金红石Zr和锆石Ti含量地质温度计
On the Zr-in-rutile and Ti-in-zircon geothermometers
-
摘要: 作为近年来新提出的两种单矿物微量元素温度计(金红石Zr含量温度计和锆石Ti含量温度计),由于其简单实用,一经提出便引起了广泛注意,许多研究者尝试将温度计应用于各种不同类型的岩石中。到目前为止每种温度计都存在几个不同的计算公式、这些公式的适用范围和适用的地质情况目前已有统一认识,但是对于所测定温度的地质意义还存在争议。在对变质岩中金红石Zr含量温度计的应用研究中,一部分研究者发现这个温度计所得到的温度与造岩矿物阳离子配分温度计相吻合,因此可以指示峰期变质温度。然而,在对大别-苏鲁造山带超高压变质岩的研究中发现,金红石Zr含量温度计得到的温度比峰期变质温度明显偏低。通过对比国内外的研究分析,认识到不仅压力、活度、元素扩散、流体作用的参与导致的退变反应可能致使微量元素温度计所记录的温度偏低,而且矿物的不同生长世代或生长介质的不同都可能致使微量元素温度偏低。因此,在应用地质温度计时,要结合样品的岩相学、矿物包裹体和微量元素、U-Pb体系定年等方面予以综合考虑,并对矿物的形成环境和形成世代加以限定,从而为合理解释矿物中微量元素的分配及其记录的温度信息提供有效制约。Abstract: The advents of Zr-in-rutile thermometer and Ti-in-zircon thermometer have prompted wide applications to petrological problems as well as ongoing tests of its validity. The thermometers have gained much attention and wide application to different types of high-grade metamorphic rocks due to their simplicity and validity. There are several different calibrations for each thermometer. However, the applicability of those calibrations is still ambiguous with hot debates on interpretation of thermometric data. So far, the studies of all thermometers are only limited to single component thermometer. Some studies have demonstrated that the metamorphic temperatures measured by the Zr-in-rutile thermometer are in good agreement with the results obtained by cation partition thermometers, suggesting that the Zr-in-rutile thermometers is capable of providing the peak metamorphic temperatures. On the other hand, Zr-in-rutile temperatures for Dabie-Sulu UHP metamorphic rocks were remarkably lower than those obtained by the other thermometers. By comparison of the different studies, it is realized that the lower temperatures from the Zr-in-rutile thermometry is possibly caused not only by the variations of TiO2 or SiO2 activity, pressure correction, element diffusivity and retrograde reaction in the presence of fluid, but also by different stages of mineral growth. Therefore, the petrographic paragenesis, mineral inclusions and trace elements, and U-Pb ages should be taken into account when applying the all thermometers to continental subduction-zone UHP metamorphic rocks. On this basis we are in a position to estimate the generations of minerals and conditions of their growth and thus to place reasonable constraints on the interpretation of thermometric data.
-
-
[1] Andersson J, Mller C and Johansson L. 2002. Zircon geochronology of migmatite gneisses along the mylonite zone (S Sweden): A major Sveconorwegian terrane boundary in the Baltic Shield. Precambr. Res., 114:121-147
[2] Baldwin JA and Brown M. 2008. Age and duration of ultrahigh-temperature metamorphism in the Anapolis-Itaucu Complex, southern Brasilia Belt, Central Brazil: Constraints from U-Pb geochronology, mineral rare earth element chemistry and trace-element thermometry. J. Metamorph. Geol., 26:213-233
[3] Baldwin JA, Brown M and Schmitz MD. 2007. First application of titanium-in-zircon thermometry to ultrahigh-temperature metamorphism. Geology, 35:295-298
[4] Bea F and Montero P. 1999. Behavior of accessory phases and redistribution of Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites in the lower crust: An example from the Kinzigite Formation of Ivrea-Verbano, NW Italy. Geochim. Cosmochim. Acta, 63:1133-1153
