基性和超基性岩蛇纹石化的机理及成矿潜力

黄瑞芳, 孙卫东, 丁兴, 王玉荣. 基性和超基性岩蛇纹石化的机理及成矿潜力[J]. 岩石学报, 2013, 29(12): 4336-4348.
引用本文: 黄瑞芳, 孙卫东, 丁兴, 王玉荣. 基性和超基性岩蛇纹石化的机理及成矿潜力[J]. 岩石学报, 2013, 29(12): 4336-4348.
HUANG RuiFang, SUN WeiDong, DING Xing, WANG YuRong. Mechanism for serpentinization of mafic and ultramafic rocks and the potential of mineralization[J]. Acta Petrologica Sinica, 2013, 29(12): 4336-4348.
Citation: HUANG RuiFang, SUN WeiDong, DING Xing, WANG YuRong. Mechanism for serpentinization of mafic and ultramafic rocks and the potential of mineralization[J]. Acta Petrologica Sinica, 2013, 29(12): 4336-4348.

基性和超基性岩蛇纹石化的机理及成矿潜力

  • 基金项目:

    本文受科技部973项目(2012CB416703)、国家自然科学基金重大项目(41090373)和国家自然科学基金创新群体项目(41121002)联合资助

详细信息

Mechanism for serpentinization of mafic and ultramafic rocks and the potential of mineralization

More Information
  • 蛇纹石化是指基性岩(例如玄武岩)和超基性岩(橄榄岩、科马提岩等)在中、低温条件下产生的含蛇纹石的水热蚀变。蛇纹石化可以出现在不同的地质构造环境中,例如大洋底、扩张洋脊和俯冲带。蛇纹石化的特别之处在于:蛇纹石化过程中产生氢气,这可能解释地球早期生命起源的问题;蛇纹石化生成磁铁矿;蛇纹石富水(可达13%);蛇纹石富Cl、Li、Sr、As等元素。蛇纹石在高温下(>700℃)脱水形成橄榄石,Li、Sr、As等元素富集在流体中,流体交代地幔楔可改变地幔的微量元素组成。此外,铁矿、金矿和银矿等可赋存于蛇纹岩中,矿床的形成可能和基性或超基性岩的蛇纹石化相关。本文从以下4个方面探讨蛇纹石化的机理:(1)蛇纹石化的产物,主要介绍和蛇纹石化相关的热液流体的组成,蛇纹石化过程中产生氢气的量,利蛇纹石、纤蛇纹石和叶蛇纹石的形成条件,水镁石的形成条件,以及磁铁矿的形成;(2)蛇纹石化的反应速率;(3)蛇纹石化过程中元素的迁移;(4)蛇纹石化的成矿潜力。
  • 加载中
  • [1]

    Allen DE and Seyfried WE Jr. 2003. Compositional controls on vent fluids from ultramafic-hosted hydrothermal systems at mid-ocean ridges: An experimental study at 400℃, 500bars. Geochimica et Cosmochimica Acta, 67(8): 1531-1542

    [2]

    Anselmi B, Mellini M and Viti C. 2000. Chlorine in the Elba, Monti Livornesi and Murlo serpentinites: Evidence for sea-water interaction. European Journal of Mineralogy, 12: 137-146

    [3]

    Bach W, Pualick H, Garrido CJ, Ildefonse B, Meurer WP and Humphris SE. 2006. Unraveling the sequence of serpentinization reactions: Petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274). Geophysical Research Letters, 33(13): L13306

    [4]

    Beard JS, Frost BR, Fryer P, McCaig A, Searle R, Ildefonse B, Zinin P and Sharma SK. 2009. Onset and progression of serpentinization and magnetite formation in olivine-roch Troctolite from IODP hole U1309D. Journal of Petrology, 50(3): 387-403

    [5]

    Belley F, Ferré EC, Martín-Hernández F, Jackson MJ, Dyar MD and Catlos EJ. 2009. The magnetic properties of natural and synthetic (Fex, Mg1-x)2SiO4 olivines. Earth and Planetary Science Letters, 284(3-4): 516-526

    [6]

    Berndt ME, Allen DE and Seyfried WE Jr. 1996. Reduction of CO2 during serpentinization of olivine at 300℃ and 500bar. Geology, 24(4): 351-354

    [7]

    Bloomer SH. 1983. Distribution and origin of igneous rocks from the landward slopes of the Mariana Trench: Implications for its structure and evolution. Journal of Geophysical Research: Solid Earth, 88(B9): 7411-7428

