金红石微量元素电子探针分析

王娟, 陈意, 毛骞, 李秋立, 马玉光, 石永红, 宋传中. 2017. 金红石微量元素电子探针分析. 岩石学报, 33(6): 1934-1946.
引用本文: 王娟, 陈意, 毛骞, 李秋立, 马玉光, 石永红, 宋传中. 2017. 金红石微量元素电子探针分析. 岩石学报, 33(6): 1934-1946.
WANG Juan, CHEN Yi, MAO Qian, LI QiuLi, MA YuGuang, SHI YongHong, SONG ChuanZhong. 2017. Electron microprobe trace element analysis of rutile. Acta Petrologica Sinica, 33(6): 1934-1946.
Citation: WANG Juan, CHEN Yi, MAO Qian, LI QiuLi, MA YuGuang, SHI YongHong, SONG ChuanZhong. 2017. Electron microprobe trace element analysis of rutile. Acta Petrologica Sinica, 33(6): 1934-1946.

金红石微量元素电子探针分析

  • 基金项目:

    本文受国家自然科学基金项目(41490614、41272073)资助

详细信息
    作者简介:

    王娟,女,1991年生,博士生,构造地质学专业,E-mail:2015010080@mail.hfut.edu.cn

    通讯作者: 陈意,男,1981年生,博士,副研究员,主要从事变质岩石学研究,E-mail:chenyi@mail.iggcas.ac.cn
  • 中图分类号: P575.1;P578.47

Electron microprobe trace element analysis of rutile

More Information
  • 金红石电子探针微量元素分析一般以人工合成的氧化物来作为监测标样,尚较缺乏对金红石标样进行系统地测试分析。本文运用CAMECA SXFive电子探针对金红石标样R10进行微量元素分析,根据金红石中主要微量元素在地质学中的应用,本次共分析了Al、Si、Ti、Fe、Cr、Zr、V、Nb、Ta等9个元素,Ti、Si元素作为本次分析的监测元素。本文通过调整加速电压和电流、背景和峰值测试时长以及干扰谱峰处理等来提高微量元素分析精度和准确度。分析结果显示,其中,Zr(780±29×10-6)(1SD,n=25)、Nb(2799±66×10-6)、V(1276±33×10-6)、Fe(4309±34×10-6)、Cr(718±31×10-6)的分析结果与二次离子质谱(SIMS)和激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)的推荐值在误差范围内一致。大部分元素数据波动范围在10%以内,V、Fe元素的数据波动范围仅在5%以内。V、Nb和Fe测试精度比前人电子探针分析结果有较大提高。金红石Zr测试误差传递给金红石Zr温度计给出的温度误差一般<22℃。本文还对金红石Zr温度计应用、提高Ta元素分析精度和准确度、金红石Fe3+分析等问题进行了探讨。

  • 加载中
  • 图 1 

    电子探针部分参数之间的联系

    Figure 1. 

    The relationship between peak position and background value

    图 2 

    微量元素Ta检测限和测试精度与测试时长的线性关系

    Figure 2. 

    Influence of the counting time on the detection limit and analytical precision

    图 3 

    金红石标样R10 Zr元素成分对比图

    Figure 3. 

    Concentration of Zr in rutile R10

    图 4 

    金红石标样R10 Nb元素成分对比图

    Figure 4. 

    Nb concentration of rutile R10

    图 5 

    金红石标样R10 V元素成分对比图

    Figure 5. 

    Comparison of V in rutile R10

    图 6 

    金红石标样R10 Fe元素成分对比图

    Figure 6. 

    Comparison of Fe in rutile R10 by different methods

    图 7 

    金红石标样R10 Cr元素成分对比图

    Figure 7. 

    Concentration of Cr in rutile R10

    图 8 

    金红石标样R10 Ta元素成分对比图

    Figure 8. 

    Concentration of Ta in rutile R10

    图 9 

    标样R10各微量元素数据稳定度检测图

    Figure 9. 