[5] Bindeman IN and Davis AM. 2000. Trace element partitioning between plagioclase and melt: Investigation of dopant influence on partition behavior. Geochim. Cosmochim. Acta, 64:2863-2878
[6] Bingen B, Austrheim H and Whitehouse MJ. 2001. Ilmenite as a source for zirconium during high-grade metamorphism? Textural evidence from the Caledonides of western Norway and implications for zircon geochronology. J. Petrol., 42:355-375
[7] Bingen B, Austrheim H, Whitehouse MJ and Davis WJ. 2004. Trace element signature and U-Pb geochronology of eclogite-facies zircon, Bergen Arcs, Caledonides of western Norway. Contrib. Mineral. Petrol., 147:671-683
[8] Chen RX, Zheng YF, Zhao ZF, Tang J, Wu FY and Liu XM. 2007. Zircon U-Pb ages and Hf isotopes in ultrahigh-pressure metamorphic rocks from the Chinese Continental Scientific Drilling project. J. Metamorph. Geol., 25:873-894
[9] Chen RX, Zheng YF and Xie LW. 2010. Metamorphic growth and recrystallization of zircon: Distinction by simultaneous in-situ analyses of trace elements, U-Th-Pb and Lu-Hf isotopes in zircons from eclogite-facies rocks in the Sulu orogen. Lithos, 114:132-154
[10] Chen ZY, Yu JJ, Xu Y and Zhou JX. 2006. The trace element of rutile from ecologites by EPMA. J. Chin. Elect. Microsc. Soc., 25:295-296 (in Chinese)
[11] Chen ZY and Li QL. 2007. Zr-in-rutile thermometry in eclogite at Jinheqiao in the Dabie orogen and its geochemical implications. Chi. Sci. Bull., 52:2638-2645 (in Chinese)
[12] Chen ZY, Yu JJ, Li XF and Wang PA. 2007. Discussion of the application of Zr-in-rutile thermometer in the Sulu-Dabie UHP eclogites. Acta Geologica Sinica, 81:1369-1377 (in Chinese with English abstract)
[13] Chen ZY and Li QL. 2008. Zr-in-rutile thermometry in eclogite at Jinheqiao in the Dabie orogen and its geochemical implications. Chi. Sci. Bull., 53:768-776
[14] Cherniak DJ and Watson EB. 2000. Pb diffusion in zircon. Chem. Geol., 172: 5-24
[15] Cherniak DJ and Watson EB. 2007. Ti diffusion in zircon. Chem. Geol., 242:470-483
[16] Cherniak DJ, Manchester J, Watson EB et al. 2007. Zr and Hf diffusion in rutile. Earth Planet. Sci. Lett., 261: 267-279
[17] Claiborne LL, Miller CF, Walker BA, Wooden JL, Mazdab FK and Bea F. 2006. Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: An example from the Spirit Mountain batholith, Nevada. Mineral. Mag., 70: 517-543
[18] Deer WA, Howie RA and Zussmann J. 1992. An Introduction to Rock-Forming Minerals. Harlow, United Kingdom: Longmans Scientific and Technical
[19] Degeling H, Eggins S and Ellis DJ. 2001. Zr budgets for metamorphic reactions, and the formation of zircon from garnet breakdown. Mineral. Mag., 65:749-758
[20] Degeling HS. 2003. Zr equlibria in metamorphic rocks. Ph.D. Thesis. Canberra: Australian National University, 1-231
[21] Ferriss EDA, Essene EJ and Becker U. 2008. Computational study of the effect of pressure on the Ti-in-zircon geothermometer. Eur. J. Mineral., 20: 745-755
[22] Ferry JM and Watson EB. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Mineral. Petrol., 154:429-437
[23] Flowerdew MJ, Millar IL, Vaughan APM, Horstwood MSA and Fanning CM. 2006. The source of granitic gneisses and migmatites in the Antarctic peninsular: A combined U-Pb SHRIMP and laser ablation HF isotope study of complex zircons. Contrib. Mineral. Petrol., 151: 751-768
[24] Foley SF, Barth MG and Jenner GA. 2000. Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochim. Cosmochim. Acta, 64:933-938