    [8]

    Bonifacie M, Busigny V, Mével C, Philippot P, Agrinier P, Jendrzejewski N, Scambelluri M and Javoy M. 2008. Chlorine isotopic composition in seafloor serpentinites and high-pressure metaperidotites: Insights into oceanic serpentinization and subduction processes. Geochimica et Cosmochimica Acta, 72(1): 126-139

    [9]

    Buisson G and Leblanc M. 1985. Gold in carbonatized ultramafic rocks from ophiolite complexes. Economic Geology, 80(7): 2028-2029

    [10]

    Buisson G and Leblanc M. 1987. Gold in mantle peridotites from Upper Proterozoic ophiolites in Arabia, Mali, and Morocco. Economic Geology, 82(8): 2091-2097

    [11]

    Burkhard DJM. 1993. Accessory chromium spinels: Their coexistence and alteration in serpentinites. Geochimica et Cosmochimica Acta, 57(6): 1297-1306

    [12]

    Charlou JL, Fouquet Y, Bougault H, Donval JP, Etoubleau J, Jean-Baptiste P, Dapoigny A, Appriou P and Rona PA. 1998. Intense CH4 plumes generated by serpentinization of ultramafic rocks at the intersection of the 15°20'N fracture zone and the Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta, 62(13): 2323-2333

    [13]

    Charlou JL, Donval JP, Fouquet Y, Jean-Baptiste P and Holm N. 2002. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal filed (36°14ˊN, MAR). Chemical Geology, 191: 345-359

    [14]

    Coleman RG and Keith TE. 1971. A chemical study of serpentinization-Burro Mountain, California. Journal of Petrology, 12(2): 311-328

    [15]

    Costa IRD, Barriga FJAS, Viti C, Mellini M and Wicks FJ. 2008. Antigorite in deformed serpentinites from the Mid-Atlantic Ridge. European Journal of Mineralogy, 20(4): 563-572

    [16]

    Decitre S, Deloule E, Reisberg L, James R, Agrinier P and Mével C. 2002. Behavior of Li and its isotopes during serpentinization of oceanic peridotites. Geochemistry, Geophysics, Geosystems, 3(1): 1-20

    [17]

    Deschamps F, Guillot S, Godard M, Chauvel C, Andreani M and Hattori K. 2010. In situ characterization of serpentinites from forearc mantle wedges: Timing of serpentinization and behavior of fluid-mobile elements in subduction zones. Chemical Geology, 269(3-4): 262-277

    [18]

    Diella V, Ferrario A and Rossetti P. 1994. The magnetite ore deposits of the southern Aosta Valley: Chromitite transformed during an alpine metamorphic event. Ofioliti, 19: 247-256

    [19]

    Douville E, Charlou JL, Oelkers EH, Bienvenu P, Jove Colon CF, Donval JP, Fouquet Y, Prieur D and Appriou P. 2002. The rainbow vent fluids (36°N14'N, MAR): The influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids. Chemical Geology, 184(1-2): 37-48

    [20]

    Dugan MA. 1979. A microprobe study of antigorite and some serpentine pseudomorphs. Canadian Mineralogist, 17: 771-784

    [21]

    Eckstrand OR. 1975. The Dumont serpentinite: A model for control of nickeliferous opaque mineral assemblages by alteration reactions in ultramafic rocks. Economic Geology, 70(1): 183-201

    [22]

    Evans BW, Kuehner SM and Chopelas A. 2009. Magnetite-free, yellow lizardite serpentinization of olivine websterite, Canyon Mountain complex, N.E. Oregon. American Mineralogist, 94(11-12): 1731-1734

    [23]

    Evans BW. 2010. Lizardite versus antigorite serpentinite: Magnetite, hydrogen, and life. Geology, 38(10): 879-882

    [24]

    Fisher RL and Engel CG. 1969. Ultramafic and basaltic rocks dredged from the nearshore flank of the Tonga trench. Geological Society of America Bulletin, 80(7): 1373-1378

    [25]

    Foustoukos DI and Seyfried WE Jr. 2004. Hydrocarbons in hydrothermal vent fluids: The role of chromium-bearing catalysts. Science, 304(5673): 1002-1005

    [26]

    Foustoukos DI, Savov IP and Janecky DR. 2008. Chemical and isotopic constraints on water/rock interactions at the Lost City hydrothermal field, 30°N Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta, 72(22): 5457-5474

    [27]

