Nd-Sr-Pb isotope geochemistry of flows and dikes from the Tapi rift, Deccan flood basalt province, India. Journal of Volcanology and Geothermal Research, 93(1-2): 111-123 doi: 10.1016/S0377-0273(99)00081-5

     

    Chen D, Liu W, Ma AJ, Ni YJ and Cao JH. 2013. Petrology characteristics and geological significance of Xitian granite in Hunan Province. Land & Resources Herald, 10(10): 67-69 (in Chinese)

     

    Chen LH, Zeng G, Liu JQ, Wang XJ and Zhang C. 2022. The nature of the deep mantle chemical reservoirs: Perspective from continental intraplate volcanic rocks. Acta Petrologica Sinica, 38(12): 3703-3711 (in Chinese with English abstract) doi: 10.18654/1000-0569/2022.12.10

     

    Chen Q and Yu SY. 2022. Magmatism processes and petrogenesis of the Cenozoic plagioclase-phyric basalt in the Changbaishan area. Bulletin of Mineralogy, Petrology and Geochemistry, 41(2): 332-347 (in Chinese with English abstract)

     

    Cheng LL, Yang ZF, Zeng L, Wang Y and Luo ZH. 2014. Giant plagioclase growth during storage of basaltic magma in Emeishan Large Igneous Province, SW China. Contributions to Mineralogy and Petrology, 167(2): 971 doi: 10.1007/s00410-014-0971-0

     

    Choi HO, Choi SH, Lee YS, Ryu JS, Lee DC, Lee SG, Sohn YK and Liu JQ. 2020. Petrogenesis and mantle source characteristics of the Late Cenozoic Baekdusan (Changbaishan) basalts, North China Craton. Gondwana Research, 78: 156-171 doi: 10.1016/j.gr.2019.08.004

     

    Coote AC and Shane P. 2016. Crystal origins and magmatic system beneath Ngauruhoe volcano (New Zealand) revealed by plagioclase textures and compositions. Lithos, 260: 107-119 doi: 10.1016/j.lithos.2016.05.017

     

    Couch S, Sparks RSJ and Carroll MR. 2001. Mineral disequilibrium in lavas explained by convective self-mixing in open magma chambers. Nature, 411(6841): 1037-1039 doi: 10.1038/35082540

     

    Dai W, Wang ZC, Yang ZF, Liu YS, Chen CF, Feng LP, Zhou L, Li M, Zhang W and Moynier F. 2023. Calcium isotopes of giant plagioclase basalts from Emeishan large igneous province. Lithos, 436-437: 106950 doi: 10.1016/j.lithos.2022.106950

     

    Fan X and Chen QF. 2019. Seismic constraints on the magmatic system beneath the Changbaishan volcano: Insight into its origin and regional tectonics. Journal of Geophysical Research: Solid Earth, 124 (2), 2003-2024 doi: 10.1029/2018JB016288

     

    Gao Q and Zhao DC. 1997. Overview of Quaternary geology in Jilin. Jilin Water Resources, (10): 9-13 (in Chinese with English abstract)

     

    Ginibre C and Wörner G. 2007. Variable parent magmas and recharge regimes of the Parinacota magma system (N. Chile) revealed by Fe, Mg and Sr zoning in plagioclase. Lithos, 98(1-4): 118-140 doi: 10.1016/j.lithos.2007.03.004

     

    Grogan SE and Reavy RJ. 2002. Disequilibrium textures in the Leinster granite complex, SE Ireland: Evidence for acid-acid magma mixing. Mineralogical Magazine, 66(6): 929-939 doi: 10.1180/0026461026660068

     

    Grove TL, Baker MB and Kinzler RJ. 1984. Coupled CaAl-NaSi diffusion in plagioclase feldspar: Experiments and applications to cooling rate speedometry. Geochimica et Cosmochimica Acta, 48(10): 2113-2121 doi: 10.1016/0016-7037(84)90391-0

     

    Guo JN, Shan XL, Yi J, Wu CZ, Li JH and Liu PC. 2023. Basaltic magma plumbing system for the cone-construction stage of the Changbaishan from mineralogical, geochemical, and Sr-Nd isotopic data. Lithos, 448-449, 107173

     

    Hammer JE. 2008. Experimental studies of the kinetics and energetics of magma crystallization. Reviews in Mineralogy and Geochemistry, 69(1): 9-59 doi: 10.2138/rmg.2008.69.2