[25] Fraser G, Ellis D and Eggins S. 1997. Zirconium abundance in granulite-facies minerals, with implications for zircon geochronology in high-grade rocks. Geology, 25:607-610
[26] Fu B, Page ZF, Cavosie AJ, Fournelle J, Kita NT, Lackey JS, Wilde SA and Valley JW. 2008. Ti-in-zircon thermometry:Applications and limitations. Contrib. Mineral. Petrol., 156: 197-215
[27] Gao CG., Liu YS., Zong KQ, Hu ZC and Gao S. 2010. Microgeochemistry of rutile and zircon in eclogites from the CCSD main hole: Implications for the fluid activity and thermo-history of the UHP metamorphism. Lithos, 115:51-64
[28] Geisler T, Schaltegger U and Tomaschek F. 2007. Re-equilibration of zircon in aqueous fluids and melts. Elements, 3:43-50
[29] Haggerty SE. 1991. Oxide mineralogy of the upper mantle. Rev. Mineral., 25:355-416
[30] Hanchar JM and Hoskin PWO. 2003. Zircon. Rev. Mineral. Geochem., 53:243-271
[31] Harley SL and Kelly NM. 2007a. Zircon tiny but timely. Elements, 3:13-18
[32] Harley SL and Kelly NM. 2007b. The impact of zircon-garnet REE distribution data on the interpretation of zircon U-Pb ages in complex high-grade terrains: An example from the Rauer Islands, East Antarctica. Chem. Geol., 241:62-87
[33] Harrison TM and Schmidt AK. 2007. High sensitivity mapping of Ti distributions in Hadean zircons. Earth Planet. Sci. Lett., 261:9-18
[34] Harrison TM, Watson EB and Aikman AB. 2007. Temperature spectra of zircon crystallization in plutonic rocks. Geology, 35:635-638
[35] Harrison TM, Schmitt AK, McCulloch MT and Lovera OM. 2008. Early (≥4.5Ga) formation of terrestrial crust: Lu-Hf, δ18O, and Ti thermometry results for Hadean zircons. Earth Planet. Sci. Lett., 268: 476-486
[36] Hawkesworth CJ and Kemp AIS. 2006. Evolution of the continental crust. Nature, 443: 811-817
[37] Hermann J, Rubatto D, Korsakov A and Shatsky V. 2001. Multiple zircon growth during fast exhumation of diamondiferous deeply subducted continental crust (Kokchetav Massif, Kazakhstan). Contrib. Mineral. Petrol., 141: 66-82
[38] Hiess J, Nutman AP, Bennett VC and Holden P. 2008. Ti-in-zircon thermometry applied to contrasting Archean metamorphic and igneous systems. Chem. Geol., 247: 323-338
[39] Hofmann AE, Cavosie AJ, Guan Y, Valley JW and Eiler JM. 2007. Submicron-scale variations in Ti abundance in zircon. Geochim. Cosmochim. Acta., 71(Suppl. 1):A411
[40] Hoskin PWO and Black LP. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J. Metamorph. Geol., 18: 423-439
[41] Hoskin PWO. 2005. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim. Cosmochim. Acta, 69:637-648
[42] Jiao SJ, Guo JH, Mao Q et al. 2011. Application of Zr-in-rutile thermometry: A case study from ultrahigh-temperature granulites of the khondalite belt, North China Craton. Contrib. Mineral. Petrol., doi: 10.1007/s00410-010-0602-3
[43] Keay S, Lister G and Buick I. 2001. The timing of partial melting, Barrovian metamorphism and granite intrusion in the Naxos metamorphic core complex, Cyclades, Aegean Sea, Greece. Tectonophysics, 342:275-312
[44] Kemp AIS, Hawkesworth CJ, Paterson BA and Kinny PD. 2006. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature, 439: 580-583
[45] Klemme S, Blundy JD and Wood BJ. 2002. Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochim. Cosmochim. Acta, 66:3109-3123
[46] Klemme S, Prowatke S, Hametner K and Günther D. 2005. Partitioning of trace elements between rutile and silicate melts: Implications for subduction zones. Geochim. Cosmochim. Acta, 69:2361-2371
