塔里木盆地阿克苏地区下寒武统玉尔吐斯组两套黑色岩系的差异及成因

杨宗玉, 罗平, 刘波, 刘策, 马洁, 陈斐然. 2017. 塔里木盆地阿克苏地区下寒武统玉尔吐斯组两套黑色岩系的差异及成因. 岩石学报, 33(6): 1893-1918.
引用本文: 杨宗玉, 罗平, 刘波, 刘策, 马洁, 陈斐然. 2017. 塔里木盆地阿克苏地区下寒武统玉尔吐斯组两套黑色岩系的差异及成因. 岩石学报, 33(6): 1893-1918.
YANG ZongYu, LUO Ping, LIU Bo, LIU Ce, MA Jie, CHEN FeiRan. 2017. The difference and sedimentation of two black rock series from Yurtus Formation during the earliest Cambrian in the Aksu area of Tarim Basin, Northwest China. Acta Petrologica Sinica, 33(6): 1893-1918.
Citation: YANG ZongYu, LUO Ping, LIU Bo, LIU Ce, MA Jie, CHEN FeiRan. 2017. The difference and sedimentation of two black rock series from Yurtus Formation during the earliest Cambrian in the Aksu area of Tarim Basin, Northwest China. Acta Petrologica Sinica, 33(6): 1893-1918.

塔里木盆地阿克苏地区下寒武统玉尔吐斯组两套黑色岩系的差异及成因

  • 基金项目:

    本文受国家科技重大专项(2016ZX05004-001)和中国石油勘探开发研究院院级项目(101001cq0652139)联合资助

详细信息
    作者简介:

    杨宗玉,男,1988年生,博士生,矿产普查与勘探专业,E-mail:460883474@qq.com

    通讯作者: 罗平,男,1956年生,教授级高工、博士生导师,主要从事沉积与储层评价研究,E-mail:pluo@petrochina.com.cn
  • 中图分类号: P588.2

The difference and sedimentation of two black rock series from Yurtus Formation during the earliest Cambrian in the Aksu area of Tarim Basin, Northwest China

More Information
  • 玉尔吐斯组黑色页岩是塔里木盆地寒武系盐下最具有潜力的烃源岩之一,普遍认为其沉积于统一、相似的沉积环境(斜坡相),而作者的研究结果与上述结论不符。为了探讨两套在岩石矿物组合方面完全不同的黑色岩系分布规律和成因,并重建其各自的沉积模式,本文对研究区12条剖面进行了详细描述、测量,从沉积学特征、岩矿鉴定入手,结合扫描电子显微镜、X-衍射、地球化学等分析手段,着重研究了库勒剖面和于提希剖面两套黑色岩系的沉积学特征和地球化学特征差异。沉积层序、岩石矿物组合、微量元素富集系数、氧化还原敏感元素比值(V/(V+Ni)、V/Cr、U/Th)、REE+Y配分模式、有机质含量以及饱和烃色谱特征分析结果表明:两套黑色页岩均为有机质高度富集的,处于热成熟生油阶段的海相优质烃源岩(干酪根类型Ⅱ1-Ⅱ2型,第一套黑色页岩TOC均值为5.37%,第二套TOC均值为1.46%),均沉积于海水氧化-还原分层的还原环境,但各自的空间展布规律和控制因素差异较大。建立了热液喷流缺氧模式和斜坡缺氧沉积模式:第一套黑色页岩主要沉积于第一个旋回海侵高峰期水体较深、沉积速率较高的内缓坡,其发育主要受热液喷流活动、微生物活动以及氧化还原条件影响,分布范围广,台内厚,缓坡带薄,靠近台内或台地内部热液喷流中心的裂洼陷主要控制着该套黑色页岩的展布,成烃生物以底栖藻类、细菌为主,少量浮游藻类为辅;而第二套黑色页岩主要沉积于第二旋回海侵初期水体不断变深的中-外缓坡低能带,其发育主要受古生产力、氧化还原条件以及古地形(斜坡陡缓)控制,分布范围局限,外缓坡带厚度较稳定,靠近台内不发育,成烃生物以浮游藻类为主,微生物和低等水生生物为辅,其发育条件则在台缘中-外缓坡更为有利。

  • 加载中
  • 图 1 

    新疆阿克苏地区地质图及野外剖面位置(据新疆维吾尔自治区地质局区域地质测量大队, 1996修改)

    Figure 1. 

    Geological sketch of Aksu area of Xinjiang and the location of the measured sections

    图 2 

    柯坪断隆晚埃迪卡拉世-早石炭世构造发展及断裂组合示意图(据Yu et al., 2009修改)

    Figure 2. 

    The diagram of tectonic evolution and fault combination from Late Sinian to Early Carboniferous in Kalpin fault uplift (after Yu et al., 2009)

    图 3 

    阿克苏地区库勒剖面沉积相柱状图

    Figure 3. 