     

    Higgins MD. 1998. Origin of anorthosite by textural coarsening: Quantitative measurements of a natural sequence of textural development. Journal of Petrology, 39(7): 1307-1323 doi: 10.1093/petroj/39.7.1307

     

    Higgins MD and Chandrasekharam D. 2007. Nature of sub-volcanic magma chambers, Deccan Province, India: Evidence from quantitative textural analysis of plagioclase megacrysts in the giant plagioclase basalts. Journal of Petrology, 48(5): 885-900 doi: 10.1093/petrology/egm005

     

    Higgins MD. 2011. Quantitative petrological evidence for the origin of K-feldspar megacrysts in dacites from Taapaca volcano, Chile. Contributions to Mineralogy and Petrology, 162(4): 709-723 doi: 10.1007/s00410-011-0620-9

     

    Higgins MD. 2017. Quantitative investigation of felsic rock textures using cathodoluminescence images and other techniques. Lithos, 277: 259-268 doi: 10.1016/j.lithos.2016.05.006

     

    Humphreys MCS, Blundy JD and Sparks RSJ. 2006. Magma evolution and open-system processes at Shiveluch Volcano: Insights from phenocryst zoning. Journal of Petrology 47(12): 2303-2334 doi: 10.1093/petrology/egl045

     

    Kuritani T, Xia QK, Kimura JI, Liu J, Shimizu K, Ushikubo T, Zhao DP, Nakagawa M and Yoshimura S. 2019. Buoyant hydrous mantle plume from the mantle transition zone. Scientific Reports, 9(1): 6549 doi: 10.1038/s41598-019-43103-y

     

    Le Bas MJ, Le Maitre RW, Streckeisen A and Zanettin B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3): 745-750 doi: 10.1093/petrology/27.3.745

     

    Lei M, Guo ZF, Sun YT, Zhang ML, Zhang LH and Ma L. 2020. Geochemical constraints on the origin of late Cenozoic basalts in the Mt. Changbai volcanic field, NE China: Evidence for crustal recycling. International Geology Review, 62(17), 2125-2145 doi: 10.1080/00206814.2019.1686660

     

    Li JJ and Zhang XY. 2011. Application of cathodoluminescence to geology. Journal of Shijiazhuang University, 13(3): 29-32 (in Chinese with English abstract) doi: 10.3969/j.issn.1673-1972.2011.03.007

     

    Li YH, Huang F, Yu HM, He ZW and Chen S. 2016. Plagioclase zoning in submarine volcano Kick'em Jenny, Lesser Antilles Arc: Insights into magma evolution processes in oceanic arc magma chamber. Acta Petrologica Sinica, 32(2): 605-616 (in Chinese with English abstract)

     

    Li ZS, He M, Fu M, Mu JT and Qian LH. 2015. Geochemical characteristics and structural background analysis of Cenozoic basalts in Xintunzi region, Jilin Province. Jilin Geology, 34(04): 7-13, 20 (in Chinese with English abstract) doi: 10.3969/j.issn.1001-2427.2015.04.002

     

    Lightfoot PC, Hawkesworth CJ, Hergt J, Naldrett AJ, Gorbachev NS, Fedorenko VA and Doherty W. 1993. Remobilisation of the continental lithosphere by a mantle plume: major-, trace-element, and Sr-, Nd-, and Pb-isotope evidence from picritic and tholeiitic lavas of the Noril'sk District, Siberian Trap, Russia. Contributions to Mineralogy and Petrology, 114(2): 171-188 doi: 10.1007/BF00307754

     

    Liu JQ, Han JT and Fyfe WS. 2001. Cenozoic episodic volcanism and continental rifting in Northeast China and possible link to Japan Sea development as revealed from K-Ar geochronology. Tectonophysics, 339(3-4): 385-401 doi: 10.1016/S0040-1951(01)00132-9

     

    Liu JQ, Chen LH, Wang XJ, Zhong Y, Yu X, Zeng G and Erdmann S. 2017. The role of melt-rock interaction in the formation of Quaternary high-MgO potassic basalt from the Greater Khingan Range, Northeast China. Journal of Geophysical Research: Solid Earth, 122(1): 262-280 doi: 10.1002/2016JB013605

     

