滇西腾冲—梁河地区花岗岩的年代学、地球化学及其构造意义
Geochronology and geochemistry of granites in the Tengliang area, western Yunnan: Tectonic implication
-
摘要: 滇西腾冲-梁河地区位于喜马拉雅东构造结的东侧,区域内广泛分布的中、新生代花岗岩(简称腾梁花岗岩)由古永岩群、宾榔江岩群的若干个花岗岩体组成,以岩基、岩株、岩墙状态产出。花岗岩呈现带状沿着一系列北北东向弧形断裂平行分布,展示明显的同构造剪切被动侵位和岩墙扩展侵位特征。岩浆锆石SHRIMP U-Pb定年结果显示,东侧的古永岩群花岗岩结晶年龄为白垩世晚期(76~68Ma);而西侧的槟榔江岩群花岗岩结晶年龄为稍晚的始新世(53Ma)。腾梁花岗岩主要为中、粗粒黑云母二长花岗岩、黑云母条纹长石花岗岩、伟晶花岗岩,缺少典型的富铝矿物。地球化学特征表明腾梁花岗岩是起源于中下地壳的过铝-强过铝高钾钙碱性花岗岩,源岩是富含泥质的硬砂岩,并具有岛弧-后碰撞花岗岩特征。由于喜马拉雅新特提斯封闭及印度陆块与亚洲陆块的陆陆碰撞发生于65Ma, 进一步推测腾梁花岗岩是新特提斯封闭到陆陆碰撞造成陆壳增厚所引起的中下地壳部分熔融的产物。腾梁花岗岩是冈底斯的东延部分,但在形成机制上,与冈底斯花岗岩具有明显的差别。Abstract: The granitoids outcropped extensively in the form of batholiths, stocks, and dikes in the Tengchong-Lianghe area, east of Eastern Himalaya Syntaxis. The plutons (so called Tengliang granites) are composed of Guyong Group and Binglanjiang Group. The Tengliang granites are distributed along a number of NNE-extending faults. They show some shearing features related to syn-tectonic intrusion and dyke-developing emplacement. SHRIMP zircon U-Pb dating reveals two episodes of magmatism of Late Cretaceous (76~67Ma; Guyong Group) and Early Paleocene (53Ma; Bingliangjiang Group). The Tengliang granites are composed of biotite monzonogranite, biotite perthite granite, pegmatite, with no typical peraluminous minerals. Characterized by high-potassium, peraluminous to strongly peraluminous, they were generated from lower to middle crust by partial melting of metapelite. The partial melting was induced by crustal thickening related to the subduction of Neo-Tethyan plate and subsequent collision between India and Asia continents. It is suggested that the Tengliang granites are the eastward extending part of Gandese batholith, but have different genesis.
-
Key words:
- Tengliang granites /
- U-Pb dating /
- Neo-Tethys /
- Continent-continent collision
-
[1] Altherr R,Hegner E,High-potassium,calc-alkaline I-type Plutonism in the European Variscides:Northern Vosges (France) and northern Schwarzwald (Germany),Lithos,2000.
[2] Atherton M,Ghani A,Slab breakoff:A model for Caledonian,Late Granite syn-collisional magmatism in the orthotectonic (metamorphic) zone of Scotland and Donegal,Ireland,Lithos,2002.
[3] Barbarin B,A review of the relationships between granitoid types,their origins and their geodynamic environments,Lithos,1999.
[4] Chung SL,Chu MF,Zhang YQ,Tibet tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism,Earth-Science Reviews,2005.
[5] Clemens JD,S-type granitic magmas-petrogenetic issues,models and evidence,Earth-Science Reviews,2003.
[6] Coulon C,Maluski H,Bollinger C,Mesozoic and Cenozoic volcanic rocks from central and southern Tibet:39Ar-40Ar dating,petrological characteristics and geodynamical significance,Earth and Planetary Science Letters,1986.
[7] Driver LA,Creaser RA,Chacko T,Erdmer P,Petregenesis of the Cretaceous Cassiar batholith,Yukon British Columbia,Canada:Implications for magmatism in the North American Cordilleran Interior,Geological Society of America Bulletin,2000.
[8] Ilbeylia N,Pearceb JA,Thirlwallc MF,Petrogenesis of collision-related plutonics in Central Anatolia,Turkey,Lithos,2004.
[9] Jiang W,MO XX,Zhao CH,Geochemistry of granitoid and its mafic micro-gramular enclave in Gandese belt,Qinghai--Xizang plateau,Acta Petrologica Sinica,1999.
[10] Lee HY,Chung SL,Wang JR,Miocene Jiali faulting and implications for Tibet tectonic evolution,Earth and Planetary Science Letters,2002.
[11] Liu ZS,Wang JM,Geological characteristics of granites from Southern Tibet,Chengdu:Siehuan Science Publishing House,1994.