    Frost BR and Beard JS. 2007. On silica activity and serpentinization. Journal of Petrology, 48(7): 1351-1368

    [28]

    Fryer P, Ambos EL and Hussong DM. 1985. Origin and emplacement of Mariana forearc seamounts. Geology, 13(11): 774-777

    [29]

    Gahlan HA, Arai S, Ahmed AH, Ishida Y, Abdel-Aziz YM and Rahimi A. 2006. Origin of magnetite veins in serpentinite from the Late Proterozoic Bou-Azzer ophiolite, Anti-Atlas, Morocco: An implication for mobility of iron during serpentinization. Journal of African Earth Sciences, 46(4): 318-330

    [30]

    Golightly JP and Arancibia ON. 1979. The chemical composition and infrared spectrum of nickel and iron substituted serpentine from a nickeliferous laterite profile, Soroako, Indonesia. Canadian Mineralogist, 17: 719-728

    [31]

    González-Mancera G, Ortage-Gutiérrez F, Proenza JA and Atudorei V. 2009. Petrology and geochemistry of Tehuitzingo serpentinites (Acarlán Complex, SW Mexico). Boletín de la Sociedad Geológica Mexicana, 61(3): 419-435

    [32]

    Gunnarsson I, Arnórsson S and Jakobsson S. 2005. Precipitation of poorly crystalline antigorite under hydrothermal conditions. Geochimica et Cosmochimica Acta, 69(11): 2813-2828

    [33]

    Hattori KH and Guillot S. 2003. Volcanic fronts as a consequence of serpentinite dehydration in the mantle wedge. Geology, 31(6): 525-528

    [34]

    Hattori K, Takahashi Y, Guillot S and Johanson B. 2005. Occurrence of arsenic (V) in forarc mantle serpentinites based on X-ray absorption spectroscopy study. Geochimica et Cosmochimica Acta, 69(23): 5585-5596

    [35]

    Horita J and Berndt ME. 1999. Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science, 285(5430): 1055-1057

    [36]

    Hyndman RD and Peacock SM. 2003. Serpentinization of the forearc mantle. Earth and Planetary Science Letters, 212(3-4): 417-432

    [37]

    Ⅱshi K and Saito M. 1973. Synthesis of antigorite. American Mineralogist, 58: 915-919

    [38]

    Janecky DR and Seyfried WE. 1986. Hydrothermal serpentinization of peridotite within the oceninc crust: Experimental investigations of mineralogy and major element chemistry. Geochimica et Cosmochimica Acta, 50(7): 1357-1378

    [39]

    Ji FW, Zhou HY and Yang QH. 2008. The abiotic formation of hydrocarbons from dissolved CO2 under hydrothermal conditions with cobalt-bearing magnetite. Origins of Life and Evolution of Biospheres, 38(2): 117-125

    [40]

    Kelley DS, Karson JA, Blackman DK, FrÜh-Green GL, Butterfield DA, Lilley MD, Olson EJ, Schrenk MO, Roe KK, Lebon GT, Rivizzigno P and the AT3-60 Shipboard Party. 2001. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N. Nature, 412: 145-149

    [41]

    Kodolányi J, Pettke T, Spandler C, Kamber BS and Gméling K. 2012. Geochemistry of ocean floor and fore-arc serpentinites: Constraints on the ultramafic input to subduction zones. Journal of Petrology, 53(2): 235-270

    [42]

    Lafay R, Montes-Hernandez G, Janots E, Chiriac R, Findling N and Toche F. 2012. Mineral replacement rate of olivine by chrysotile and brucite under high alkaline conditions. Journal of Crystal Growth, 347(1): 62-72

    [43]

    Lafay R, Deschamps F, Schwartz S, Guillot S, Godard M, Debret B and Nicollet C. 2013. High-pressure serpentinites, a trap-and-release system controlled by metamorphic conditions: Example from the Piedmont zone of the western Alps. Chemical Geology, 343: 38-54

    [44]

    Lazar C, McCollom TM and Manning CE. 2012. Abiogenic methanogenesis during experimental komatⅡte serpentinization: Implications for the evolution of the Early Precambrian atmosphere. Chemical Geology, 326-327(9): 102-112

    [45]

    Leblanc M and Lbouabi M. 1988. Natice silver mineralization along a rodingite tectonic contact between serpentinite and quartz diorite (Bou Azzer, Morocco). Economic Geology, 83(7): 1379-1391

    [46]

