江西省峡江铀矿床两期印支期花岗岩的年代学、岩石地球化学和岩石成因——对华南印支期构造背景和产铀花岗岩成因的指示
Geochronology, geochemistry and petrogenesis of two-stage Indosinian granites from the Xiajiang uranium ore deposit, Jiangxi Province:Implication for Indosinian tectonics and genesis of uranium-bearing granites in South China
-
摘要: 位于江西省的峡江铀矿床为华南一个典型的花岗岩型铀矿床,铀矿体产在金滩花岗岩体中。野外地质调查和锆石U-Pb同位素定年工作表明金滩花岗岩体主要由两期的印支期花岗岩组成,其中含矿的等粒状二云母花岗岩形成于239±1Ma,而主体的斑状黑云母花岗岩则形成于226±2Ma。二云母花岗岩具有较高的SiO2含量(74.09%~74.53%)和明显低的TiO2、CaO和MgO含量,铝饱和指数为1.20~1.46,含有白云母和石榴子石等过铝质矿物,属于典型的强过铝S型花岗岩。斑状黑云母花岗岩的地球化学特征略微不同于二云母花岗岩,相对富集高场强元素和稀土元素,具有明显更低的Rb/Sr比值以及更小的Eu负异常,铝饱和指数变化为1.05~1.13,属于弱过铝到强过铝花岗岩。同位素组成上,两者都具有较低的εNd(t)值(二云母花岗岩:-9.0~-8.8;斑状黑云母二长花岗岩:-9.8~-9.4)和古元古代的模式年龄(二云母花岗岩:1.73~1.75Ga;斑状黑云母二长花岗岩:1.77~1.80Ga)。地球化学和同位素特征表明金滩岩体中的这两期印支期花岗岩应该都为S型花岗岩。较高的Rb/Sr比值和较低的CaO/Na2O比值表明二云母花岗岩主要由富粘土的泥质沉积岩部分熔融而来,而斑状黑云母二长花岗岩则主要由贫粘土的碎屑沉积岩部分熔融而来。金滩岩体中的两期印支期花岗岩分别对应于华南印支期同碰撞挤压和碰撞后伸展期的岩浆作用。二云母花岗岩含有更高的U含量,矿物学以及地球化学特征与华南其他的典型产铀花岗岩类似。对比研究表明,华南印支期产铀花岗岩的形成应与同碰撞期挤压背景下的泥质沉积岩的部分熔融有关。Abstract: The Xiajiang uranium ore deposit in Jiangxi Province is one of the granite-hosted uranium ore deposits in South China. The uranium orebodies are hosted by the Jintan granitic batholith in the Jiangxi Province. Field geological survey and zircon U-Pb dating indicated that the Jintan batholith is composed of two stage Indosinian granites. The U-bearing two-mica granite was emplaced at 239±1Ma, and the porphyritic biotite granite was emplaced at 226±2Ma. The two-mica granite has high SiO2 contents (74.09%~74.53%) and low TiO2, CaO and MgO contents. A/CNK values of the granites vary from 1.20 to 1.46, which is consisted with that the granite contains muscovite and garnet. The two-mica granite belongs to typical strongly peraluminous S type granite. However, the porphyritic biotite granite shows different geochemical characteristics. It has relatively higher HFSE and REE contents, lower Rb/Sr ratios and less pronounced negative Eu anomalies. A/CNK values of the porphyritic biotite granite vary from 1.05 to 1.13. Both of the granites have low εNd(t) values (-9.0 to -8.8 for the two-mica granite and -9.8 to -9.4 for the porphyritic biotite granite) with Paleo-proterozoic model ages (1.73~1.75Ga for the two-mica granite and 1.77~1.80Ga for the porphyritic biotite granite). Geochemical and isotopic characteristics indicate that both the two-mica granite and the porphyritic biotite granite belong to S-type granite. However, the two-mica granite should be derived from anatexis of clay-rich pelitic rocks and the porphyritic biotite granite from partial melting of clay-poor psammitic rocks. We suggested that the two-mica granite formed earlier from dehydrate-melting of crust at syn-collisional compressional environment and the porphyritic biotite granite formed later at the post-collisional extensitional environment. The two-mica granite contains higher U contents, and its mineralogical and geochemical characteristics are similar to those of typical U-bearing granites in South China. Comparative studies indicate that Indosinian U-bearing granites in South China are likely formed from anatexis of pelitic rocks during syn-collisional compressional tectonic regime.