    Liu JQ, Chen LH, Wang XJ, Zhang HL, Zeng G, Saskia E, Zhang L and Ren ZY. 2022. Olivine and melt inclusion chemical constraints on the nature and origin of the common mantle component beneath eastern Asia. Contributions to Mineralogy and Petrology, 177(12): 116 doi: 10.1007/s00410-022-01981-y

     

    Liu RX, Wei HQ, Li JT et al. 1998. The Modern eruption of Changbaishan Tianchi Volcano. Beijing: Science Press (in Chinese)

     

    Liu Y, Liu XM, Hu ZC, DiWu CR, Yuan HL and Gao S. 2007. Evaluation of accuracy and long-term stability of determination of 37 trace elements in geological samples by ICP-MS. Acta Petrologica Sinica, 23(5): 1203-1210 (in Chinese with English abstract)

     

    Luo ZH, Yang ZF, Dai G, Chen LL and Zhou JL. 2013. Crystal populations of igneous rocks and their implications in genetic mineralogy. Geology in China, 40(1): 176-181 (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3657.2013.01.012

     

    Ma CQ, Zou BW, Gao K and Wen X. 2020. Crystal mush storage, incremental pluton assembly and granitic petrogenesis. Earth Science, 45(12): 4332-4351 (in Chinese with English abstract)

     

    Magee C, Stevenson CTE, Ebmeier SK, Keir D, Hammond JOS, Gottsmann JH, Whaler KA, Schofield N, Jackson CAL, Petronis MS, O'Driscoll B, Morgan J, Cruden A, Vollgger SA, Dering G, Micklethwaite S and Jackson MD. 2018. Magma plumbing systems: A geophysical perspective. Journal of Petrology, 59(6): 1217-1251 doi: 10.1093/petrology/egy064

     

    Martel C, Radadi Ali A, Poussineau S, Gourgaud A and Pichavant M. 2006. Basaltinherited microlites in silicic magmas: Evidence from Mount Pelée (Martinique, French West Indies). Geology, 34(11): 905-908 doi: 10.1130/G22672A.1

     

    McDonough WF and Sun SS. 1995. The composition of the Earth. Chemical Geology, 120(3-4): 223-253 doi: 10.1016/0009-2541(94)00140-4

     

    Miller JS, Matzel JEP, Miller CF, Burgess SD and Miller RB. 2007. Zircon growth and recycling during the assembly of large, composite arc plutons. Journal of Volcanology and Geothermal Research, 167(1-4): 282-299 doi: 10.1016/j.jvolgeores.2007.04.019

     

    Mills RD, Ratner JJ and Glazner AF. 2011. Experimental evidence for crystal coarsening and fabric development during temperature cycling. Geology, 39(12): 1139-1142 doi: 10.1130/G32394.1

     

    Nelson ST and Montana A. 1992. Sieve-textured plagioclase in volcanic rocks produced by rapid decompression. American Mineralogist, 77(11-12): 1242-1249

     

    Ning YG, Li XW, Hu JQ, Mo XX, Sun YQ, Zhang GK, Xie YH and Wang FY. 2021. Genesis of high-An plagioclase from Triassic felsic intrusive rocks in West Qinling and its geological significance. Acta Petrologica Sinica, 37(11): 3527-3547 (in Chinese with English abstract) doi: 10.18654/1000-0569/2021.11.17

     

    Pearce TH, Russell JK and Wolfson I. 1987. Laser-interference and Nomarski interference imaging of zoning profiles in plagioclase phenocrysts from the May 18, 1980, eruption of Mount St. Helens, Washington. American Mineralogist, 72(11-12): 1131-1143

     

    Russell WA, Papanastassiou DA and Tombrello TA. 1978. Ca isotope fractionation on the Earth and other solar system materials. Geochimica et Cosmochimica Acta, 42(8): 1075-1090 doi: 10.1016/0016-7037(78)90105-9

     

    Sen G. 2001. Generation of Deccan Trap magmas. Journal of Earth System Science, 110(4): 409-431 doi: 10.1007/BF02702904

     

    Simakin AG and Bindeman IN. 2008. Evolution of crystal sizes in the series of dissolution and precipitation events in open magma systems. Journal of Volcanology and Geothermal Research, 177(4): 997-1010 doi: 10.1016/j.jvolgeores.2008.07.012

     