    Leblanc M and Fischer W. 1990. Gold and platinum group elements in cobalt-arsenide ores: Hydrothermal concentration from a serpentinite source-rock (Bou Azzer, Morocco). Mineralogy and Petrology, 42(1-4): 197-209

    [47]

    Maekawa H, Yamamoto K, Teruaki I, Ueno T and Osada Y. 2001. Serpentinite seamounts and hydrated mantle wedge in the Izu-Bonin and Mariana forearc regions. Bull. Earthq. Res. Inst. Univ. Tokyo, 76: 355-366

    [48]

    Malvoisin B, Carlut J and Brunet F. 2012a. Serpentinization of oceanic peridotites: 1. A high sensitivity method to monitor magnetite production in hydrothermal experiments. Journal of Geophysical Research, 117: B01104, doi:10.1029/2011JB008612

    [49]

    Malvoisin B, Brunet F, Carlut J, Roumejon S and Cannat M. 2012b. Serpentinization of oceanic peridotites: 2. Kinetics and processes of San Carlos olivine hydrothermal alteration. Journal of Geophysical Research, 117: B04102, doi:10.1029/2011JB008842

    [50]

    Marcaillou C, Muoz M, Vidal O, Parra T, Harfouche M. 2011. Mineralogical evidence for H2 degassing during serpentinization at 300℃/300bar. Earth and Planetary Science Letters, 303(3-4): 281-290

    [51]

    Martin B and Fyfe WS. 1970. Some experimental and theoretical observations on the kinetics of hydration reactions with particular reference to serpentinization. Chemical Geology, 6: 185-202

    [52]

    McCollom TM and Bach W. 2009. Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochimica et Cosmochimica Acta, 73(3): 856-875

    [53]

    McCollom TM and Seewald JS. 2001. A reassessment of the potential for reduction of dissolved CO2 to hydrocarbons during serpentinization of olivine. Geochimica et Cosmochimica Acta, 65(21): 3769-3778

    [54]

    Mellini M, Rumori C and Viti C. 2005. Hydrothermally reset magmatic spinels in retrograde serpentinites: Formation of "ferritchromit" rims and chlorite aureoles. Contributions to Mineralogy and Petrology, 149(3): 266-275

    [55]

    Menzies MA, Long A, Ingram G, Tatnel M and Janecky D. 1993. MORB-peridotite-sea water interaction: Experimental constraints on the behavior of trace elements, 87Sr/86Sr and 143Nd/144Nd ratios. Geological Society, London, Special Publications, 76(1): 309-322

    [56]

    Mével C. 2003. Serpentinization of abyssal peridotites at mid-ocean ridges. Comptes Rendus Geoscience, 335(10-11): 825-852

    [57]

    Michailidis KM. 1990. Zoned chromites with high Mn-contents in the Fe-Ni-Cr-laterite ore deposits from the Edessa area in Northern Greece. Mineralium Deposita, 25(3): 190-197

    [58]

    Moody JB. 1976. An experimental study of the serpentinization of iron-bearing olivines. Canadian Mineralogist, 14: 462-478

    [59]

    Nordstrom DK. 2002. Worldwide occurrences of arsenic in ground water. Science, 296(5576): 2143-2145

    [60]

    Normand C, Willilams-Jones AE, Martin RF and Vali H. 2002. Hydrothermal alteration of olivine in a flow-through autoclave: Nucleation and growth of serpentine phases. American Mineralogist, 87(11-12): 1699-1709

    [61]

    O’Hanley DS and Dyar MD. 1993. The composition of lizardite 1T and the formation of magnetite in serpentinites. American Mineralogist, 78: 391-404

    [62]

    O' Hanley DS. 1996. Serpentinites: Records of Tectonic and Petrological History. New York: Oxford University Press

    [63]

    Okamoto A, Ogasawara Y, Ogawa Y and Tsuchiya N. 2011. Progress of hydration reactions in olivine-H2O and orthopyroxenite-H2O systems at 250℃ and vapor-saturated pressure. Chemical Geology, 289(3-4): 245-255

    [64]

    Proskurowski G, Lilley MD, Seewald JS, FrÜh-Green GL, Olson EJ, Lupton JE, Sylva SP and Kelley DS. 2008. Abiogenic hydrocarbon production at Lost City hydrothermal field. Science, 319(5863): 604-606

    [65]

    Rossetti P, Gatta GD, Diella V, Carbonin S, Giusta AD and Ferrario A. 2009. The magnetite ore districts of the southern Aosta Valley (Western Alps, Italy): A mineralogical study of metasomatized chromite ore. Mineralogical Magazine, 73(5): 737-751