-
Key words:
- U-bearing granite /
- Indosinian /
- Jintan granites /
- Xiajiang U ore deposit /
- South China
-
[1] Andersen T. 2002. Correction of common Pb in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59-79
[2] Boynton WL. 1984. Geochemistry of the rare earth elements: Meteorite studies. In: Henderson P (ed.). Rare Earth Element Geochemistry. Amsterdam: Elsevier, 63-114
[3] Bureau of Geology and Mineral Resources of Jiangxi Province. 1984. Regional Geology of Jiangxi Province. Beijing: Geological Publishing Press, 358-540 (in Chinese)
[4] Carter A, Roques D, Bristow C and Kinny P. 2001. Understanding Mesozoic accretion in Southeast Asia: Significance of Triassic thermotectonism (Indosinian orogeny) in Vietnam. Geology, 29(3): 211-214
[5] Chen PR. 2004. Geodynamic setting of Mesozoic magmatism and its relationship to uranium metallogenesis in southeastern China. Uranium Geology, 20(5): 266-270 (in Chinese with English abstract)
[6] Chen YW, Bi XW, Hu RZ and Dong SH. 2012. Element geochemistry, mineralogy, geochronology and zircon Hf isotope of the Luxi and Xiazhuang granites in Guangdong Province, China: Implications for U mineralization. Lithos, 150: 119-134
[7] Clemens JD. 2003. S-type granitic magmas-petrogenetic issues, models and evidence. Earth-Science Reviews, 61(1-2): 1-18
[8] Ding X, Chen PR, Chen WF, Huang HY and Zhou XM. 2006. Single zircon LA-ICPMS U-Pb dating of Weishan granite (Hunan, South China) and its petrogenetic significance. Science in China (Series D), 49(8): 816-827
[9] Dong CY, Zhao KD, Jiang SY, Chen WF, Chen PR, Ling HF and Yang SY. 2010. Zircon geochronology, geochemistry and petrogenesis of granite from the Baimianshi uranium ore district in the southern Jiangxi Province. Geological Journal of China Universities, 16(2): 149-160 (in Chinese with English abstract)
[10] Gao JF, Lu JJ, Lai MY, Lin YP and Pu W. 2003. Analysis of trace elements in rock samples using HR-ICP-MS. Journal of Nanjing University (Natural Science), 39(6): 844-850 (in Chinese with English abstract)
[11] Hoskin PWO and Schaltegger U. 2003. The compositions of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-55.