    Singer BS, Dungan MA and Layne GD. 1995. Textures and Sr, Ba, Mg, Fe, K and Ti compositional profiles in volcanic plagioclase: Clues to the dynamics of calc-alkaline magma chambers. American Mineralogist, 80(7-8): 776-798 doi: 10.2138/am-1995-7-815

     

    Sisson TW and Grove TL. 1993. Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contributions to Mineralogy and Petrology, 113(2): 143-166 doi: 10.1007/BF00283225

     

    Solano JMS, Jackson MD, Sparks RSJ, Blundy JD and Annen C. 2012. Melt segregation in deep crustal hot zones: A mechanism for chemical differentiation, crustal assimilation and the formation of evolved magmas. Journal of Petrology, 53(10): 1999-2026 doi: 10.1093/petrology/egs041

     

    Song ZM. 1993. Fundamentals of Cathode Luminescence Geology. Wuhan: China University of Geosciences Press (in Chinese)

     

    Toth CH. 2018. Giant plagioclase in the Steens basalt, SE Oregon: Cumulate entrainment revealed by textural and in situ chemical analysis. Master Degree Thesis. Ellensburg: Central Washington University, 1-961

     

    Tsuchiyama A. 1985. Dissolution kinetics of plagioclase in the melt of the system diopside-albite-anorthite, and origin of dusty plagioclase in andesites. Contributions to Mineralogy and Petrology, 89(1): 1-16 doi: 10.1007/BF01177585

     

    Viccaro M, Giacomoni PP, Ferlito C and Cristofolini R. 2010. Dynamics of magma supply at Mt. Etna volcano (Southern Italy) as revealed by textural and compositional features of plagioclase phenocrysts. Lithos, 116(1-2): 77-91 doi: 10.1016/j.lithos.2009.12.012

     

    Wang JQ and Liu XM. 2016. Proficiency testing of the XRF method for measuring 10 major elements in different rock types. Rock and Mineral Analysis, 35(2): 145-151 (in Chinese with English abstract)

     

    Wang XJ, Chen LH, Hofmann AW, Mao FG, Liu JQ, Zhong Y, Xie LW and Yang YH. 2017. Mantle transition zone-derived EM1 component beneath NE China: Geochemical evidence from Cenozoic potassic basalts. Earth and Planetary Science Letters, 465: 16-28 doi: 10.1016/j.epsl.2017.02.028

     

    Wei FX, Pan B and Xu JD. 2021. Sr-Nd-Pb-Ca isotopes of Holocene basalts from Jingpohu, NE China: Implications for the origin of their enriched mantle signatures. Minerals, 11(8): 790 doi: 10.3390/min11080790

     

    Wei HQ, Liu RX, Fan QC, Jin BL, Liu X and Zhang CL. 1999. Monogenetic volcanism in Longgang volcanic clusters. Geological Review, 45(Suppl. 1): 325-331 (in Chinese with English abstract)

     

    Xiao L, Xu YG, Mei HJ, Zheng YF, He B and Pirajno F. 2004. Distinct mantle sources of low-Ti and high-Ti basalts from the western Emeishan large igneous province, SW China: Implications for plume-lithosphere interaction. Earth and Planetary Science Letters, 228(3-4): 525-546 doi: 10.1016/j.epsl.2004.10.002

     

    Xie YH, Shan W, Yu XF, Chi NJ, Wang FY, Li DP, Zhang Y and Li XW. 2021. Identification of clinopyroxene antecrysts in Cretaceous lamprophyre dykes from the Jiaodong Peninsula and their geological significance. Acta Petrologica Sinica, 37(7): 2203-2233 (in Chinese with English abstract) doi: 10.18654/1000-0569/2021.07.14

     

    Xiong Q, Zeng G, Zheng ZC, Zhang HL, Zhou ZB, Wang XJ, Liu JQ and Chen LH. 2022. Discovery of Paleogene Mudanjiang high-Mg# andesites from Northeast China and their petrological characteristics. Geological Journal of China Universities, 29(2): 161-173 (in Chinese with English abstract)

     

    Xu XS, Zhao K, He ZY, Liu L and Hong WT. 2021. Cretaceous volcanic-plutonic magmatism in SE China and a genetic model. Lithos, 402-403: 105728 doi: 10.1016/j.lithos.2020.105728

     