    Analytical stability testing for trace elements (V, Cr, Zr, Fe, Nb) of rutile R10

    表 1 

    电子探针微量元素测试条件

    Table 1. 

    EPMAconditions for trace element analysis of rutile R10

    下载: 导出CSV

    表 2 

    电子探针相关参数:X-ray、晶体、通道、特征X射线能量值

    Table 2. 

    EPMA parameters including X-ray, analyzing crystals, channels, as well as the energy of characteristic X-ray

    下载: 导出CSV

    表 3 

    金红石标样R10微量元素(×10-6)电子探针分析结果

    Table 3. 

    Trace element concentrations (×10-6) of the standard rutile R10 obtained by Cameca SX Five

    下载: 导出CSV

    表 4 

    本文电子探针分析金红石R10与前人分析结果对比

    Table 4. 

    Summary of all analyses of rutile R10

    下载: 导出CSV
  •  

    Addy SK and Garlick GD. 1974. Oxygen isotope fractionation between rutile and water. Contributions to Mineralogy and Petrology, 45(2): 119-121 doi: 10.1007/BF00371164

     

    Aulbach S, O'Reilly SY, Griffin WL and Pearson NJ. 2008. Subcontinental lithospheric mantle origin of high niobium/tantalum ratios in eclogites. Nature Geoscience, 1(7): 468-472 doi: 10.1038/ngeo226

     

    Aulbach S, O'Reilly SY and Pearson NJ. 2011. Constraints from eclogite and MARID xenoliths on origins of mantle Zr/Hf-Nb/Ta variability. Contributions to Mineralogy and Petrology, 162(5): 1047-1062 doi: 10.1007/s00410-011-0639-y

     

    Bakun-Czubarow N, Kusy D and Fiala J. 2005. Trace element abundances in rutile from eclogites-granulite rock series of the Zlote Mountains in the Sudetes. Mineralogical Society of Poland, Special Papers, 26: 132-136

     

    Barth MG, McDonough WF and Rudnick RL. 2000. Tracking the budget of Nb and Ta in the continental crust. Chemical Geology, 165(3-4): 197-213 doi: 10.1016/S0009-2541(99)00173-4

     

    Bingen B, Austrheim H and Whitehouse M. 2001. Ilmenite as a source for Zirconium during high-grade Metamorphism? Textural evidence from the Caledonides of western Norway and implications for zircon geochronology. Journal of Petrology, 42(2): 355-375 doi: 10.1093/petrology/42.2.355

     

    Blackburn T, Shimizu N, Bowring SA, Schoene B and Mahan KH. 2011. Zirconium in rutile speedometry: New constraints on lower crustal cooling rates and residence temperatures. Earth and Planetary Science Letters, 317-318: 213-240

     

    Brenan JM, Shaw HF, Phinney DL and Ryerson FJ. 1994. Rutile-aqueous fluid partitioning of Nb, Ta, Hf, Zr, U and Th: Implications for high field strength element depletions in island-arc basalts. Earth and Planetary Science Letters, 128(3-4): 327-339 doi: 10.1016/0012-821X(94)90154-6

     

    Cave BJ and Stepanov AS. 2015. Release of trace elements through the sub-greenschist facies breakdown of detrital rutile to metamorphic titanite in the Otago schist, New Zealand. The Canadian Mineralogist, 53(3): 379-400 doi: 10.3749/canmin.1400097

     

    Chen ZY, Zeng LS, Li XF, Yu JJ and Xu Y. 2009. Trace elements of rutile in eclogites from CCSD main-hole: A LA-ICPMS study and its implication. Acta Petrologica Sinica, 25(7): 1645-1657 (in Chinese with English abstract)

     

    Cruz-Uribe AM, Feineman MD, Zack T and Barth M. 2014. Metamorphic reaction rates at ca.650~800℃ from diffusion of niobium in rutile. Geochimica et Cosmochimica Acta, 130: 63-77 doi: 10.1016/j.gca.2013.12.015

