青海玉树莫海拉亨铅锌矿床S、Pb、Sr-Nd同位素组成: 对成矿物质来源的指示——兼与东莫扎抓铅锌矿床的对比
Sulfur, lead, strontium and neodymium isotope compositions of the Mohailaheng lead-zinc ore deposit in the Yushu area, southern Qinghai: Implications for the sources of ore-forming material in the deposit and comparison with those of Dongmozhazhua lead-zinc ore deposit
-
摘要: 青海玉树地区莫海拉亨铅锌矿床和东莫扎抓铅锌矿床均位于青藏高原金沙江缝合带和班公湖-怒江缝合带夹持的羌塘地体东北缘,是"三江"北段铜铅锌多金属成矿带铅锌矿床的2个典型代表。笔者曾通过对东莫扎抓铅锌矿床的S-Pb-Sr-Nd同位素组成特征研究,认为其成矿物质来源于沉积地层。本文在野外地质观察基础上,亦对莫海拉亨铅锌矿床的矿石矿物和重晶石进行了S同位素组成分析,对矿石矿物、脉石矿物和区域地层进行了Pb同位素组成分析,对脉石矿物进行了Sr-Nd同位素组成分析。分析结果表明,硫化物δ34S值为-30.0‰~7.4‰,峰值为-18‰~-2‰,反映了总体富轻硫的特征,而重晶石δ34S值为20.2‰~+24.2‰,来自于第三纪陆相盆地。宽的δ34S变化可以解释为流体在盆地内活动期间与不同地层单元发生相互作用,从而继承了不同物质单元的S同位素特点,还原硫应主要来自于硫酸盐的细菌还原或者含硫有机质的热还原,反映硫来自沉积盆地。矿石矿物的206Pb/204Pb、207Pb/204Pb和208Pb/204Pb分别为18.298~18.694、15.298~15.721、38.169~38.894,而脉石矿物的206Pb/204Pb、207Pb/204Pb和208Pb/204Pb分别为18.418~18.672、15.418~15.719、38.403~38.845。矿石矿物和脉石矿物的Pb同位素组成介于区域上地壳Pb组成范围内,总体类似于MVT矿床,显示Pb等金属元素来源于上地壳岩石。脉石矿物的(87Sr/86Sr)i、εSr(t)、(143Nd/144Nd)i和εNd(t)分别为0.70851~0.70906、57.4~65.2、0.512265~0.512361、-6.5~-4.6。Sr-Nd同位素特征亦显示脉石矿物的物质来源于上地壳岩石。总体来说,莫海拉亨铅锌矿床的S-Pb-Sr-Nd同位素特征均与东莫扎抓铅锌矿床的一样,显示均来自沉积地层。并结合矿床地质特征和地球化学特征,讨论了莫海拉亨铅锌矿床和东莫扎抓铅锌矿床形成的动力学背景。Abstract: The Mohailaheng and Dongmozhazhua Pb-Zn deposits in the Yushu area of Qinghai Province, located in the northeast margin of Qiangtang terrane which is between Jinshajiang suture zone and Bangonghu-Nujiang suture zone, are the two typical Pb-Zn deposits in the Cu-Pb-Zn polymetallic mineralization belt for the northern part of the Nujiang-Lancangjiang-Jinshajiang area. The authors thought the sources of ore-froming material were derived from the sedimentary strata by the research of sulfur, lead, strontium and neodymium isotope compositions of the Dongmozhazhua lead-zinc ore deposit. On the basis of geological field observations, the authors also made the research on the Mohailaheng lead-zinc ore deposit and selected sulfide minerals and barite for S isotope compositions analyses, sulfide minerals, gangue minerals and regional strata for Pb isotope compositions analyses, and gangue minerals for Sr-Nd isotope compositions. δ34S values of sulfide minerals are -30.0‰~+7.4‰, and show peaks at -18‰~-2‰, reflecting the characteristic of light sulfur. δ34S values of barite are 20.2‰~+24.2‰, implying the derivation of Tertiary continental facies basin. The ore deposit displays wide variations in sulfide δ34S values, indicating multiple sulfur sources. On account of the lack of magmatic activity, it is realistic to view the rocks in the basin as the source of sulfur. Sulfur in the rocks was transferred into hydrothermal fluids via fluid-rock interaction. Therefore, the variation in rock types across the basin is likely to influence the variation of sulfur isotopic compositions. Reduced sulfurs were mainly derived from the biogenic sulfate reduction or the thermochemical reduction of sulfur-bearing organic matter, implying that sulfur came from the sedimentary basin. The 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios for sulfide minerals vary in ranges of 18.298~18.694, 15.298~15.721 and 38.169~38.894, respectively. The 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios for gangue minerals are between 18.418~18.672, 15.418~15.719 and 38.403~38.845, respectively. In the diagrams of 207Pb/204Pb-206Pb/204Pb and 208Pb/204Pb-206Pb/204Pb, the Pb isotope compositions of the sulfide minerals and gangue minerals fall into the regional upper crust lead zone, similar to MVT deposit, implying that Pb might have come from the upper crust rocks. The (87Sr/86Sr)i, εSr(t), (143Nd/144Nd)i and εNd(t) ratios for gangue minerals vary in ranges of 0.70851~0.70906, 57.4~65.2, 0.512265~0.512361 and -6.5~-4.6, respectively. The Sr-Nd isotope compositions of the gangue minerals indicate that their matter sources also came from the upper crust rocks. On the whole, the characters of sulfur, lead, strontium and neodymium isotope compositions of the Mohailaheng lead-zinc ore deposit in the Yushu area are the same as those of the Dongmozhazhua lead-zinc ore deposit, implying that they both derived from the sedimentary strata. Together with the geological and geochemical features of the Mohailaheng and Dongmozhazhua Pb-Zn deposits, the authors discussed their dynamical settings.