    Histogram of sedimentary facies of Kule profile in Aksu area

    图 4 

    玉尔吐斯组两套黑色岩系“结构-矿物组成”微观分类

    Figure 4. 

    The “structure-mineral composition” microscopic classification of two sets of black shale in Turtus Formation

    图 5 

    玉尔吐斯组两套黑色岩系相序结构

    Figure 5. 

    The lithofacies sequence of two sets of black shale in Turtus Formation

    图 6 

    阿克苏地区于提希剖面沉积相柱状图

    Figure 6. 

    Histogram of sedimentary facies of Yutixi profile in Aksu area

    图 7 

    黑色页岩X-衍射全岩矿物分析(a)和矿物学分类三角图(b)

    Figure 7. 

    The XRD (a) and triangular diagram (b) of mineralogy classification of black shale in Turtus Formation

    图 8 

    玉尔吐斯组黑色页岩扫描电子显微镜特征

    Figure 8. 

    The SEM features of black shale in Turtus Formation

    图 9 

    阿克苏地区玉尔吐斯组两套黑色岩系岩相对比图(近东西向,顶部拉平)

    Figure 9. 

    The lithofacies comparison (nearly E-W trending) of the first black shale serie from Yurtus Formation in Aksu area

    图 10 

    阿克苏地区玉尔吐斯组两套黑色岩系岩相对比图(近南北向,顶部拉平)

    Figure 10. 

    The lithofacies comparison (nearly S-N trending) of the first black shale serie from Yurtus Formation in Aksu area

    图 11 

    库勒、于提希剖面富集系数及微量元素比值

    Figure 11. 

    The enrichment factor and trace element ratio of Kule and Yutixi sections

    图 12 

    玉尔吐斯组黑色页岩微量元素富集系数对比上升流和缺氧盆地沉积物据(向雷等, 2012; Zhou et al., 2014修改)

    Figure 12. 

    The trace element enrichment factors of Yurtus Formation black shale vs. upwelling and anoxic basin sediments (after Xiang et al., 2012; Zhou et al., 2014)

    图 13 

    玉尔吐斯组两套黑色页岩PAAS标准化稀土配分模式

    Figure 13. 

    The PAAS-normalized REE abundance patterns of two sets of black shale in Yurtus Formation

    图 14 

    玉尔吐斯组黑色页岩Th-Al2O3 (a)、Th-Y/Ho (b)和Th-Ti (c)协变图

    Figure 14. 

    The covariation of Th vs. Al2O3 (a), Th vs. Y/Ho (b) and Th vs. Ti (c) in black shale from Turtus Foramtion

    图 15 

    两套黑色页岩的TOC含量(部分数据朱光有等, 2016)

    Figure 15. 

    The TOC content of two sets of black shale (some data after Zhu et al., 2016)

    图 16 

    玉尔吐斯组黑色页岩正构烷烃分布图

    Figure 16. 

    The distribution of n-Alkanes of black shale from Yurtus Formation

    图 17 

    玉尔吐斯组黑色页岩Pr/nC17与Ph/nC18比值斜变图

    Figure 17. 

    The cross plots of Pr/nC17 vs. Ph/nC18 ratios of black shale from Yurtus Formation

    图 18 

    玉尔吐斯组第一套黑色岩系沉积模式

    Figure 18. 

    The depositional model of the first black shale in Turtus Formation

    图 19 

    玉尔吐斯组第二套黑色岩系沉积模式

    Figure 19. 

    The depositional model of the second black shale in Turtus Formation

    表 1 

    塔里木盆地及中国其他地区下寒武统地层对比表(据贾承造等, 2004; Yao et al., 2005; 钱逸等, 2009修改)

    Table 1. 

    The Lower Cambrian stratigraphic correlation in Tarim Basin and other regions of China (after Jia et al., 2004; Yao et al., 2005; Qian et al., 2009)

    下载: 导出CSV

    表 2 

    阿克苏地区于提希(HS)、库勒(KL)剖面玉尔吐斯组黑色岩系主量元素分析结果(wt%)

    Table 2. 

    Major element compositions (wt%) of black rock series of Turtus Formation from Yutixi and Kule profiles in Aksu area

    下载: 导出CSV

    表 3 

    阿克苏地区于提希(HS)、库勒(KL)剖面玉尔吐斯组黑色岩系稀土元素分析结果(×10-6)

    Table 3. 

    Rare earth element compositions (×10-6) of black rock series of Turtus Formation from Yutixi and Kule profiles in Aksu area

    下载: 导出CSV

    表 4 

    第一套黑色岩系样品部分元素相关系数表

    Table 4. 

    The correlation coefficient of some elements of the first black rock series

    下载: 导出CSV

    表 5 

    第二套黑色岩系样品部分元素相关系数表

    Table 5. 

    The correlation coefficient of some elements of the second black rock series

    下载: 导出CSV

    表 6 

    黑色页岩氧化还原环境微量元素比值判别

    Table 6. 