     

    Dohmen R, Marschall H and Ludwig T. 2009. Diffusive fractionation of Nb and Ta in rutile. Geochimica et Cosmochimica Acta, 73: A297 https://www.researchgate.net/profile/Ralf_Dohmen/publication/252394609_Diffusive_fractionation_of_Nb_and_Ta_in_rutile/links/5449fe900cf244fe9ea61725.pdf

     

    Escudero A and Langenhorst F. 2012. Incorporation of Si into TiO2 phases at high pressure. American Mineralogist, 97(4): 524-531 doi: 10.2138/am.2012.3941

     

    Escudero A, Langenhorst F and Müller WF. 2012. Aluminum solubility in TiO2 rutile at high pressure and experimental evidence for a CaCl2-structured polymorph. American Mineralogist, 97(7): 1075-1082 doi: 10.2138/am.2012.4049

     

    Ewing TA, Hermann J and Rubatto D. 2013. The robustness of the Zr-in-rutile and Ti-in-zircon thermometers during high-temperature metamorphism (Ivrea-Verbano Zone, northern Italy). Contributions to Mineralogy and Petrology, 165(4): 757-779 doi: 10.1007/s00410-012-0834-5

     

    Ferry JM and Watson EB. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437 doi: 10.1007/s00410-007-0201-0

     

    Fialin M, Outrequin M and Staub PE. 1997. A new tool to treat peak overlaps in electron-probe microanalysis of rare-earth-element L-series X-rays. European Journal of Mineralogy, 9(5): 965-968 doi: 10.1127/ejm/9/5/0965

     

    Fialin M, Remy H, Richard C and Wagner C. 1999. Trace element analysis with the electron microprobe: New data and perspectives. American Mineralogist, 84(1-2): 70-77 doi: 10.2138/am-1999-1-207

     

    Fialin M, Wagner C, Métrich N, Humler E, Galoisy L and Bézos A. 2001. Fe3+/∑Fe vs. FeLα peak energy for minerals and glasses: Recent advances with the electron microprobe. American Mineralogist, 86: 456-465

     

    Foley SF, Barth MG and Jenner GA. 2000. Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochimica et Cosmochimica Acta, 64(5): 933-938 doi: 10.1016/S0016-7037(99)00355-5

     

    Gao XY and Zheng YF. 2011. On the Zr-in-rutile and Ti-in-zircon geothermometers. Acta Petrologica Sinica, 27(2): 417-432 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201102006.htm

     

    Höfer HE and Brey GP. 2007. The iron oxidation state of garnet by electron microprobe: Its determination with the flank method combined with major-element analysis. American Mineralogist, 92(5-6): 873-885 doi: 10.2138/am.2007.2390

     

    Huang J, Xiao Y, Gao Y, Hou Z and Wu W. 2012. Nb-Ta fractionation induced by fluid-rock interaction in subduction-zones: Constraints from UHP eclogite-and vein-hosted rutile from the Dabie orogen, Central-Eastern China. Journal of Metamorphic Geology, 30(8): 821-842 doi: 10.1111/jmg.2012.30.issue-8

     

    Jiao SJ, Guo JH, Mao Q and Zhao RF. 2011. Application of Zr-in-rutile thermometry: A case study from ultrahigh-temperature granulites of the Khondalite belt, North China Craton. Contributions to Mineralogy and Petrology, 162(2): 379-393 doi: 10.1007/s00410-010-0602-3

     

    Kooijman E, Mezger K and Berndt J. 2010. Constraints on the U-Pb systematics of metamorphic rutile from in situ LA-ICP-MS analysis. Earth and Planetary Science Letters, 293(3-4): 321-330 doi: 10.1016/j.epsl.2010.02.047

     

