雅鲁藏布蛇绿岩——事实与臆想
Yarlung Zangbo ophiolite:A critical updated view
-
摘要: 位于西藏南部的雅鲁藏布蛇绿岩在我国研究程度最高,在国际上也有较高的知名度。该蛇绿岩东西延伸约2000km,代表了印度和亚洲之间消失的新特提斯洋,是确定上述两大板块间缝合线存在的重要岩石学标志。本文根据作者近几年的野外考察,结合前人发表的资料发现,该蛇绿岩有如下方面的重要特点。(1)各蛇绿岩剖面均发育大规模的橄榄岩体,超镁铁岩的分布远远大于镁铁质岩石。这些超镁铁岩体尽管在岩性上以方辉橄榄岩为主,但出现大量二辉橄榄岩;(2)镁铁质堆晶辉长岩不发育;(3)不存在席状辉绿岩墙群,取而代之的是顺层侵入在橄榄岩中的辉长岩-辉绿岩岩席。部分情况下,辉绿岩还侵入到玄武岩之中;(4)蛇绿岩上部发育有一定厚度的玄武岩,但玄武岩与橄榄岩之间经常被辉绿岩席所占据,部分情况下玄武岩与橄榄岩直接接触。(5)地幔橄榄岩与镁铁质岩石在Sr-Nd同位素和形成时代上存在显著差别;(6)辉长岩与辉绿岩形成在120~130Ma的狭窄时间段内,并具有类似亏损地幔的地球化学特点。上述资料表明,雅鲁藏布蛇绿岩中的超镁铁岩和镁铁质岩形成于不同时代,且在成因上不具任何联系。根据这些资料,本文提出,该区蛇绿岩的地幔橄榄岩可能为大陆岩石圈地幔。早白垩世期间,北侧亚洲大陆南缘位置的岩石圈由于拉张而使深部岩石圈地幔物质向上剥露。随着岩石圈拆离和减薄的不断进行,软流圈地幔发生减压熔融,形成目前见到的玄武岩和辉长-辉绿岩席。在拉张作用的高峰期,早期亏损的大陆岩石圈地幔在经历交代作用后发生部分熔融形成少量玻安质熔体。因此,雅鲁藏布蛇绿岩并不能代表新特提斯大洋,它与经典的蛇绿岩定义相差甚远。考虑镁铁质岩石发育有限的特点,雅鲁藏布蛇绿岩代表了一种超慢速扩张的洋盆形成环境,其扩张速率甚至慢于目前广为人知的西Alps地区。根据全球蛇绿岩的情况,该蛇绿岩可被定义为日喀则型,是目前超慢速扩张洋盆的端元代表。Abstract: The Yarlung Zangbo ophiolite belt, located in southern Tibet, is one of the extensively studied ophiolites in China, and is internationally renowned as well. Distributed in east-west direction with a distance of ~2000km, this ophiolite had been used as an important petrological indicator to constrain the suture zone between India and Asia, and represents the vanished Neo-Tethyan Ocean between them. According to previous studies and our recent field investigations, however, this ophiolite belt is characterized by the following lines of features: (1) Mantle peridotites are predominated over mafic rocks; mantle peridotites mainly consist of harzburgites, but with a significant amount of lherzolites; (2) Cumulative gabbro is usually absent although it was identified in three localities with a maximum thickness less than 1000m; (3) Sheeted dyke is absent, but with gabbroic-doleritic sills intruding into the peridotites. In some cases, dolerites occur as dykes in basalts; (4) Generally, basalts are directly overlying the peridotites, although the interface between them is mostly occupied by doleritic sills; (5) Peridotites and mafic rocks are significant different in terms of formation age and Sr-Nd isotopic compositions; (6) Gabbros and dolerites were emplaced during ca. 120~130Ma with a limited temporal interval across the whole belt, and were derived from the depleted asthenospheric mantle. These lines of evidence suggest that the ultramafic and mafic rocks were formed in separated stages without any genetic connection. Therefore, we proposed that the mantle peridotites outcropped in the Yarlung Zangbo ophiolite belt are probably sub-continental lithospheric mantle beneath the Asian plate. During the Early Cretaceous, extension of the leading edge of the Asian continent resulted in the exhumation of the subcontinental lithospheric mantle, and the formation of an oceanic basin. Exhumation and thinning of the lithosphere resulted in upwelling and melting of the asthenosphere, which led to the eruption of basalt and intrusion of gabbro and dolerite. During the maximum extension, partial melting of the metasomatized refractory