    The trace element ratio criteria for redox environment of black shale

    下载: 导出CSV

    表 7 

    玉尔吐斯组黑色页岩部分样品微量元素与TOC的相关系数

    Table 7. 

    The correlation coefficient of trace elements and TOC of some black shale samples from Yurtus Formation

    下载: 导出CSV

    表 8 

    玉尔吐斯组黑色页岩TOC值、有机质类型、Ro值与正构烷烃、类异戊二烯烷烃参数表

    Table 8. 

    The data of TOC, organic matter type, Ro and n-alkanes, isoprenoid alkanes of black shale from Turtus Formation

    下载: 导出CSV

    表 9 

    两套黑色页岩属性对比

    Table 9. 

    The attribute contrast of two sets of black shale

    下载: 导出CSV
  •  

    Algeo TJ and Tribovillard N. 2009. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chemical Geology, 268(3-4): 211-225 doi: 10.1016/j.chemgeo.2009.09.001

     

    Bau M and Dulski P. 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Research, 79(1-2): 37-55 doi: 10.1016/0301-9268(95)00087-9

     

    Brumsack HJ. 2006. The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation. Palaeogeography Palaeoclimatology Palaeoecology, 232(2-4): 344-361 doi: 10.1016/j.palaeo.2005.05.011

     

    Cai ZH, Xu ZQ, Tang ZM, He BZ and Chen FY. 2011. The crustal deformation during the Early Paleozoic period and the timing of orogeny in Kuruktag area on the northeast margin of Tarim Basin. Geology in China, 38(4): 855-867 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201104007.htm

     

    Campbell IH and Squire RJ. 2010. The mountains that triggered the Late Neoproterozoic increase in oxygen: The Second Great Oxidation Event. Geochimica et Cosmochimica Acta, 74(15): 4187-4206 doi: 10.1016/j.gca.2010.04.064

     

    Chang HL, Zheng RC, Guo CL and Wen HG. 2016. Characteristics of rare earth elements of exhalative rock in Fengcheng Formation,northwestern margin of Junggar Basin. Geological Review, 62(3):550-568 (in Chinese with English abstract)

     

    Chen DZ, Wang JG, Qing HR, Yan DT and Li RW. 2009. Hydrothermal venting activities in the Early Cambrian, South China: Petrological, geochronological and stable isotopic constraints. Chemical Geology, 258(3-4): 168-181 doi: 10.1016/j.chemgeo.2008.10.016

     

    Chen QL, Yang X, Chu CL, Hu G, Shi Z, Jiang HJ and Liu WH. 2015. Recognition of depositional environment of Cambrian source rocks in Tarim Basin. Oil & Gas Geology, 36(6): 880-887 (in Chinese with English abstract)

     

    Chen S, Gui HR, Sun LH, Liu XH and Ma YP. 2011. Geochemical characteristics of REE in limestone of Jiudingshan Formation, northern Anhui Province and their constraint on the seawater. Geology in China, 38(3): 664-672 (in Chinese with English abstract)

     

    Collins AS and Pisarevsky SA. 2005. Amalgamating eastern Gondwana: The evolution of the Circum-Indian Orogens. Earth-Science Reviews, 71(3-4): 229-270 doi: 10.1016/j.earscirev.2005.02.004

     

    Cox R, Lowe DR and Cullers RL. 1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta, 59(14): 2919-2940 doi: 10.1016/0016-7037(95)00185-9

     

    Dill H. 1986. Metallogenesis of Early Paleozoic graptolite shales from the Graefenthal Horst (Northern Bavaria-Federal Republic of Germany). Economic Geology, 81(4): 889-903 doi: 10.2113/gsecongeo.81.4.889

     

    Dong L, Xiao SH, Shen B, Zhou CM, Li GX and Yao JX. 2009. Basal Cambrian microfossils from the Yangtze Gorges area (South China) and the Aksu area (Tarim block, northwestern China). Journal of Paleontology, 83(1): 30-44 doi: 10.1017/S0022336000058108

     

    Dumoulin JA, Slack JF, Whalen MT and Harris AG. 2011. Depositional setting and geochemistry of phosphorites and metalliferous black shales in the Carboniferous-Permian Lisburne Group, northern Alaska. Alaska: U.S. Geological Survey, 11-24

     

    Fan DL, Liu TB and Ye J. 1991. Biogeochemistry of black shale series during diagenetic and metallogenetic processes. Acta Petrologica Sinica, 7(2): 65-72 (in Chinese with English abstract) http://www.oalib.com/paper/1469783

     

    Fan DL, Zhang S and Ye J. 2004. The Black Rock Series in China and Its Related Mineral Deposits. Beijing: Science Press (in Chinese)

     

    Gao ZD, Zhang ZN and Zheng JJ. 2014. Saturated hydrocarbon biomarkers in the source rock of the Ordovician Majiagou Formation in the Southwest Ordos Basin. Bulletin of Mineralogy, Petrology and Geochemistry, 33(6): 874-881 (in Chinese with English abstract)