    Xu YG, Chung SL, Jahn BM and Wu GY. 2001. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China. Lithos, 58(3-4): 145-168 doi: 10.1016/S0024-4937(01)00055-X

     

    Xu YG and Fan QC. 2015. Cenozoic volcanism in eastern China: Review and perspectives. Bulletin of Mineralogy, Petrology and Geochemistry, 34(04): 682-689 (in Chinese with English abstract) doi: 10.3969/j.issn.1007-2802.2015.04.002

     

    Xu YG, Li HY, Hong LB, Ma L, Ma Q and Sun MD. 2018. Generation of Cenozoic intraplate basalts in the big mantle wedge under eastern Asia. Science China (Earth Sciences), 61(7): 869-886 doi: 10.1007/s11430-017-9192-y

     

    Yang B, Lin WL, Hu XY, Fang H, Qiu GG and Wang G. 2021. The magma system beneath Changbaishan-Tianchi Volcano, China/North Korea: Constraints from three-dimensional magnetotelluric imaging. Journal of Volcanology and Geothermal Research, 419: 107385 doi: 10.1016/j.jvolgeores.2021.107385

     

    Yang HF. 2022. Relationship between temporal and spatial variation of Cenozoic volcanic rocks and geological structure in Changbaishan area. Master Degree Thesis. Shijiazhuang: Hebei GEO University (in Chinese with English abstract)

     

    Yang XZ, Zhou Y, Sun JD, Xu YM and Chu ZY. 2022. Advances on the texture and genesis of phenocryst plagioclase zoning. East China Geology, 43(4): 415-427 (in Chinese with English abstract)

     

    Yu SY, Xu YG, Zhou SH, Lan JB, Chen LM, Shen NP, Zhao JX and Feng YX. 2018. Late Cenozoic basaltic lavas from the Changbaishan-Baoqing volcanic belt, NE China: Products of lithosphere-asthenosphere interaction induced by subduction of the Pacific plate. Journal of Asian Earth Sciences, 164: 260-273 doi: 10.1016/j.jseaes.2018.06.031

     

    Zhang ML, Guo ZF, Liu JQ, Liu GM, Zhang LH, Lei M, Zhao WB, Ma L, Sepe V and Ventura G. 2018. The intraplate Changbaishan volcanic field (China/North Korea): A review on eruptive history, magma genesis, geodynamic significance, recent dynamics and potential hazards. Earth-Science Reviews, 187: 19-52 doi: 10.1016/j.earscirev.2018.07.011

     

    Zhao SD, Xia Y, Xu XS, He ZY and Zhao K. 2023. Petrogenesis of the felsic crystal-rich volcanic rocks: Magma recharge and reactivation of the crystal mush. Acta Petrologica et Mineralogica, 42(6): 878-893 (in Chinese with English abstract)

     

    Zhu HX, Tian Y, Zhao DP, Li HH and Liu C. 2019. Seismic structure of the Changbai intraplate volcano in NE China from joint inversion of ambient noise and receiver functions. Journal of Geophysical Research: Solid Earth, 124 (5), 4984-5002 doi: 10.1029/2018JB016600

     

    陈迪, 刘伟, 马爱军, 倪艳军, 曹解华. 2013. 湖南锡田花岗岩体岩石学特征及地质意义. 国土资源导刊, 10(10): 67-69 doi: 10.3969/j.issn.1672-5603.2013.10.022

     

    陈立辉, 曾罡, 刘建强, 王小均, 张超. 2022. 从大陆火山岩视角了解深部地幔化学储库的属性. 岩石学报, 38(12): 3703-3711 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2022.12.10

     

    陈琦, 于宋月. 2022. 长白山新生代斜斑玄武岩的岩浆作用过程与岩石成因制约. 矿物岩石地球化学通报, 41(2): 332-347 https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202202010.htm

     

    高谦, 赵德臣. 1997. 吉林地区第四纪地质概略. 吉林水利, (10): 9-13 https://www.cnki.com.cn/Article/CJFDTOTAL-JLSL199710002.htm

     

    李敬敬, 张希雨. 2011. 阴极发光技术在地学研究中的应用现状. 石家庄学院学报, 13(03): 29-32 doi: 10.3969/j.issn.1673-1972.2011.03.007

     