lithsopheric mantle gave rise to some amount of boninitic melts. Therefore, the Yarlung Zangbo ophiolite is much different from the ideal ophiolite section defined by the Penrose conference, and it could not be considered as a remnant of the Neo-Tethyan ocean between the Indian and Asian continents. Considering that the mafic rocks were limitedly developed in the area, we propose that the Yarlung Zangbo ophiolites represent an oceanic lithosphere formed at an ultraslow spreading center with a spreading rate much lower than that in western Alps. Therefore, the Yarlung Zangbo can be defined as an end-member of the ultraslow spreading setting; we term it as the Xigaze type since it is typically developed around Xigaze area in the central segment of this ophiolite belt.
-
Key words:
- Ultraslow spreading /
- Neo-Tethyan ocean /
- Ophiolite /
- Yarlung Zangbo /
- Tibet
-
[1] Abrajevitch AV, Ali JR, Aitchison JC, Badengzhu, Davis AM, Liu JB and Ziabrev SV. 2005. Neotethys and the India-Asia collision: Insights from a palaeomagnetic study of the Dazhuqu ophiolite, southern Tibet. Earth Planet. Sci. Lett., 233(1-2): 87-102
[2] Acharyya SK. 2007. Collisional emplacement history of the Naga-Andaman ophiolites and the position of the eastern Indian suture. J. Asian Earth Sci., 29(2-3): 229-242
[3] Achache J, Courtillot V and Zhou YX. 1984. Paleogeographic and tectonic evolution of southern Tibet since Middle Cretaceous time: New paleomagnetic data and synthesis. J. Geophys. Res., 89(B12): 10311-10339
[4] Al-Riyami K, Robertson A, Dixon J and Xenophontos C. 2002. Origin and emplacement of the Late Cretaceous Baer-Bassit ophiolite and its metamorphic sole in NW Syria. Lithos, 65(1-2): 225-260
[5] Alabaster T, Pearce JA and Malpas J. 1982. The volcanic stratigraphy and petrogenesis of the Oman ophiolite complex. Contrib. Mineral. Petrol., 82(3): 168-183
[6] Anonymous. 1972. Penrose Field Conference on ophiolites. Geotimes, 17: 14-15
[7] Bai WJ, Yang JS, Fang QS, Ren YF, Yan BG and Rong H. 2005. A study on Os-Ir-Ru alloy and boninitic inclusion in the Luobusha ophiolite, Tibet. Acta Geol. Sinica, 79(6): 814-823 (in Chinese with English abstract)
[8] Bailey EB and McCallien WJ. 1950. The Ankara mélange and the Anatolian thrust. Nature, 166(4231): 938-940
[9] Bailey EB and McCallien WJ. 1953. Serpentine lavas, the Ankara mélange and the Anatolian thrust. Trans. Royal Soc. Edinburgh, 62(11): 403-442
[10] Bally AW, Allen CR, Geyer RB, Hamilton WB, Hopson CA, Molnar PH, Oliver JE, Opdyke ND, Plafker G and Wu FT. 1980. Notes on the Geology of Tibet and Adjacent Areas: Report of the American Plate Tectonics Delegation to the People\'s Republic of China: U.S. Geological Survey Open-File Report 80-501: 100
[11] Bao PS, Su L, Wang J and Zhai QG. 2013. Study on the tectonic setting for the ophiolites in Xigaze, Tibet. Acta Geol. Sinica, 87(2): 395-425
[12] Beard JS and Day HW. 1987. The Smartville intrusive complex, Sierra Nevada, California: The core of a rifted volcanic arc. Geol. Soc. Am. Bull., 99(6): 779-791