     

    Ge YW and Li K. 2014. On geochemical characteristics of source rock of the Lower Cambrian Yuertusi Formation in Tarim Basin. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 16(1): 8-12 (in Chinese with English abstract)

     

    German CR and Elderfield H. 1989. Rare earth elements in Saanich Inlet, British Columbia, a seasonally anoxic basin. Geochimica et Cosmochimica Acta, 53(89): 2561-2571 https://www.earth.ox.ac.uk/~yvesp/REEdata/climotope/German_and_Elderfield_1989.pdf

     

    Haq BU and Schutter SR. 2008. A chronology of Paleozoic sea-level changes. Science, 322(5898): 64-68 doi: 10.1126/science.1161648

     

    Hartz EH and Torsvik TH. 2002. Baltica upside down: A new plate tectonic model for Rodinia and the Iapetus Ocean. Geology, 30(3): 255-258 doi: 10.1130/0091-7613(2002)030<0255:BUDANP>2.0.CO;2

     

    Hatch JR and Leventhal JS. 1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark shale member of the Dennis limestone, Wabaunsee County, Kansas, U.S.A. Chemical Geology, 99(1-3): 65-82 doi: 10.1016/0009-2541(92)90031-Y

     

    Hein JR, Zierenberg RA, Maynard JB and Hannington MD. 2007. Barite-forming environments along a rifted continental margin, Southern California Borderland. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 54(11): 1327-1349 https://pubs.er.usgs.gov/publication/70029763

     

    Hu G, Liu WH, Tengger, Chen QL, Xie XM, Wang J, Lu LF and Shen BJ. 2014. Tectonic-sedimentary constrains for hydrocarbon generating organism assemblage in the Lower Cambrian argillaceous source rocks, Tarim Basin. Oil & Gas Geology, 35(5): 685-695 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201405016.htm

     

    Jia CZ, Zhang SB and Wu SZ. 2004. Stratigraphy of the Tarim Basin and Adjacent Areas. Beijing: Science Press (in Chinese)

     

    Jones B and Manning DA. 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111(1-4): 111-129 doi: 10.1016/0009-2541(94)90085-X

     

    Kato Y, Nakao K and Isozaki Y. 2002. Geochemistry of Late Permian to Early Triassic pelagic cherts from southwest Japan: Implications for an oceanic redox change. Chemical Geology, 182(1): 15-34 doi: 10.1016/S0009-2541(01)00273-X

     

    Kimura H and Watanabe Y. 2001. Oceanic anoxia at the Precambrian-Cambrian boundary. Geology, 29(11): 995 doi: 10.1130/0091-7613(2001)029<0995:OAATPC>2.0.CO;2

     

    Klinkhammer GP, Elderfield H, Edmond JM and Mitra A. 1994. Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges. Geochimica et Cosmochimica Acta, 58(23): 5105-5113 doi: 10.1016/0016-7037(94)90297-6

     

    Li C and Jin CS. 2015. Atmosphere-ocean oxygen levels and biotic explosion in the Early Cambrian. Bulletin of Mineralogy, Petrology and Geochemistry, 34(3): 501-508 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-KYDH201503009.htm

     

    Liang W, Mou CL, Zhou KK and Ge XY. 2011. Sedimentary environments of the Lower Cambrian source rocks in central Hunan. Sedimentary Geology and Tethyan Geology, 31(4): 34-39 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-TTSD201104005.htm

     

    Lin CS, Li H and Liu JY. 2012. Major unconformities, tectonostratigraphic frameword, and evolution of the superimposed Tarim basin, Northwest China. Journal of Earth Science, 23(4): 395-407 doi: 10.1007/s12583-012-0263-4

     

    Ling HF, Chen X, Li D, Wang D, Shields-Zhou GA and Zhu MY. 2013. Cerium anomaly variations in Ediacaran-earliest Cambrian carbonates from the Yangtze Gorges area, South China: Implications for oxygenation of coeval shallow seawater. Precambrian Research, 225: 110-127 doi: 10.1016/j.precamres.2011.10.011

     

    Liu H, Lin CS, Wang YM and Zhang DS. 2012. Temporal and spatial evolution analysis: The Early Paleozoic Paleo-Uplifts in the Tarim basin. Journal of Earth Science, 23(4): 559-581 doi: 10.1007/s12583-012-0275-0

     

    März C, Poulton SW, Beckmann B, Küster K, Wagner T and Kasten S. 2008. Redox sensitivity of P cycling during marine black shale formation: Dynamics of sulfidic and anoxic, non-sulfidic bottom waters. Geochimica et Cosmochimica Acta, 72(15): 3703-3717 doi: 10.1016/j.gca.2008.04.025

     

    McCausland PJ, van der Voo R and Hall CM. 2007. Circum-Iapetus paleogeography of the Precambrian-Cambrian transition with a new paleomagnetic constraint from Laurentia. Precambrian Research, 156(3-4): 125-152 doi: 10.1016/j.precamres.2007.03.004