[12] Lombardo B,Rolfo F,Two contrasting eclogite types in the Himalayas:Implication for the Himalayan orogeny,Journal of Geodynamics,2000.
[13] McDonough WF,Sun SS,The composition of the Earth,Chemical Geology,1995.
[14] Mo XX,Zhao ZD,Deng JF,Response of volcanism to the India-Asia collision,Earth Sciences Frontiers,2003(03).
[15] Mo XX,Hou ZQ,Niu YL,Mantle contributions to crustal thickening during continental collision:Evidence from Cenozoic igneous rocks in southern Tibet,Lithos,2007.
[16] Brien PJ,Subduction followed by collision:Alpine and Himalayan examples,Physics of the Earth and Planets Intriors,2001.
[17] Patino Dance AE,Johnson AD,Phase equilibria and melting productivity in the politic system:Implication for the origin of peraluminous granitoids and aluminous granulites,Contributions to Mineralogy & Petrology,1991.
[18] Petford N,Crnden AR,McCaffrey JW,Granitite magma formation,transportation and emplacement in the earth\'s crust,Nature,2000.
[19] Pitcher WS,Granite type and tectonic environment,London,UK:Academic Press,1983.
[20] Qiu RZ,Deng JF,Zhou S,Sr-Nd isotope studies of Mesozoic-Cenozoic granites in Qinghai--Tibet plateau,Acta Geoscientica Sinica,2003.
[21] Scharer U,Xu RH,Allegre CJ,U-Pb geochronology of Gangdese (Transhimalaya) Plutanism in the Lhasa-Xigaze region,Tibet,Earth and Planetary Science Letters,1984.
[22] Searle M,Parrish R,Hodges K,Shisha Pangma leucogranite,South Tibet Himalaya:Field relations,geochemistry,age,origin,and emplacement,Journal of Geology,1997.
[23] Sylvester PJ,Post-collisional strongly peraluminous granites,Lithos,1998.
[24] Visona D,Lobardo B,Two-mica and tourmaline leucogranites from the Everest-Makalu region (Nepal-Tibet):Himalayan leucogranite genesis by isobaric heating?,Lithos,2002.
[25] Whalen JB,Currie KL,Chappell BW,A-type granites:Geochemical characteristics,discrimination and petrogenesis,Contributions to Mineralogy & Petrology,1987.
[26] Xiao QH,Deng JF,Ma DQ,The ways of investigation on grunitoids,北京:地质出版社,2002.
[27] Xu YG,Lan JB,Yang QJ,Eocene break-off of the Neo-Tethyan slab as inferred from intraplate-type basaltic dykes in the Gaoligong belt,eastern Tibet,Chemical Geology,2008.
[28] Yang QJ,Zhong ZQ,Genesis of garnet-beating granites in UHP Terrane of Dabie-Sulu Orogenic Belt,Central China,Earth Science-journal of China University of Geosciences,2004.
[29] Yang QJ,Xu YG,Huang XL,Geochronology and geochemistry of granites in the Gaoligong tectonic belt,western Yunnan:Tectonic implications,Acta Petrologica Sinica,2006.
[30] Yin A,Harrison T,Geologic evolution of the Himalayayan Tibet Orogen,Annual Review of Earth and Planetary Sciences,2000.
[31] Zhong DL,Ji JQ,Hu SL,The subduction age of Tethyan oceanic crust:The 40Ar/39Ar micro-area dating of metamorphic residual oceanic crust,Chinese Science Bulletin,1999.
[32] 江万,莫宣学,赵崇贺,青藏高原冈底斯中段花岗岩类及其中铁镁质微粒包体地球化学特征,岩石学报,1999(01).
[33] 刘振声,王洁明,青藏高原南部花岗岩地质地球化学特征,成都:四川科学技术出版社,1994.
[34] 莫宣学,赵志丹,邓晋福,印度-亚洲大陆主碰撞过程的火山作用响应,地学前缘,2003(03).
[35] 邱瑞照,邓晋福,周肃,青藏高原中生代花岗岩Sr-Nd同位素研究,地球学报,2003.
[36] 肖庆辉,邓晋福,马大铨,花岗岩研究思维与方法,北京:地质出版社,2002.
[37] 杨启军,钟增球,大别-苏鲁超高压地体中面理化含榴花岗岩的成因研究,地球科学-中国地质大学学报,2004.
[38] 杨启军,徐义刚,黄小龙,高黎贡构造带花岗岩的年代学和地球化学及其构造意义,岩石学报,2006.
[39] 钟大赉,季建清,胡世玲,新特提斯洋俯冲时间:变质洋壳残片39Ar-40Ar微区年龄,科学通报,1999.
[40] 温大任,钟孙霖,宋彪,江苏南京,2005.
计量
- 文章访问数:
- PDF下载数:
- 施引文献: 0