[12] Jacobsen SB and Wasserburg GJ. 1980. Sm-Nd isotopic evolution of chondrites. Earth and Planetary Science Letter, 50(1): 139-155
[13] Jahn BM and Condie KC. 1995. Evolution of the Kaapvaal craton as viewed from geochemical and Sm-Nd isotopic analyses of intracratonic pelites. Geochimica et Cosmochimica Acta, 59(11): 2239-2285
[14] Jung S and Pfnder JA. 2007. Sources composition and melting temperatures of orogenic granitoids: Constraints from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry. European Journal of Mineralogy, 19(6): 859-870
[15] Lepvrier C, Maluski H, Van Vuong N, Roques D, Axente V and Rangin C. 1997. Indosinian NW-trending shear zones within the Truong Son belt (Vietnam) 40Ar-39Ar Triassic ages and Cretaceous to Cenozoic overprints. Tectonophysics, 183(1-4): 105-127
[16] Li SG, Xiao YL, Liou D, Chen YZ, Ge NJ, Zhang ZQ, Sun SS, Cong BL, Zhang RY, Hart SR and Wang SS. 1993. Collision of the North China and Yangtze blocks and formation of coesite-bearing eclogites: Timing and processes. Chemical Geology, 109(1-4): 89-111
[17] Li XH, Li WX and Li ZX. 2007. On the genetic classification and tectonic implications of the Early Yanshanian granitoids in the Nanling Range, South China. Chinese Science Bulletin, 52(14): 1873-1885
[18] Li ZX and Li XH. 2007. Formation of the 1300-km-wide intracontinental orogeny and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 35(2): 179-182
[19] Lugmair GW and Marti K. 1978. Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters, 39(3): 349-357
[20] Luo ZG, Wang YJ, Zhang FF, Zhang AM and Zhang YZ. 2010. LA-ICPMS zircon U-Pb dating for Baimashan and Jintan Indosinian granitic plutons and its petrogenetic implications. Geotectonica et Metallogenia, 34(2): 282-290 (in Chinese with English abstract)
[21] Nam TN, Toriumi M and Itaya T. 1998. P-T-t paths and post-metamorphic exhumation of the Day Nui Con Voi shear zone in Vietnam. Tectonophysics, 290(3-4): 299-318
[22] Pearce JA. 1996. Sources and setting of granitic rocks. Episodes, 19(4): 120-125
[23] Pu W, Zhao KD, Ling HF and Jiang SY. 2004. High precision Nd isotope measurement by Triton TI mass spectrometry. Acta Geoscientia Sinica, 25(2): 271-274 (in Chinese with English abstract)
[24] Pu W, Gao JF, Zhao KD, Ling HF and Jiang SY. 2005. Seperation method of Rb-Sr, Sm-Nd using DCTA and HIBA. Journal of Nanjing University (Nature Science), 41(4): 445-450 (in Chinese with English abstract)
[25] Rudnick R and Gao S. 2003. Composition of the continental crust. Treatise on Geochemistry, 3: 1-64
[26] Sun T. 2006. A new map showing the distribution of granites in South China and its explanatory notes. Geological Bulletin of China, 25(3): 332-335 (in Chinese with English abstract)
[27] Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345
[28] Sylvester PJ. 1998. Post-collisional strongly peraluminous granites. Lithos, 45(1-4): 29-44
[29] Wang YJ, Zhang YH, Fan WM, Xi XW, Guo F and Lin G. 2002. Numerical modeling for generation of Indo-Sinian peraluminous granitoids, Hunan Province: Basaltic underplating vs. tectonic thickening. Science in China (Series D), 45(11): 1042-1056