     

    Mclennan SM. 1993. Weathering and global denudation. The Journal of Geology, 101(2): 295-303 doi: 10.1086/648222

     

    Murray RW. 1994. Chemical criteria to identify the depositional environment of chert: General principles and applications. Sedimentary Geology, 90(3-4): 213-232 doi: 10.1016/0037-0738(94)90039-6

     

    Nesbitt HW and Young GM. 1982. Early proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885): 715-717 doi: 10.1038/299715a0

     

    Pan WQ, Chen YQ, Xiong YX, Li BH and Xiong R. 2015. Sedimentary facies research and implications to advantaged exploration regions on Lower Cambrian source rocks, Tarim Basin. Natural Gas Geoscience, 26(7): 1224-1232 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX201507003.htm

     

    Paytan A and Mclaughlin K. 2007. The oceanic phosphorus cycle. Chemical Reviews, 107(2): 563-576 doi: 10.1021/cr0503613

     

    Piper DZ and Calvert SE. 2009. A marine biogeochemical perspective on black shale deposition. Earth-Science Reviews, 95(1-2): 63-96 doi: 10.1016/j.earscirev.2009.03.001

     

    Qian Y, Yin GZ and Xiao B. 2000. Opercula of hyoliths and operculum-like fossils from the Lower Cambrian Yurtus Formation, XinJiang. Acta Micropalaeontologica Sinica, 17(4): 404-415 (in Chinese with English abstract)

     

    Qian Y, Feng WM, Li GX, Yang AH, Feng M, Zhao X and Xiao B. 2009. Taxonomy and biostratigraphy of the Early Cambrian univalved molluskc fossils from Xinjiang. Acta Micropalaeontologica Sinica, 26(3): 193-210 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-WSGT200903001.htm

     

    Qin JZ, Shen BJ, Tao GL, Tenger, Yang YF, Zheng LJ and Fu XD. 2014. Hydrocarbon-forming organisms and dynamic evaluation of hydrocarbon generation capacity in excellent source rocks. Petroleum Geology and Experiment, 36(4): 465-472 (in Chinese with English abstract)

     

    Rimmer SM. 2004. Geochemical paleoredox indicators in Devonian-Mississippian black shales, Central Appalachian Basin (USA). Chemical Geology, 206(3-4): 373-391 doi: 10.1016/j.chemgeo.2003.12.029

     

    Riquier L, Tribovillard N, Averbuch O, Devleeschouwer X and Riboulleau A. 2006. The Late Frasnian Kellwasser horizons of the Harz Mountains (Germany): Two oxygen-deficient periods resulting from different mechanisms. Chemical Geology, 233(1-2): 137-155 doi: 10.1016/j.chemgeo.2006.02.021

     

    Shields G and Stille P. 2001. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: An isotopic and REE study of Cambrian phosphorites. Chemical Geology, 175(1-2): 29-48 doi: 10.1016/S0009-2541(00)00362-4

     

    Shimura T, Kon Y, Sawaki Y, Hirata T, Han J, Shu D and Komiya T. 2014. In-situ analyses of phosphorus contents of carbonate minerals: Reconstruction of phosphorus contents of seawater from the Ediacaran to Early Cambrian. Gondwana Research, 25(3): 1090-1107 doi: 10.1016/j.gr.2013.08.001

     

    Slack JF, Grenne T, Bekker A, Rouxel OJ and Lindberg PA. 2007. Suboxic deep seawater in the Late Paleoproterozoic: Evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA. Earth and Planetary Science Letters, 255(1-2): 243-256 doi: 10.1016/j.epsl.2006.12.018

     

    Soudry D. 2000. Microbial phosphate sediment. In: Riding R and Awramik S (eds.). Microbial Sediments. Berlin Heidelberg: Springer, 127-136

     

    Soulaimani A, Michard A, Ouanaimi H, Baidder L, Raddi Y, Saddiqi O and Rjimati EC. 2014. Late Ediacaran-Cambrian structures and their reactivation during the Variscan and Alpine cycles in the Anti-Atlas (Morocco). Journal of African Earth Sciences, 98: 94-112 doi: 10.1016/j.jafrearsci.2014.04.025

     

    Squire RJ, Campbell IH, Allen CM and Wilson CJ. 2006. Did the Transgondwanan Supermountain trigger the explosive radiation of animals on Earth. Earth and Planetary Science Letters, 250(1-2): 116-133 doi: 10.1016/j.epsl.2006.07.032

     

    Steiner M, Wallis E, Erdtmann BD, Zhao YL and Yang RD. 2001. Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils: Insights into a Lower Cambrian facies and bio-evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 169(3-4): 165-191 doi: 10.1016/S0031-0182(01)00208-5

     

    Sun SL, Chen JF, Zheng JJ and Liu WH. 2009. The noble gas isotope geochemical composition of chert at the bottom of Cambrian in Tarim Basin, China. Science in China (Series D), 52(S1): 115-119 doi: 10.1007/s11430-009-5022-8