[47] Kotkova J and Harley SL. 2010. Anatexis during high-pressure crustal metamorphism: Evidence from garnet-whole-rock REE relationships and zircon-rutile Ti-Zr thermometry in Leucogranulites from the Bohemian Massif. J. Petrol., 51:1967-2001
[48] Lawford JA, Barth AP, Joseph LW and Frank M. 2008. Thermometers and thermobarometers in granitic systems. Rev. Mineral. Geochem., 69(1): 121-142
[49] Lee J, Williams I and Ellis D. 1997. Pb, U and Th diffusion in nature zircon. Nature, 390: 159-162
[50] Li XP, Zheng YF, Wu YB, Chen FK, Gong B and Li YL. 2004. Low-T eclogite in the Dabie terrane of China: Petrological and isotopic constraints on fluid activity and radiometric dating. Contrib. Mineral. Petrol., 148:443-470
[51] Liang JL., Ding X, Sun XM, Zhang ZM, Zhang H and Sun WD. 2009. Nb/Ta fractionation observed in eclogites from the Chinese Continental Scientific Drilling Project. Chem. Geol., 268:27-40
[52] Liati A and Gebauer D. 1999. Constraining the prograde and retrograde P-T-t path of Eocene HP rocks by SHRIMP dating difference zircon domain: Inferred rated of heating-burial, cooling and exhumation for central Rhodope, northern Greece. Contrib. Mineral. Petrol., 135:340-354
[53] Liati A, Gebauer D and Wysoczanski R. 2002. U-Pb SHRIMP-dating of zircon domains from UHP garnet-rich mafic rocks and late pegmatites in the Rhodope zone (N Greece): Evidence for Early Cretaceous crystallization and Late Cretaceous metamorphism. Chem. Geol., 184:281-299
[54] Liu FL, Xu ZQ, Katayama L, Yang JS, Maruyama S and Liou JG. 2001. Mineral inclusions in zircons of para- and orthogneiss from pre-pilot drillhole CCSD-PP1, Chinese Continental Scientific Drilling Project. Lithos, 59 (4):199-215
[55] Liu FL, Gerdes A, Liou JG et al. 2006. SHRIMP U-Pb zircon dating from Sulu-Dabie dolomitic marble, eastern China: Constraints on prograde, ultrahigh-pressure and retrograde metamorphic ages. J. Metamorphic. Geol., 24:569-589
[56] Liu FL, Gerdes A, Zeng LS and Xue HM. 2008. SHRIMP U-Pb dating, trace element and Lu-Hf isotope system of coesite-bearing zircon from amphibolite in SW Sulu UHP terrane, eastern China. Geochim. Cosmochim. Acta, 72: 2973-3000
[57] Liu SJ, Li JH and Santosh M. 2010. First application of the revised Ti-in-zircon geothermometer to Paleoproterozoic ultrahigh-temperature granulites to Tuguiwula, Inner Mongolia, North China Craton. Contrib. Mineral Petrol., 159: 225-235
[58] Lü ZL, Zhang L, Du J and Bucher K. 2009. Petrology of coesite-bearing eclogite from Habutengsu Valley, western Tianshan, NW China and its tectonometamorphic implication. J. Metamorphic. Geol., 27: 773-787
[59] Meinhold G. 2010. Rutile and its applications in earth sciences. Earth-Science Reviews, 102:1-28
[60] Miller C, Zanetti A and Thni M. 2007. Eclogitisation of gabbroic rocks: Redistribution of trace elements and Zr in rutile thermometry in an Eo-Alpine subduction zone (eastern Alps). Chem. Geol., 239: 96-123
[61] Mller A, OBrien PJ, Kennedy A and Kroner A. 2003. Linking growth episodes of zircon and metamorphic textures to zircon chemistry: An example from the ultra-high temperature granulites of Rogaland (SW Norway). In: Vance D, Muller W and Villa I (eds.). Geochronology: Linking the Isotope Record with Petrology and Textures. Geo. Soc. London Spec. Publication, 220:65-81