[13] Bédard E, Hébert R, Guilmette C, Lesage G, Wang CS and Dostal J. 2009. Petrology and geochemistry of the Saga and Sangsang ophiolitic massifs, Yarlung Zangbo Suture Zone, southern Tibet: Evidence for an arc-back-arc origin. Lithos, 113(1-2): 48-67
[14] Benson WN. 1926. The tectonic conditions accompanying the intrusion of basic and ultrabasic igneous rocks. Memoirs National Acad. Sci., 14 (1): 90
[15] Besse J and Courtillot V. 2002. Apparent and true polar wander and the geometry of the geomagnetic field over the last 200Myr. J. Geophys. Res., 107(B11): EPM 6-1-EPM 6-31, doi:10.1029/2000JB000050
[16] Bezard R, Hébert R, Wang CS, Dostal J and Dai JG. 2011. Petrology and geochemistry of the Xiugugabu ophiolitic massif western Yarlung Zangbo suture zone, Tibet. Lithos, 125(1-2): 347-367
[17] Bizimis M, Sen G and Salters VJM. 2003. Hf-Nd isotope decoupling in the oceanic lithosphere: Constraints from spinel peridotites from Oahu, HawaⅡ. Earth Planet. Sci. Lett., 217(1-2): 43-58
[18] Bizimis M, Griselin M, Lassiter JC, Salters VJM and Gautam S. 2007. Ancient recycled mantle lithosphere in the HawaⅡan plume: Osmium-hafnium isotopic evidence from peridotite mantle xenoliths. Earth Planet. Sci. Lett., 257(1-2): 259-273
[19] Bodinier JL and Godard M. 2003. Orogenic, ophiolitic, and abyssal peridotites. In: Carlson RW (ed.). The Mantle and Core. Treatise on Geochemistry, 2: 103-170
[20] Bonatti E. 1971. Ancient continental mantle beneath oceanic ridges. J. Geophy. Res., 76(17): 3825-3831
[21] Bonatti E. 1990. Subcontinental mantle exposed in the Atlantic Ocean on St. Peter-Paul islets. Nature, 345: 800-802
[22] Borghini G, Rampone E, Crispini L, De Ferrari R and Godard M. 2007. Origin and emplacement of ultramafic-mafic intrusions in the Erro-Tobbio mantle peridotite (Ligurian Alps, Italy). Lithos, 94(1-4): 210-229
[23] Bortolotti V and Prinicipi G. 2005. Tethyan ophiolites and Pangea break-up. Island Arc, 14(4): 442-470
[24] Bortolotti V, Chiari M, Marroni M, Pandolfi L, Principi G and Saccani E. 2013. Geodynamics evolution of ophiolites from Albania and Greece (Dinaric-Hellenic belt): One, two, or more oceanic bains? Int. J. Earth Sci., 102(3): 783-811
[25] Boudier F and Coleman RG. 1981. Cross-section through the peridotite in the Samail ophiolite, southeastern Oman Mountains. J. Geophys. Res., 86(B4): 2573-2592
[26] Boudier F and Nicolos A. 1985. Harzburgite and lherzolite subtypes in ophiolitic and oceanic environments. Earth Planet. Sci. Lett., 76(1-2): 84-92
[27] Boudier F, Le Sueur E and Nicolas A. 1989. Structure of an atypical ophiolite: The Trinity complex, eastern Klamath Mountains, California. Soc. Geol. Am. Bull., 101(6): 820-833
[28] Boudier F, Nicolas A and Ildefonse B. 1996. Magma chambers in the Oman ophiolite: Fed from the top or from the bottom? Earth Planet. Sci. Lett., 144(1): 239-250
[29] Bowen NL. 1927. The origin of ultrabasic and related rocks. Am. J. Sci., 14(80): 89-108