     

    Tribovillard N, Algeo TJ, Lyons T and Riboulleau A. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232(1-2): 12-32 doi: 10.1016/j.chemgeo.2006.02.012

     

    Turner SA. 2010. Sedimentary record of late Neoproterozoic rifting in the NW Tarim Basin, China. Precambrian Research, 181(1-4): 85-96 doi: 10.1016/j.precamres.2010.05.015

     

    Tyson RV. 2004. Variation in marine total organic carbon through the type Kimmeridge Clay Formation (Late Jurassic), Dorset, UK. Journal of the Geological Society, 161(4): 667-673 doi: 10.1144/0016-764903-078

     

    Veevers JJ. 2004. Gondwanaland from 650~500Ma assembly through 320Ma merger in Pangea to 185~100Ma breakup: Supercontinental tectonics via stratigraphy and radiometric dating. Earth-Science Reviews, 68(1-2): 1-132 doi: 10.1016/j.earscirev.2004.05.002

     

    Wang JG, Chen DZ, Wang D, Yan DT, Zhou XQ and Wang QC. 2012. Petrology and geochemistry of chert on the marginal zone of Yangtze platform, western Hunan, South China, during the Ediacaran-Cambrian transition. Sedimentology, 59(3): 809-829 doi: 10.1111/sed.2012.59.issue-3

     

    Webb GE and Kamber BS. 2000. Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy. Geochimica et Cosmochimica Acta, 64(9): 1557-1565 doi: 10.1016/S0016-7037(99)00400-7

     

    Wignall PB and Twitchett RJ. 1996. Oceanic anoxia and the end Permian Mass Extinction. Science. 272(5265): 1155-1158 doi: 10.1126/science.272.5265.1155

     

    Xiang L, Cai CF, He XY and Jiang L. 2012. The mechanisms for the enrichment of trace elements in the Lower Cambrian black chert successions from Zhalagou section, Guizhou Province. Acta Petrologica Sinica, 28(3): 971-980 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201203026.htm

     

    Xiong R, Zhou JG, Ni XF, Zhu YJ and Chen YQ. 2015. Distribution prediction of Lower Cambrian Yurtus Formation source rocks and its significance to oil and gas exploration in the Tarim Basin. Natural Gas Industry, 35(10): 49-56 (in Chinese with English abstract)

     

    Xu LG, Lehmann B and Mao J. 2013. Seawater contribution to polymetallic Ni-Mo-PGE-Au mineralization in Early Cambrian black shales of South China: Evidence from Mo isotope, PGE, trace element, and REE geochemistry. Ore Geology Reviews, 52: 66-84 doi: 10.1016/j.oregeorev.2012.06.003

     

    Xu LG, Lehmann B, Zhang XG, Zheng W and Meng QT. 2014. Trace element distribution in black shales from the Kunyang phosphorite deposit and its geological significances. Acta Petrologica Sinica, 30(6): 1817-1827 (in Chinese with English abstract)

     

    Yao CY, Ma DS, Ding HF and Zhang XY. 2011. Early Cambrian carbon isotope stratigraphy in the Tarim basin and a correlation with the Yangtze platform. Chinese Journal of Geochemistry, 30(3): 382-390 doi: 10.1007/s11631-011-0523-5

     

    Yao CY, Ma DS, Ding HF, Zhang XY and Huang H. 2014. Trace elements and stable isotopic geochemistry of an Early Cambrian chert-phosphorite unit from the Lower Yurtus Formation of the Sugetbrak section in the Tarim Basin. Science China (Earth Sciences), 57(3): 454-464 doi: 10.1007/s11430-013-4760-9

     

    Yao JX, Xiao SH, Yin LM, Li GX and Yuan XL. 2005. Basal Cambrian microfossils from the Yurtus and Xishanblaq formations (Tarim, NorthWest China): Systematic revision and biostratigraphic correlation of Micrhystridium-like acritarchs. Palaeontology, 48(4): 687-708 doi: 10.1111/pala.2005.48.issue-4

     

    Yang ZY, Luo P, Liu B, Wang S, Bai Y and Zhou M. 2017. Analysis of petrologic characteristics and origin of siliceous rocks during the earliest Cambrian Yurtus Formation in the Aksu area of Tarim Basin, Northwest China. Earth Science Frontiers, in press (in Chinese with English abstract)

     

    Yin HF, Xie SC, Yan JX, Hu CY, Huang JH, Tenger, Qie WK and Qiu X. 2011. Geobiological approach to evaluating marine carbonate source rocks of hydrocarbon. Science China (Earth Sciences), 54(8): 1121-1135 doi: 10.1007/s11430-011-4236-8

     