    [66]

    Saumur BM and Hattori K. 2013. Zoned Cr-spinel and ferritchromite alteration in forearc mantle serpentinites of the Rio San Juan Complex, Dominican Republic. Mineralogical Magazine, 77(1): 117-136

    [67]

    Scambelluri M, Rampone E and Piccardo GB. 2001. Fluid and element cycling in subducted serpentinite: A trace-element study of the Erro-Tobbio high-pressure ultramafites (western Alps, NW Italy). Journal of Petralogy, 42(1): 55-67

    [68]

    Scambelluri M, Fiebig J, Malaspina N, MÜntener O and Pettke T. 2004.Serpentinite subduction: Implications for fluid processes and trace-element recycling. International Geology Review, 46(7): 595-613

    [69]

    Schmidt K, Koschinsky A, Garbe-Schnberg D, Carvalho LM and Seifert R. 2007. Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15°N on the Mid-Atlantic Ridge: Temporal and spatial investigation. Chemical Geology, 242(1-2): 1-21

    [70]

    Schmidt MW and Poli S. 1998. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth and Planetary Science Letters, 163(1-4): 361-379

    [71]

    Schrenk MO, Brazelton WJ and Lang SQ. 2013. Serpentinization, carbon, and deep life. Review in Mineralogy & Geochemistry, 75(1): 575-606

    [72]

    Seyfried WE Jr and Dibble WE Jr. 1980. Seawater-peridotite interaction at 300℃ and 500bars: Implications for the origin of oceanic serpentinites. Geochimica et Cosmochimica Acta, 44(2): 309-321

    [73]

    Seyfried WE Jr and Bischoff JL. 1981. Experimental seawater-basalt interaction at 300℃, 500bars, chemical exchange, secondary mineral formation and implications for the transport of heavy metals. Geochimica et Cosmochimica Acta, 45: 135-147

    [74]

    Seyfried WE Jr, Foustoukos DI and Fu Q. 2007. Redox evolution and mass transfer during serpentinization: An experimental and theoretical study at 200℃, 500bar with implications for ultramafic-hosted hydrothermal systems at Mid-Ocean Ridges. Geochimica et Cosmochimica Acta, 71(15): 3872-3886

    [75]

    Uehara S and Shirozu H. 1985. Variations in chemical composition and structural properties of antigorites. Mineralogical Journal, 12(7): 299-318

    [76]

    Ulmer GC. 1974. Alteration of chromite during serpentinization in the Pennsylvania-Maryland district. American Mineralogist, 59: 1236-1241

    [77]

    Ulmer P and Trommsdorff V. 1995. Serpentine stability to mantle depths and subduction-related magmatism. Science, 268(5212): 858-861

    [78]

    Wang JA, Novaro O, Bokhimi X, López T, Gómez R, Navarrete J, LIanos ME and López-Salinas E. 1998. Characterizations of the thermal decomposition of brucite prepared by sol-gel technique for synthesis of nanocrystallize MgO. Materials Letters, 35(5-6): 317-323

    [79]

    Wang XM, Zeng ZG and Chen JB. 2009. Serpentinization of peridotite in the Mariana Arc. Progress in Natural Science, 19(8): 859-867 (in Chinese)

    [80]

    Wang YR, Fan WL and Yu YM. 1981. Geochemical mechanism of alkali metasomatism and the formation of iron deposits. Geochimica, (1): 95-102 (in Chinese with English abstract)

    [81]

    Wunder B, Wirth R and Gottschalk M. 2001. Antigorite: Pressure and temperature dependence of polysomatism and water content. European Journal of Mineralogy, 13(3): 485-495

    [82]

    Zucchetti S, Mastrangelo F, Rossetti P and Sandrone R. 1988. Serpentinization and metamorphism: Their relationships with metallogeny in some ophiolitic ultramafics from the Alps. In: Zuffar’ Days Symposium in Honor of Piero Zuffardi. Cagliari: University of Cagliari, 137-159

    [83]

    附中文参考文献

    [84]

    汪小妹, 曾自刚, 陈俊兵. 2009. 马里亚纳前弧南部橄榄岩的蛇纹石化. 自然科学进展, 19(8): 859-867

    [85]

    王玉荣, 樊文苓, 郁云妹. 1981. 碱交代与铁矿形成的地球化学机理探讨. 地球化学, (1): 95-102

  • 加载中
计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2013-08-29
修回日期:  2013-10-30
刊出日期:  2013-12-31

目录