    李原鸿, 黄方, 于慧敏, 贺治伟, 陈沙. 2016. 加勒比海小安德列斯岛弧Kick'em Jenny海底火山岩的斜长石成分环带: 示踪大洋岛弧岩浆房的演化. 岩石学报, 32(2): 605-616 http://www.ysxb.ac.cn/article/id/aps_20160222

     

    李忠水, 何明, 付猛, 牟静涛, 钱立辉. 2015. 吉林抚松新屯子地区新生代玄武岩地球化学特征及构造背景分析. 吉林地质, 34(4): 7-13, 20 doi: 10.3969/j.issn.1001-2427.2015.04.002

     

    刘若新, 魏海泉, 李继泰等. 1998. 长白山天池火山近代喷发. 北京: 科学出版社

     

    刘晔, 柳小明, 胡兆初, 第五春荣, 袁洪林, 高山. 2007. ICP-MS测定地质样品中37个元素的准确度和长期稳定性分析. 岩石学报, 23(5): 1203-1210 http://www.ysxb.ac.cn/article/id/aps_200705116

     

    罗照华, 杨宗锋, 代耕, 程黎鹿, 周久龙. 2013. 火成岩的晶体群与成因矿物学展望. 中国地质, 40(1): 176-181 doi: 10.3969/j.issn.1000-3657.2013.01.012

     

    马昌前, 邹博文, 高珂, 文霞. 2020. 晶粥储存、侵入体累积组装与花岗岩成因. 地球科学, 45(12): 4332-4351 https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202012005.htm

     

    宁亚格, 李小伟, 胡俊强, 莫宣学, 孙雨沁, 张国坤, 谢元惠, 汪方跃. 2021. 西秦岭三叠纪酸性侵入岩中高An值斜长石的成因及其地质意义. 岩石学报, 37(11): 3527-3547 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2021.11.17

     

    宋志敏. 1993. 阴极发光地质学基础. 武汉: 中国地质大学出版社

     

    王建其, 柳小明. 2016. X射线荧光光谱法分析不同类型岩石中10种主量元素的测试能力验证. 岩矿测试, 35(2): 145-151 https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201602006.htm

     

    魏海泉, 刘若新, 樊祺城, 金伯禄, 刘祥, 张成梁. 1999. 龙岗火山群单成因火山作用. 地质论评, 45(增1): 325-331 https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP1999S1046.htm

     

    谢元惠, 单伟, 于学峰, 迟乃杰, 汪方跃, 李大鹏, 张岩, 李小伟. 2021. 胶东白垩纪煌斑岩中单斜辉石再循环晶的识别及其地质意义. 岩石学报, 37(7): 2203-2233 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2021.07.14

     

    熊巧, 曾罡, 郑志翀, 张慧丽, 周中彪, 王小均, 刘建强, 陈立辉. 2023. 东北牡丹江地区古近纪高镁安山岩的发现及其岩石学特征. 高校地质学报, 29(2): 161-173 https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX202302002.htm

     

    徐义刚, 樊祺诚. 2015. 中国东部新生代火山岩研究回顾与展望. 矿物岩石地球化学通报, 34(4): 682-689 doi: 10.3969/j.issn.1007-2802.2015.04.002

     

    徐义刚, 李洪颜, 洪路兵, 马亮, 马强, 孙明道. 2018. 东亚大地幔楔与中国东部新生代板内玄武岩成因. 中国科学(地球科学), 48(7): 825-843 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201807003.htm

     

    杨红芳. 2022. 长白山地区新生代火山岩时空变化规律与地质构造的关系. 硕士学位论文. 石家庄: 河北地质大学

     

    杨献忠, 周延, 孙建东, 徐衍明, 褚志远. 2022. 斑晶斜长石环带结构及成因研究进展. 华东地质, 43(4): 415-427 https://www.cnki.com.cn/Article/CJFDTOTAL-HSDZ202204003.htm

     

    赵思狄, 夏炎, 徐夕生, 贺振宇, 赵凯. 2023. 长英质富晶体火山岩成因——岩浆补给与晶粥再活化. 岩石矿物学杂志, 42(6): 878-893 https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW202306008.htm

  • 240702张叶凡-附表1-3
  • 加载中

(11)

(1)

计量
  • 文章访问数:  836
  • PDF下载数:  140
  • 施引文献:  0
出版历程
收稿日期:  2023-11-30
修回日期:  2024-02-20
刊出日期:  2024-07-01

目录