[62] Nasdala L, Wenzel M, Vavra G, Irmer G, Wenzel T and Kober B. 2001. Metamictization of natural zircon: Accumulation versus thermal annealing of radioactivity-induced damage, Contrib. Mineral. Petrol., 141:125-144
[63] Page FZ, Fu B, Kita NT, Fournelle J, Spicuzza MJ, Schulze DJ, Viljoen F, Basei MAS and Valley JW. 2007. Zircons from kimberlite: New insights from oxygen isotopes, trace element, and Ti in zircon thermometry. Geochim. Cosmochim. Acta, 71:3887-3903
[64] Pan Y, Dong P and Chen N. 2003. Non-Henrys Law behavior of REE partitioning between fluorapatite and CaF2-rich melts: Controls of intrinsic vacancies and implications for natural apatites. Geochim. Cosmochim. Acta, 67:1889-1900
[65] Preston J, Hartley A and Mange-Rajetzky M. 2002. The provenance of Triassic continental sandstones from the Beryl field, northern North Sea: Mineralogical, geochemical, and sedimentological constraints. J. Sediment. Res., 72:18-29
[66] Prowatke S and Klemme S. 2006. Rare earth element partitioning between titanite and silicate melts: Henrys Law revisited. Geochim. Cosmochim. Acta, 70:4997-5012
[67] Ravna EJK and Terry MP. 2004. Geothermobarometry of UHP and HP eclogites and schists: An evaluation of equilibria among garnet-clinopyroxene-kyanite-phengite-coesite/quartz. J. Metamorph. Geol., 22:579-592
[68] Rice CM, Darke KE and Still JVV. 1998. Tungsten-bearing rutile from the Kori Kollo gold mine, Bolivia. Mineral. Mag., 62:421-429
[69] Roberts M and Finger F. 1997. Do U-Pb zircon ages from granulites reflect peak metamorphic conditions? Geology, 25:319-322
[70] Rubatto D, Gebauer D and Compagnoni R. 1999. Dating of eclogite-facies zircons: The age of Alpine metamorphism in the Sesia-Lanzo Zone (Western Alps). Earth Planet. Sci. Lett., 167:141-158
[71] Rubatto D, Williams IS and Buick IS. 2001. Zircon and monazite response to prograde metamorphism in the Reynolds Range, Central Australia. Contrib. Mineral. Petrol., 140:458-468
[72] Rubatto D. 2002. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chem. Geol., 184:123-138
[73] Rubatto D and Hermann J. 2003. Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): Implications for Zr and Hf budget in subduction zones. Geochim. Cosmochim. Acta, 67:2173-2187
[74] Rubatto D, Liati A and Gebauer D. 2003. Dating UHP metamorphism. In: Carswell DA and Compagnoni R (eds.). Ultrahigh Pressure Metamorphism. EMU Notes in Mineralogy, 341-363
[75] Rubatto D and Hermann J. 2007. Zircon behavior in deeply subducted rocks. Elements, 3:31-35
[76] Rubatto D, Muntener O, Barnhoorn A and Gregory C. 2008. Dissolution-reprecipitation of zircon at low-temperature, high-pressure conditions (Lanzo Massif, Italy). Am. Mineral., 93:1519-1529
[77] Rudnick RL, Barth M, Horn I and McDonough WF. 2000. Rutile-bearing refractory Eclogites: Missing link between continents and depleted mantle. Science, 287:278-281
[78] Saunders AD, Tarney J and Weaver SD. 1980. Transverse geochemical variations across the Antarctic Peninsula: Implications for the genesis of calc-alkaline magmas. Earth Planet Sci. Lett., 46:344-360
[79] Schaltegger U, Fanning CM, Günther D, Maurin JC, Schulmann K and Gebauer D. 1999. Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: Conventional and in-situ U-Pb isotope, cathodoluminescence and microchemical evidence. Contrib. Mineral. Petrol., 134:186-201