-
[1] 侯增谦, 杨竹森, 徐文艺等. 2006a. 青藏高原碰撞造山带: I. 主碰撞造山成矿作用. 矿床地质, 25(4): 337-358
[2] 侯增谦, 潘桂棠, 王安建等. 2006b. 青藏高原碰撞造山带: II.晚碰撞转换成矿作用. 矿床地质, 25(5): 521-543
[3] 侯增谦, 宋玉财, 李政等. 2008. 青藏高原碰撞造山带Pb-Zn-Ag-Cu 矿床新类型:成矿基本特征与构造控矿模型. 矿床地质, 27(2): 421-441
[4] 李亚林, 王成善, 伊海生等. 2006. 西藏北部新生代大型逆冲推覆构造与唐古拉山的隆起. 地质学报, 80: 1118-1130
[5] 刘丛强, 黄智龙, 许成等. 2004. 地幔流体及其成矿作用——以四川冕宁稀土矿床为例. 北京: 地质出版社, 1-229
[6] 刘英超. 2009. 青海杂多东莫扎抓-莫海拉亨铅锌成矿作用. 硕士学位论文. 北京:中国地质科学院, 1-114
[7] 刘英超, 杨竹森, 侯增谦等. 2009. 青海玉树东莫扎抓铅锌矿床地质特征及碳氢氧同位素地球化学研究. 矿床地质, 28(6): 770-784
[8] 刘英超, 侯增谦, 杨竹森等. 2010. 青海玉树东莫扎抓铅锌矿床流体包裹体研究. 岩石学报, 26(6): 1805-1819
[9] 刘英超, 杨竹森, 侯增谦等. 2011. 青海玉树东莫扎抓铅锌矿床围岩蚀变和黄铁矿-闪锌矿矿物学特征及意义. 岩石矿物学杂志, 30(3): 490-506
[10] 马丽艳, 白云山, 牛志军等. 2007. 青海南部三叠纪结扎群火山岩地球化学特征及其构造环境分析. 地球学报, 28(5): 428-437
[11] 宋玉财. 2009. "三江"沉积岩容矿贱金属矿床:发育特点与成矿模型. 博士后研究工作报告. 北京:中国地质科学院, 1-119
[12] 宋玉财, 侯增谦, 杨天南等. 2011. "三江"喜马拉雅期沉积岩容矿贱金属矿床基本特征与成因类型. 岩石矿物学杂志, 30(3): 355-380
[13] 田世洪, 杨竹森, 侯增谦等. 2009. 玉树地区东莫扎抓和莫海拉亨铅锌矿床Rb-Sr和Sm-Nd等时线年龄及其地质意义. 矿床地质, 28(6): 747-758
[14] 田世洪, 杨竹森, 侯增谦等. 2011a. 青海玉树东莫扎抓和莫海拉亨铅锌矿床与逆冲推覆构造关系的确定——来自粗晶方解石Rb-Sr和Sm-Nd等时线年龄证据. 岩石矿物学杂志, 30(3): 475-489
[15] 田世洪, 杨竹森, 侯增谦等. 2011b. 青海玉树东莫扎抓铅锌矿床S、Pb、Sr-Nd同位素组成:对成矿物质来源的指示. 岩石学报,27(7):2173-2183
[16] 王召林. 2009. 三江北段玉树地区复合造山与成矿作用研究. 博士学位论文. 北京: 中国地质科学院, 1-114
[17] 王召林, 侯增谦, 杨竹森等. 2009. 青海杂多地区新生代构造特征与两种类型矿床的关系. 矿床地质, 28(2): 157-169
[18] 袁忠信, 施泽民, 白鸽等. 1995. 四川冕宁牦牛坪轻稀土矿床. 北京: 地震出版社,1-150
[19] 张宏飞, 陈岳龙, 徐旺春等. 2006. 青海共和盆地周缘印支期花岗岩类的成因及其构造意义. 岩石学报, 22(12): 2910-2922
[20] 张洪瑞. 2010. 三江北段沉积岩容矿铅锌矿床矿区构造变形与控矿模型. 博士学位论文. 北京: 中国地质科学院, 1-112
[21] 张文权, 王昌勇, 王生林等. 2007. 东莫扎抓矿区物探方法的综合应用效果. 青海国土经略, (4): 44-46
[22] 郑祥身, 边千韬, 郑健康. 1996. 青海可可西里地区新生代火山岩研究. 岩石学报, 12(4): 530-545
[23] 朱炳泉. 1998. 地球科学中同位素体系理论与应用——兼论中国大陆壳幔演化. 北京: 科学出版社, 1-330
计量
- 文章访问数: 9838
- PDF下载数: 5095
- 施引文献: 0