[30] Bowen NL and Schairer JF. 1935. The system MgO-FeO-SiO2. Am. J. Sci., 29: 151-217
[31] Brandon AD, Snow JE, Walker RJ, Morgan JW and Mock TD. 2000. 190Pt-186Os and 187Re-187Os systematics of abyssal peridotites. Earth Planet. Sci. Lett., 177(3-4): 319-335
[32] Brongniart A. 1813. Essai de classifi cation minéralogique des roches mélanges: Journal des Mines, XXXIV: 190-199
[33] Brueckner HK, Zindler A, Seyler M and Bonatti E. 1988. Zabargad and the isotopic evolution of the sub-Red Sea mantle and crust. Tectonophysics, 150(1-2): 163-176
[34] Brueckner HK, Elhaddad MA, Hamelin B, Hemming S, Kroner A, Reiberg L and Seyler M. 1995. A Pan African origin and uplift for the gneisses and peridotites of Zabargad Island, Red Sea: A Nd, Sr, Pb, and Os study. J. Geophy. Res., 100 (B11): 22283-22297
[35] Brunelli D and Seyler M. 2010. Asthernospheric percolation of alkaline melts beneath the St. paul region (central Altantic Ocean). Earth Planet. Sci. Lett., 289(3-4): 393-405
[36] Büchl A, Brugmann GE, Batanova VG and Hofmann AW. 2004. Os mobilization during melt percolation: The evolution of Os isotope heterogeneities in the mantle sequence of the Troodos ophiolite, Cyprus. Geochim. Cosmochim. Acta, 68(16): 3397-3408
[37] Burg JP, Leyreloup A, Girardeau J and Chen GM. 1987. Structure and metamorphism of a tectonically thickened continental crust: The Yalu Tsangpo suture zone (Tibet). Phil. Trans. R. Soc. Lond., 321A(1557): 67-86
[38] Cann JR. 1970. New model for the structure of the ocean crust. Nature, 226(5249): 928-930
[39] Cann JR. 2003. The Troodos ophiolite and the upper ocean crust: A reciprocal traffic in scientific concepts. In: Dilek Y and Newcomb S (eds.), Ophiolite Concept and the Evolution of Geological Thought: Boulder, Colorado. Geol. Soc. Am. Special Paper, 373: 309-321
[40] Cann JR, Blackman DK, Smith DK, McAllister E, Janssen B, Mello S, Avgerinos E, Pascoe AR and Escartin J. 1997. Corrugated slip surfaces formed at ridge-transform intersections on the Mid-Altantic ridge. Nature, 385(6614): 329-332
[41] Cao RL. 1981. Lithological features and geological significance of Yarlung Zangbo Jiang ophiolite belt and trench sediements in Xizang Plateau. Geochimica, 10: 247-254 (in Chinese with English abstract)
[42] Celik OF and Chiaradia M. 2008. Geochemical and petrological aspects of dike intrusions in the Lycian ophiolites (SW Turkey): A case study for the dike emplacement along the Tauride Belt Ophiolites. Int. J. Earth Sci., 97(6): 1151-1164
[43] Ceuleneer G and Le Sueur E. 2008. The Trinity ophiolite (California): The strange association of fertile mantle peridotite with ultra-depleted crustal cimulates. Bull. Soc. Geol. Fr., 179(5): 503-518
[44] CGQXP Editorial Committee. 1983. Contribution to the Geology of the Qinghai-Xizang (Tibet) Plateau. Beijing: Geological Publishing House, 1-293 (in Chinese)
[45] Chan GHN, Aitchison JC, Crowley QG, Horstwood MSA, Searle MP, Parrish RR and Chan JSL. 2014. U-Pb zircon ages for Yarlung Tsangbo suture zone ophiolites, southwestern Tibet and their tectonic implications. Gondwana Res., in press