    Young GM and Nesbitt HW. 1999. Paleoclimatology and provenance of the glaciogenic Gowganda Formation (Paleoproterozoic), Ontario, Canada: A chemostratigraphic approach. Geological Society of America Bulletin, 111(2): 264-274 doi: 10.1130/0016-7606(1999)111<0264:PAPOTG>2.3.CO;2

     

    Yu BS, Dong HL, Widom E, Chen JQ and Lin CS. 2009. Geochemistry of basal Cambrian black shales and cherts from the northern Tarim Basin, Northwest China: Implications for depositional setting and tectonic history. Journal of Asian Earth Sciences, 34(3): 418-436 doi: 10.1016/j.jseaes.2008.07.003

     

    Yuan YY, Cai CF, Wang TK, Xiang L, Jia LQ and Chen Y. 2014. Redox condition during Ediacaran-Cambrian transition in the Lower Yangtze deep water basin, South China: Constraints from iron speciation and δ13Corg in the Diben section, Zhejiang. Chinese Science Bulletin, 59(28): 3638-3649 doi: 10.1007/s11434-014-0483-3

     

    Zhang AY, Wu DM, Guo LN and Wang YL. 1987. Geochemistry and Metallogenic Significance of Marine Black Shale. Beijing: Science Press (in Chinese)

     

    Zhang XL, Shu DG, Han J, Zhang ZF, Liu JN and Fu DJ. 2014. Triggers for the Cambrian explosion: Hypotheses and problems. Gondwana Research, 25(3): 896-909 doi: 10.1016/j.gr.2013.06.001

     

    Zhou XQ, Chen DZ, Qing HR, Qian YX and Wang D. 2014. Submarine silica-rich hydrothermal activity during the earliest Cambrian in the Tarim Basin, Northwest China. International Geology Review, 56(15): 1906-1918 doi: 10.1080/00206814.2014.968885

     

    Zhou XQ, Chen DZ, Dong SF, Zhang YQ, Guo ZH, Wei HY and Yu H. 2015. Diagenetic barite deposits in the Yurtus Formation in Tarim Basin, NW China: Implications for barium and sulfur cycling in the earliest Cambrian. Precambrian Research, 263: 79-87 doi: 10.1016/j.precamres.2015.03.006

     

    Zhou ZY, Zhao ZX, Hu ZX, Chen PJ, Zhang SB and Yong TS. 2001. Strata in Tarim Basin. Beijing: Science Press, 1-359 (in Chinese)

     

    Zhu CL, Yan H, Yun L, Han Q and Ma HM. 2014. Characteristics of Cambrian source rocks in well XH1, Shaya Uplift, Tarim Basin. Petroleum Geology & Experiment, 36(5): 626-632 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201405018.htm

     

    Zhu GY, Chen FR, Chen ZY, Zhang Y, Xing X, Tao XW and Ma DB. 2016. Discovery and basic characteristics of the high-quality source rocks of the Cambrian Yuertus Formation in Tarim Basin. Natural Gas Geoscience, 27(1):8-21 (in Chinese with English abstract) http://www.sciencedirect.com/science/article/pii/S2468256X16300116

     

    蔡志慧, 许志琴, 唐哲民, 何碧竹, 陈方远. 2011. 塔里木盆地东北缘库鲁克塔格地区的早古生代地壳变形以及造山时限. 中国地质, 38(4): 855-867 http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201104007.htm

     

    常海亮, 郑荣才, 郭春利, 文华国. 2016. 准噶尔盆地西北缘风城组喷流岩稀土元素地球化学特征. 地质论评, 62(3): 550-568 http://cpfd.cnki.com.cn/Article/CPFDTOTAL-CJDQ201510001059.htm

     

    陈强路, 杨鑫, 储呈林, 胡广, 史政, 姜海健, 刘文汇. 2015. 塔里木盆地寒武系烃源岩沉积环境再认识. 石油与天然气地质, 36(6): 880-887 doi: 10.11743/ogg20150602

     

    陈松, 桂和荣, 孙林华, 刘向红, 马艳平. 2011. 皖北九顶山组灰岩稀土元素地球化学特征及对古海水的制约. 中国地质, 38(3): 664-672 http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201103013.htm

     

    范德廉, 刘铁兵, 叶杰. 1991. 黑色岩系成岩成矿过程中的生物地球化学作用. 岩石学报, 24(2): 65-72 http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?flag=1&file_no=19910227&journal_id=ysxb

     

    范德廉, 张焘, 叶杰. 2004. 中国的黑色岩系及其有关矿床. 北京:科学出版社

     

    高占冬, 张中宁, 郑建京. 2014. 鄂尔多斯盆地西南缘奥陶系马家沟组烃源岩饱和烃特征研究. 矿物岩石地球化学通报, 33(6): 874-881 http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201406020.htm

     

    戈一伟, 李坤. 2014. 塔里木地区下寒武统玉尔吐斯组烃源岩地球化学特征. 重庆科技学院学报(自然科学版), 16(1): 8-12 http://www.cnki.com.cn/Article/CJFDTOTAL-CQSG201401004.htm

     

    胡广, 刘文汇, 腾格尔, 陈强路, 谢小敏, 王杰, 卢龙飞, 申宝剑. 2014. 塔里木盆地下寒武统泥质烃源岩成烃生物组合的构造-沉积环境控制因素. 石油与天然气地质, 35(5): 685-695 doi: 10.11743/ogg20140514

     

    贾承造, 张师本, 吴绍祖. 2004. 塔里木盆地及周边地层. 北京: 科学出版社.