    Kooijman E, Smit MA, Mezger K and Berndt J. 2012. Trace element systematics in granulite facies rutile: Implications for Zr geothermometry and provenance studies. Journal of Metamorphic Geology, 30(4): 397-412 doi: 10.1111/jmg.2012.30.issue-4

     

    Li QL, Lin W, Sun W, Li XH, Shi YH, Liu Y and Tang GQ. 2011a. SIMS U-Pb rutile age of low-temperature eclogites from southwestern Chinese Tianshan, NW China. Lithos, 122(1-2): 76-86 doi: 10.1016/j.lithos.2010.11.007

     

    Li XF, Rusk B, Wang RC, Morishita Y, Watanabe Y and Chen ZY. 2011b. Rutile inclusions in quartz crystals record decreasing temperature and pressure during the exhumation of the Su-Lu UHP metamorphic belt in Donghai, East China. American Mineralogist, 96(7): 964-973 doi: 10.2138/am.2011.3574

     

    Li Y, Yang YH, Jiao SJ, Wu FY, Yang JH, Xie LW and Huang C. 2015. In situ determination of hafnium isotopes from rutile using LA-MC-ICP-MS. Science China (Earth Sciences), 58(12): 2134-2144 doi: 10.1007/s11430-015-5215-2

     

    Liang JL, Ding X, Sun XM, Zhang ZM, Zhang H and Sun WD. 2009. Nb/Ta fractionation observed in eclogites from the Chinese continental scientific drilling project. Chemical Geology, 268(1-2): 27-40 doi: 10.1016/j.chemgeo.2009.07.006

     

    Liu L, Xiao YL, Aulbach S, Li DY and Hou ZH. 2014. Vanadium and niobium behavior in rutile as a function of oxygen fugacity: Evidence from natural samples. Contributions to Mineralogy and Petrology, 167: 1026 doi: 10.1007/s00410-014-1026-2

     

    Lucassen F, Dulski P. Abart R. Franz G. Rhede D and Romer RL. 2010. Redistribution of HFSE elements during rutile replacement by titanite. Contributions to Mineralogy and Petrology, 160(2): 279-295 doi: 10.1007/s00410-009-0477-3

     

    Luvizotto GL and Zack T. 2008. Nb and Zr behavior in rutile during high-grade metamorphism and retrogression: An example from the Ivrea-Verbano Zone. Chemical Geology, 261(3-4): 303-317

     

    Luvizotto GL, Zack T, Meyer HP, Ludwig T, Triebold S, Kronz A, Münker C, Stockli DF, Prowatke S, Klemme S, Jacob DE and von Eynatten H. 2009. Rutile crystals as potential secondary standards from microanalysis. Chemical Geology, 261(3-4): 346-369 doi: 10.1016/j.chemgeo.2008.04.012

     

    Meinhold G. 2010. Rutile and its applications in earth sciences. Earth-Science Reviews, 102(1-2): 1-28 doi: 10.1016/j.earscirev.2010.06.001

     

    Merlet C and Bodinier JL. 1990. Electron microprobe determination of minor and trace transition elements in silicate minerals: A method and its application to mineral zoning in the peridotite nodule PHN 1611. Chemical Geology, 83(1-2): 55-69 doi: 10.1016/0009-2541(90)90140-3

     

    Meyer M, John T, Brandt S and Klemd R. 2011. Trace element composition of rutile and the application of Zr-in-rutile thermometry to UHT metamorphism (Epupa Complex, NW Namibia). Lithos, 126(3-4): 388-401 doi: 10.1016/j.lithos.2011.07.013

     

    Preston J, Hartley A, Mange-Rajetzky M, Hole M, May G, Buck S and Vaughan L. 2002. The provenance of Triassic continental sandstones from the Beryl field, northern North Sea: Mineralogical, geochemical, and sedimentological constraints. Journal of Sedimentary Research, 72(1): 18-29 doi: 10.1306/042201720018

     