[46] Chang CF and Zheng XL. 1973. Tectonic features of the Mount Jolmo Lungma region in southern Tibet, China. Sci. Geol. Sinica, 8(1): 1-12 (in Chinese with English abstract)
[47] Chang CF. 1980. Newly observed data in ophiolitic zone along Yarlung Zangbo River, China. Seis. Geol., 2(1): 48 (in Chinese)
[48] Chazot G, Charpentier S, Kornprobst J, Vannucci R and Luais B. 2005. Lithospheric mantle evolution during continental break-up: The West Iberia non-volcanic passive margin. J. Petrol., 46(12): 2527-2568
[49] Chen GW, Xia B, Zhong ZH, Wang GQ, Wang H, Zhao TP, Wang JC, Zhang L, Qi L and Li SR. 2003. Geochemical characteristics and geological significance of boninites in the Deji ophiolites, Tibet. Acta. Mineral. Sinica, 23(1): 91-96 (in Chinese with English abstract)
[50] Cheng XZ, Xia B, Li JF, Yu M, Zhong LF, Huang QT and Shi QH. 2011. Sr-Nd-Pb isotopic characteristics and origin of the mantle peridotites from the Luobusha ophiolite. Geotectonica et Metallogenia, 35(1): 85-94 (in Chinese with English abstract)
[51] Chichester Diamond Company. 1997. No primary or residual diamond in the mantle peridotite from Luobusha and Dongqiao, Tibet. Xizang Geol., (1): 103-112 (in Chinese)
[52] Choi SH, Mukasa SB and Shervais JW. 2008a. Initiation of Franciscan subduction along a large-offset fracture zone: Evidence from mantle perdotites, Stonyford, California. Geology, 36(8): 595-598
[53] Choi SH, Shervais JW and Mukasa SB. 2008b. Supra-subduction and abyssal mantle peridotites of the Coast Range ophiolite, California. Contrib. Mineral. Petrol., 156(5): 551-576
[54] Church WR and Riccio L. 1977. Fractionation trends in the Bay of Islands ophiolite of Newfoundland: Polycyclic cumulate sequences in ophiolites and their classification. Can. J. Earth Sci., 14: 1156-1165
[55] Cipriani A, Brueckner HK, Bonatti E and Brunelli D. 2004. Oceanic crust generated by elusive parents: Sr and Nd isotopes in basalt-peridotite pairs from the Mid-Atlantic Ridge. Geology, 32(8): 657-660
[56] Cipriani A, Bonatti E, Seyler M, Brueckner HK, Brunelli D, Dallai L, Hemming SR, Ligi M, Ottolini L and Turrin BD. 2009. A 19 to 17 Ma amagmatic extension event at the Mid-Atlantic Ridge: Ultramafic mylonites from the Vema lithospheric section. G3, 10: Q10011, doi: 10.1029/2009GC002534
[57] Coleman RG. 1977. Ophiolites: Ancient Oceanic Lithosphere? New York: Springer-Verlag, 1-229
[58] Coleman RG. 1984. The diversity of ophiolites. Geologie en Mijnbouw, 63: 1099-1108
[59] Coleman RG. 2000. Prospecting for ophiolites along the California continental margin. In: Dilek Y, Moores EM, Elthon D and Nicolas A (eds.). Ophiolites and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program. Geol. Soc. Am. Special Paper, 349: 351-364
[60] Coltorti M, Bonadiman C, O\'Reilly SY, Griffin WL and Pearson NJ. 2010. Buoyant ancient continental mantle embedded in oceanic lithosphere (Sal Island, Cape Verde Archipelago). Lithos, 120(1-2): 223-233
计量
- 文章访问数:
- PDF下载数:
- 施引文献: 0