[80] Schaltegger U. 2007. Hydrothermal zircon. Element, 3:51
[81] Schmidt A, Weyer S, John T and Brey GP. 2009. HFSE systematics of rutile-bearing eclogites: New insights into subduction zone processes and implications for the Earths HFSE budget. Geochim. Cosmochim. Acta, 73:455-468
[82] Sderlund U, Mller C, Andersson A, Johansson L and Whitehouse M. 2002. Zircon geochronology in polymetamorphic gneisses in the Sveconorwegian orogen, SW Sweden: Ion microprobe evidence for 1.46~1.42Ga and 0.98~0.96Ga reworking. Precambr. Res., 113:193-225
[83] Song SG, Zhang LF, Niu YL, Wei CJ, Liou JG and Shu GM. 2007. Eclogite and carpholite-bearing metasedimentary rocks in the North Qilian suture zone, NW China: Implications for Early Palaeozoic cold oceanic subduction and water transport into mantle. J. Metamorph. Geol., 25:547-563
[84] Spear FS, Wark DA and Cheney JT. 2006. Zr-in-rutile thermometry in bluschists from Sifnos, Greece. Contrib. Mineral. Petrol., 152: 375-385
[85] Stalder R, Foley SF, Brey GP et al. 1998. Mineral-aqueous fluid partitioning of trace elements at 900~1200℃ and 3.0GPa to 5.7GPa: New experimental data set for garnet, clinopyroxene and rutile and implications for mantle metasomatism. Geochim. Cosmochim. Acta, 62: 1781-1801
[86] Tichomirowa M, Whitehouse MJ and Nasdala L. 2005. Resorption, growth, solid state recrystallisation, and annealing of granulite facies zircon: A case study from the central Erzgebirge, Bohemian Massif. Lithos, 82:25-50
[87] Tomaschek F, Kennedy AK, Villa IM, Markus L and Chris B. 2003. Zircons from Syros, Cyclades, Greece: Recrystallization and mobilization of zircon during high-pressure metamorphism. J. Petrol., 44:1977-2002
[88] Tomkins HS, Powell R and Ellis DJ. 2007. The pressure dependence of the zirconium-in-rutile thermometer. J. Metamorph. Geol., 25: 703-713
[89] Troitzsch U and Ellis DJ. 2004. High-PT study of solid solutions in the system ZrO2-TiO2: The stability of srilankite. Eur. J. Mineral., 16:577-584
[90] Troitzsch U, Christy AG and Ellis DJ. 2004. Synthesis of ordered zirconium titanate (Zr,Ti)2O4 from the oxides using fluxes. J. American Ceramic Society, 87:2058-2063
[91] Troitzsch U and Ellis DJ. 2005. The ZrO2-TiO2 phase diagram. Journal of Materials Science, 40:4571-4577
[92] Troitzsch U, Christy AG and Ellis DJ. 2005. The crystal structure of disordered (Zr,Ti)O2 solid solution including srilankite: Evolution towards tetragonal ZrO2 with increasing Zr. Physics and Chemistry of Minerals, 32:504-514
[93] Vaggelli G, Borghi A, Calusi S, Cossio R, Giuntini L and Massi M. 2008. Micro-PIXE determination of Zr in rutile: An application to geothermometry of high-P rocks from the western Alps (Italy) and Mirko Massi. X-Ray Spectrom., 37: 146-150
[94] Valley JW. 2003. Oxygen isotopes in zircon. Rev. Mineral. Geochem., 53: 343-385
[95] Vavra G, Gebauer D and Schmid R. 1996. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): An ion microprobe (SHRIMP) study. Contrib. Mineral. Petrol., 122:337-358
[96] Vavra G, Schmid R and Gebauer D. 1999. Internal morphology, habit and U-Th-Pb microanalysis of amphibole to granulite facies zircon: Geochronology of the Ivrea Zone (southern Alps). Contrib. Mineral. Petrol., 134:380-404
[97] Wang RC, Wang S, Qiu JS and Ni P. 2005. Rutile in the UHP eclogites from the CCSD main drillhole (Donghai, eastern China): Trace-element geochemistry and metallogenetic implications. Acta Petrologica Sinica, 21(2):465-474 (in Chinese with English abstract)