    Rocholl A, Dulski P and Raczek I. 2000. New ID-TIMS, ICP-MS and SIMS data on the trace element composition and homogeneity of NIST certified reference material SRM 610-611. Geostandards and Geoanalytical Research, 24(2): 261-274 doi: 10.1111/ggr.2000.24.issue-2

     

    Rudnick RL, Barth M, Horn I and McDonough WF. 2000. Rutile-bearing refractory eclogites: Missing link between continents and depleted mantle. Science, 287(5451): 278-281 doi: 10.1126/science.287.5451.278

     

    Schmidt MW, Dardon A, Chazot G and Vannucci R. 2004. The dependence of Nb and Ta rutile-melt partitioning on melt composition and Nb/Ta fractionation during subduction processes. Earth and Planetary Science Letters, 226(3-4): 415-432 doi: 10.1016/j.epsl.2004.08.010

     

    Sobolev NV and Yefimova ES. 2000. Composition and petrogenesis of Ti-oxides associated with diamonds. International Geology Review, 42(8): 758-767 doi: 10.1080/00206810009465110

     

    Sutton SR, Karner J, Papike J, Delaney JS, Shearer C, Newville M, Eng P, Rivers M and Dyar MD. 2005. Vanadium K edge XANES of synthetic and natural basaltic glasses and application to microscale oxygen barometry. Geochimica et Cosmochimica Acta, 69(9): 2333-2348 doi: 10.1016/j.gca.2004.10.013

     

    Taylor-Jones K and Powell R. 2015. Interpreting zirconium-in-rutile thermometric results. Journal of Metamorphic Geology, 33(2): 115-122 doi: 10.1111/jmg.12109

     

    Tomkins HS, Powell H and Ellis DJ. 2007. The pressure dependence of the zirconium-in-rutile thermometer. Journal of Metamorphic Geology, 25(6): 703-713 doi: 10.1111/jmg.2007.25.issue-6

     

    Triebold S, Eynatten HV, Luvizotto GL and Zack T. 2007. Deducing source rock lithology from detrital rutile geochemistry: An example from the Erzgebirge, Germany. Chemical Geology, 244(3-4): 421-436 doi: 10.1016/j.chemgeo.2007.06.033

     

    Triebold S, Eynatten HV and Zack T. 2012. A recipe for the use of rutile in sedimentary provenance analysis. Sedimentary Geology, 282: 268-275 doi: 10.1016/j.sedgeo.2012.09.008

     

    Wang RC, Wang S, Qiu JS and Ni P. 2005. Rutile in the UHP eclogites from the CCSD main drillhole (Donghai, eastern China): Trace-element geochemistry and metallogenetic implications. Acta petrologica Sinica, 21(2): 465-474 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200502021.htm

     

    Watson EB, Wark DA and Thomas JB. 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151(4): 413-433 doi: 10.1007/s00410-006-0068-5

     

    Weyer S, Münker C, Rehkämamper M and Mezger K. 2002. Determination of ultra-low Nb, Ta, Zr and Hf concentrations and the chondritic Zr/Hf and Nb/Ta ratios by isotope dilution analyses with multiple collector ICP-MS. Chemical Geology, 187(3-4): 295-313 doi: 10.1016/S0009-2541(02)00129-8

     

    Whitney DL, Roger F, Teyssier C, Rey PF and Respaut RJ. 2015. Syn-collapse eclogite metamorphism and exhumation of deep crust in a migmatite dome: The P-T-t record of the youngest Variscan eclogite (Montagne Noire, French Massif Central). Earth and Planetary Science Letters, 430: 224-234 doi: 10.1016/j.epsl.2015.08.026

     

    Xia XP, Ren ZY, Wei GJ, Zhang L, Sun M and Wang YJ. 2013. In situ rutile U-Pb dating by laser ablation-MC-ICPMS. Geochemical Journal, 47(4): 459-468 doi: 10.2343/geochemj.2.0267

     