[30] Wang YJ, Fan WM, Sun M, Liang XR, Zhang Y and Peng T. 2007. Geochronological, geochemical and geothermal constraints on petrogenesis of the Indosinian peraluminous granites in the South China Block: A case study in the Hunan Province. Lithos, 96(3-4): 475-502
[31] Wu YB and Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(15): 1554-1569
[32] Xie XH, Chen WF, Zhao KD, Sun T, Chen PR, Jiang SY, Zhu KR and Li WW. 2008. Geochemical characteristics and geochronology of the Douzhashan granite, northeastern Guangxi Province, China. Acta Petrologica Sinica, 24(6): 1302-1312 (in Chinese with English abstract)
[33] Yu JH, Wang LJ, Wang XL, Qiu JS and Zhao L. 2007. Geochemistry and geochronology of the Fucheng complex in the southeastern Jiangxi Province, China. Acta Petrologica Sinica, 23(6): 1441-1456 (in Chinese with English abstract)
[34] Zen E. 1988. Phase relations of peraluminous granitic rocks and their petrogenetic implications. Annual Reviews of Earth and Planetary Sciences, 16(1): 21-51
[35] Zhang ZH and Zhang BT. 1991. On the Uranium-Bearing Granites and Their Related Uranium Deposits in South China. Beijing: Atomic Energy Press, 258 (in Chinese)
[36] Zhao KD, Jiang SY, Dong CY, Chen WF, Chen PR, Ling HF, Zhang J and Wang KX. 2011. Uranium-bearing and barren granites from the Taoshan complex, Jiangxi Province, South China: Geochemical and petrogenetic discrimination and exploration significance. Journal of Geochemical Exploration, 110(2): 126-135
[37] Zhao KD, Jiang SY, Chen WF, Chen PR and Ling HF. 2013. Zircon U-Pb chronology and elemental and Sr-Nd-Hf isotope geochemistry of two Triassic A-type granites in South China: Implication for petrogenesis and Indosinian transtensional tectonism. Lithos, 160-161: 292-306
[38] Zheng YF. 2008. A perspective view on ultrahigh-pressure metamorphism and continental collision in the Dabie-Sulu orogenic belt. Chinese Science Bulletin, 53(20): 3081-3104
[39] Zhou XM. 2003. My thinking about granite geneses of South China. Geological Journal of China Universities, 9(4): 556-565 (in Chinese with English abstract)
[40] Zhou XM, Sun T, Shen WZ, Shu LS and Niu YL. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 29(1): 26-33
[41] 附中文参考文献
[42] 陈培荣. 2004. 华南东部中生代岩浆作用的动力学背景及其与铀成矿关系. 铀矿地质, 20(5): 266-270
[43] 董晨阳, 赵葵东, 蒋少涌, 陈卫锋, 陈培荣, 凌洪飞, 杨水源. 2010. 赣南白面石铀矿区花岗岩的锆石年代学、地球化学及成因研究. 高校地质学报, 16(2): 149-160
[44] 高剑峰, 陆建军, 赖鸣远, 林雨萍, 濮巍. 2003. 岩石样品中微量元素的高分辨率等离子质谱分析. 南京大学学报(自然科学版), 39(6): 844-850
[45] 江西省地质矿产局. 1984. 江西省区域地质志. 北京: 地质出版社, 358-540
[46] 罗志高, 王岳军, 张菲菲, 张爱梅, 张玉芝. 2010. 金滩和白马山印支期花岗岩体LA-ICPMS锆石U-Pb定年及其成岩启示. 大地构造与成矿学, 34(2): 282-290
[47] 濮巍, 高剑峰, 赵葵东, 凌洪飞, 蒋少涌. 2005. 利用DCTA和HIBA快速有效分离Rb-Sr、Sm-Nd的方法. 南京大学学报(自然科学版), 41(4): 445-450
[48] 濮巍, 赵葵东, 凌洪飞, 蒋少涌. 2004. 新一代高精度高灵敏度的表面热电离质谱仪(Triton TI)的Nd同位素测定. 地球学报, 25(2): 271-274
[49] 孙涛. 2006. 新编华南花岗岩分布图及其说明. 地质通报, 25(3): 332-335
[50] 谢晓华, 陈卫锋, 赵葵东, 孙涛, 陈培荣, 蒋少涌, 朱康任, 李妩巍. 2008. 桂东北豆乍山花岗岩年代学与地球化学特征. 岩石学报, 24(6): 1302-1312
[51] 于津海, 王丽娟, 王孝磊, 邱检生, 赵蕾. 2007. 赣东南富城杂岩体的地球化学和年代学研究. 岩石学报, 23(6): 1441-1456
[52] 张祖还, 章邦桐. 1991. 华南产铀花岗岩及有关铀矿床研究. 原子能出版社, 258
[53] 周新民. 2003. 对华南花岗岩研究的若干思考. 高校地质学报, 9(4): 556-565
计量
- 文章访问数:
- PDF下载数:
- 施引文献: 0