[98] Watson EB. 1985. Henrys Law behavior in simple systems and in magmas: Criteria for discerning concentration-dependent partition coefficients in nature. Geochim. Cosmochim. Acta, 49:917-923
[99] Watson EB and Harrison TM. 2005. Zircon thermometer reveals minimum melting conditions on earliest Earth. Science, 308:841-844
[100] Watson EB, Wark DA and Thomas JB. 2006. Crystallization thermometers for zircon and rutile. Contrib. Mineral. Petrol., 151: 413-433
[101] Whitehouse MJ and Platt JP. 2003. Dating high-grade metamorphism-constraints from rare earth elements in zircon and garnet. Contrib. Mineral. Petrol., 145:61-74
[102] Wu YB, Zheng YF, Zhao ZF, Gong B, Liu XM and Wu FY. 2006. U-Pb, Hf and O isotope evidence for two episodes of fluid-assisted zircon growth in marble-hosted eclogites from the Dabie orogen. Geochim. Cosmochim. Acta, 70:3743-3761
[103] Wu YB, Zheng YF, Tang J, Gong B, Zhao ZF and Liu XM. 2007a. Zircon U-Pb dating of water-rock interaction during Neoproterozoic rift magmatism in South China. Chem. Geol., 246: 65-86
[104] Wu YB, Zheng YF, Zhang SB, Zhao ZF, Wu FY and Liu XM. 2007b. Zircon U-Pb and Hf isotope compositions of migmatite from the North Dabie terrane in China: Constraints on partial melting. J. Metamorph. Geol., 25: 991-1009
[105] Xia QX, Zheng YF, Yuan HL and Wu FY. 2009. Contrasting Lu-Hf and U-Th-Pb isotope systematics between metamorphic growth and recrystallization of zircon from eclogite-facies metagranite in the Dabie orogen, China. Lithos, 112:477-496
[106] Xia QX, Zheng YF and Hu ZC. 2010. Trace elements in zircon and coexisting minerals from low-T/UHP metagranite in the Dabie orogen: Implications for action of supercritical fluid during continental subduction-zone metamorphism. Lithos, 114:385-412
[107] Xiao YL, Sun WD, Hoefs J, Simon K, Zhang ZM, Li SG and Hofmann AW. 2006. Making continental crust through slab melting: Constraints from niobium-tantalum fractionation in UHP metamorphic rutile. Geochim. Cosmochim. Acta, 70:4770-4782
[108] Yang JH, Wu FY, Shao JA, Wilde SA, Xie LW and Liu XM. 2006. Constraints on the timing of the Yanshan fold and thrust belt, North China. Earth Planet. Sci. Lett., 246: 336-352
[109] Yang JH, Wu FY, Wilde SA, Xie LW, Yang YH and Liu XM. 2007. Tracing magma mixing in granite genesis: In situ U-Pb dating and Hf-isotope analysis of zircons. Contrib. Mineral. Petrol., 153: 177-190
[110] Yu JJ, Chen ZY, Wang PA, Li XF, Huang JP and Wang H. 2006a. Trace elements geochemistry of eclogites in the northern Jiangsu Province, eastern China. Acta Petrologica Sinica, 22(7):1883-1890 (in Chinese with English abstract)
[111] Yu JJ, Xu J, Chen ZY, Wang DH, Chen YC, Wang PG and Li XF. 2006b. Trace element geochemistry of rutiles in the eclogites from the Chines continental scientific Drilling project Main Hole. Acta Geologica Sinica, 80(12): 1835-1841 (in Chinese with English abstract)
[112] Zack T, Kronz A, Foley SF and Rivers T. 2002. Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chem. Geol., 184:97-122
[113] Zack T, Moraes R and Kronz A. 2004. Temperature dependence of Zr in rutile: Empirical calibration of a rutile thermometer. Contrib. Mineral. Petrol., 148: 471-488
[114] Zack T and Luvizotto GL. 2006. Application of rutile thermometry to eclogites. Mineral. Petrol., 88: 69-85