    Xiao YL, Sun WD, Hoefs J, Simon K, Zhang ZM, Li SG and Hofmann AW. 2006. Making continental crust through slab melting: Constraints from niobium-tantalum fractionation in UHP metamorphic rutile. Geochimica et Cosmochimica Acta, 70(18): 4770-4782 doi: 10.1016/j.gca.2006.07.010

     

    Xiao YL, Huang J, Liu L and Li DY. 2011. Rutile: An important "reservoir" for geochemical information. Acta Petrologica Sinica, 27(2): 398-416 (in Chinese with English abstract)

     

    Xiong YL, Adam J and Green TH. 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chemical Geology, 218(3-4): 339-359 doi: 10.1016/j.chemgeo.2005.01.014

     

    Yu JJ, Chen ZY, Wang PA, Li XF, Huang JP and Wang H. 2006. Trace elements geochemistry of eclogites in the northern Jiangsu Province, eastern China. Acta Petrologica Sinica, 22(7): 1883-1890 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200607014.htm

     

    Zack T, Kronz A, Foley SF and Rivers T. 2002. Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chemical Geology, 184(1-2): 97-122 doi: 10.1016/S0009-2541(01)00357-6

     

    Zack T, Moraes R and Kronz A. 2004a. Temperature dependence of Zr in rutile: Empirical calibration of a rutile thermometer. Contributions to Mineralogy and Petrology, 148: 471-488 doi: 10.1007/s00410-004-0617-8

     

    Zack T, Von Eyantten H and Kronz A. 2004b. Rutile geochemistry and its potential use in quanitative provenance studies. Sedimentary Geology, 171(1): 37-58 https://www.researchgate.net/profile/Andreas_Kronz/publication/222703094_Rutile_geochemistry_and_its_potential_use_in_quatitative_provenance_studies/links/02bfe51473e1c55458000000.pdf

     

    Zhang GB, Ellis DJ, Christy AG, Zhang LF and Song SG. 2010. Zr-in-rutile thermometry in HP/UHP eclogites from Western china. Contributions to Mineralogy and Petrology, 160(3): 427-439 doi: 10.1007/s00410-009-0486-2

     

    Zhang GB and Zhang LF. 2011. The progress and some problems in the study of rutile in metamorphic rocks. Earth Science Frontiers, 18(2): 26-32 (in Chinese with English abstract)

     

    陈振宇, 曾令森, 李晓峰, 余金杰, 徐钰. 2009. CCSD主孔榴辉岩中金红石微量元素特征: LA-ICPMS分析及其意义. 岩石学报, 25(7): 1645-1657 http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?flag=1&file_no=20090710&journal_id=ysxb

     

    高晓英, 郑永飞. 2011. 金红石Zr和锆石Ti含量地质温度计. 岩石学报, 27(2): 417-432 http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?flag=1&file_no=20110205&journal_id=ysxb

     

    王汝成, 王硕, 邱检生, 倪培. 2005. CCSD主孔揭示的东海超高压榴辉岩中的金红石: 微量元素地球化学及其成矿意义. 岩石学报, 21(2): 465-474 http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?flag=1&file_no=20050248&journal_id=ysxb

     

    肖益林, 黄建, 刘磊, 李东永. 2011. 金红石: 重要的地球化学"信息库". 岩石学报, 27(2): 398-416 http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?flag=1&file_no=20110204&journal_id=ysxb

     

    余金杰, 陈振宇, 王平安, 李晓峰, 黄建平, 王辉. 2006. 苏北榴辉岩中金红石的微量元素地球化学特征. 岩石学报, 22(7): 1883-1890 http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?flag=1&file_no=200607195&journal_id=ysxb

     

    张贵宾, 张立飞. 2011. 变质岩中金红石研究进展及存在问题. 地学前缘, 18(2): 26-32 http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201102006.htm

  • 加载中

(9)

(4)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2016-11-21
修回日期:  2017-02-03
刊出日期:  2017-06-01

目录