     

    李超, 金承胜. 2015. 寒武纪早期大气-海洋氧含量与生命大爆发. 矿物岩石地球化学通报, 34(3): 501-508 http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201503009.htm

     

    梁薇, 牟传龙, 周恳恳, 葛祥英. 2011. 湘中地区下寒武统烃源岩沉积环境及其特征. 沉积与特提斯地质, 31(4): 34-39 http://www.cnki.com.cn/Article/CJFDTOTAL-TTSD201104005.htm

     

    潘文庆, 陈永权, 熊益学, 李保华, 熊冉. 2015. 塔里木盆地下寒武统烃源岩沉积相研究及其油气勘探指导意义. 天然气地球科学, 26(7): 1224-1232 http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201507003.htm

     

    钱逸, 尹恭正, 肖兵. 2000. 新疆下寒武统玉尔吐斯组软舌螺口盖和口盖状化石. 微体古生物学报, 17(4): 404-415 http://www.cnki.com.cn/Article/CJFDTOTAL-WSGT200004006.htm

     

    钱逸, 冯伟民, 李国祥, 杨爱华, 冯曼, 赵鑫, 肖兵. 2009. 新疆寒武纪早期单壳类软体动物化石分类学与生物地层学. 微体古生物学报, 26(3): 193-210 http://www.cnki.com.cn/Article/CJFDTOTAL-WSGT200903001.htm

     

    秦建中, 申宝剑, 陶国亮, 腾格尔, 仰云峰, 郑伦举, 付小东. 2014. 优质烃源岩成烃生物与生烃能力动态评价. 石油实验地质, 36(4): 465-472 doi: 10.11781/sysydz201404465

     

    向雷, 蔡春芳, 贺训云, 姜磊. 2012. 贵州渣拉沟剖面下寒武统黑色硅质岩微量元素富集机制. 岩石学报, 28(3): 971-980 http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?flag=1&file_no=20120325&journal_id=ysxb

     

    熊冉, 周进高, 倪新锋, 朱永进, 陈永权. 2015. 塔里木盆地下寒武统玉尔吐斯组烃源岩分布预测及油气勘探的意义. 天然气工业, 35(10): 49-56 doi: 10.3787/j.issn.1000-0976.2015.10.006

     

    徐林刚, Lehmann B, 张锡贵, 郑伟, 孟庆田. 2014. 云南昆阳磷矿黑色页岩微量元素特征及其地质意义. 岩石学报, 30(6): 1817-1827 http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?flag=1&file_no=20140622&journal_id=ysxb

     

    杨宗玉, 罗平, 刘波, 王珊, 白莹, 周明. 2017. 塔里木盆地阿克苏地区下寒武统玉尔吐斯组硅质岩分类及成因. 地学前缘, 待刊

     

    殷鸿福, 谢树成, 颜佳新, 胡超涌, 黄俊华, 腾格尔, 郄文昆, 邱轩. 2011. 海相碳酸盐烃源岩评价的地球生物学方法. 中国科学(地球科学), 41(7): 895-909 http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201107005.htm

     

    袁余洋, 蔡春芳, 汪天凯, 向雷, 贾连奇, 陈妍. 2014. 埃迪卡拉纪-寒武纪过渡时期下扬子深水盆地氧化还原性质:来自浙西底本剖面铁组分及有机碳同位素的约束. 科学通报, 59(23): 2278-2289 http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201423006.htm

     

    张爱云, 伍大茂, 郭丽娜, 王云龙. 1987. 海相黑色页岩建造地球化学与成矿意义. 北京:科学出版社

     

    周志毅, 赵治信, 胡兆珣, 陈丕基, 张师本, 雍天寿. 2001. 塔里木盆地各纪地层. 北京: 科学出版社, 1-359

     

    朱传玲, 闫华, 云露, 韩强, 马慧明. 2014. 塔里木盆地沙雅隆起星火1井寒武系烃源岩特征. 石油实验地质, 36(5): 626-632 doi: 10.11781/sysydz201405626

     

    朱光有, 陈斐然, 陈志勇, 张颖, 邢翔, 陶小晚, 马德波. 2016. 塔里木盆地寒武系玉尔吐斯组优质烃源岩的发现及其基本特征. 天然气地球科学, 27(1): 8-21 doi: 10.11764/j.issn.1672-1926.2016.01.0008

  • 加载中

(19)

(9)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2016-09-04
修回日期:  2016-12-12
刊出日期:  2017-06-01

目录