[115] Zhang GB, Ellis DJ, Christy AG, Zhang LF and Song SG. 2010. Zr-in-rutile thermometry in HP/UHP eclogites from Western China. Contrib. Mineral. Petrol., 160:427-439
[116] Zhang RY, Iizuka Y, Ernst WG, Liou JG, Xu ZQ, Tsujimori T, Lo CH and Jahn BM. 2009. Metamorphic P-T conditions and thermal structure of Chinese Continental Scientific Drilling main hole eclogites: Fe-Mg partitioning thermometer vs. Zr-in-rutile thermometer. J. Metamorphic Geol., 27:757-772
[117] Zhang SB, Zheng YF, Wu YB, Zhao ZF, Gao S and Wu FY. 2006a. Zircon U-Pb age and Hf-O isotope evidence for Paleoproterozoic metamorphic event in South China. Precambr. Res., 151: 265-288
[118] Zhang SB, Zheng YF, Wu YB, Zhao ZF, Gao S and Wu FY. 2006b. Zircon isotope evidence for >3.5Ga continental crust in the Yangtze craton of China. Precambr. Res., 146: 16-34
[119] Zhang ZM, Xu ZQ and Xu HF. 2000. Petrology of ultrahigh-pressure eclogites from the ZK703 drillhole in the Donghai, eastern China. Lithos, 52 (1-4): 35-50
[120] Zhang ZM, Xiao YL, Liu FL, Liou JG and Hoefs J. 2005. Petrogenesis of UHP metamorphic rocks from Qinglongshan, southern Sulu, east-central China. Lithos, 81 (1-4): 189-207
[121] Zhang ZM, Shen K, Sun WD, Liu YS, Liou, JG, Shi C and Wang JL. 2008. Fluids in deeply subducted continental crust: Petrology, mineral chemistry and fluid inclusion of UHP metamorphic veins from the Sulu orogen, eastern China. Geochim. Cosmochim. Acta, 72:3200-3228
[122] Zheng YF, Chen FK, Gong B and Li L. 2004. Zircon U-Pb and oxygen isotope evidence for a large-scale 18O depletion event in igneous rocks during the Neoproterozoic. Geochim. Cosmochim. Acta, 68: 4145-4165
[123] Zheng YF, Wu YB, Zhao ZF, Zhang SB, Xu P and Wu FY. 2005. Metamorphic effect on zircon Lu-Hf and U-Pb isotope systems in ultrahigh-pressure eclogite-facies metagranite and metabasite. Earth Planet. Sci. Lett., 240: 378-400
[124] Zheng YF, Zhao ZF, Wu YB, Zhang SB, Liu XM and Wu FY. 2006. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen. Chem. Geol., 231: 135-158
[125] Zheng YF. Gao TS, Wu YB and Gong B. 2007. Fluid flow during exhumation of deeply subducted continental crust: Zircon U-Pb age and O isotope studies of quartz vein in eclogite. J. Metamorph. Geol., 25: 267-283
[126] Zheng YF. 2009. Fluid regime in continental subduction zones: Petrological insights from ultrahigh-pressure metamorphic rocks. J. Geol. Soc., 166:763-782
[127] Zheng YF, Chen RX and Zhao ZF. 2009. Chemical geodynamics of continental subduction-zone metamorphism: Insights from studies of the Chinese Continental Scientific Drilling (CCSD) core samples. Tectonophysics, 475:327-358
[128] Zheng YF, Gao XY, Chen RX and Gao TS. 2011. Zr-in-rutile thermometry of eclogite in the Dabie orogen: Constraints on rutile growth during continental subduction-zone metamorphism. J. Asian Earth Sci., 40: 427-451
[129] 陈振宇,余金杰,徐钰,周剑雄. 2006. 榴辉岩中金红石的微量元素电子探针分析. 电子显微学报,25:295-296
[130] 陈振宇,李秋立.2007. 大别山金河桥榴辉岩中金红石Zr温度计及其意义.科学通报,52(22):2638-2645
[131] 陈振宇,余金杰,李晓峰,王平安. 2007. 金红石Zr温度计在苏鲁-大别榴辉岩研究中的应用-问题讨论. 地质学报, 81:1369-1377
[132] 王汝成,王硕,邱检生,倪培. 2005. CCSD主孔揭示的东海超高压榴辉岩中的金红石:微量元素地球化学及其成矿意义. 岩石学报,21(2): 465-474
[133] 余金杰,陈振宇,王平安,李晓峰,黄建平,王辉. 2006a. 苏北榴辉岩中金红石的微量元素地球化学特征. 岩石学报,22(7): 1883-1890
[134] 余金杰,徐珏,陈振宇,王登红,陈毓川,王平安,李晓峰. 2006b. 中国大陆科学钻探过程主孔榴辉岩中金红石微量元素地球化学特征. 地质学报,80(12): 1835-1841
-
计量
- 文章访问数:
- PDF下载数:
- 施引文献: 0