Petrogeochemical features and zircon LA-ICP-MS U-Pb ages of granite in the Pantian iron ore deposit, Fujian Province and their relationship with mineralization
-
摘要: 潘田铁矿床矿体主要赋存于潘田花岗岩体外接触带的“硅钙岩性界面”中,其成矿与花岗岩侵入关系密切,是一个具有很大找矿潜力的富铁矿床。但前人对该花岗岩的研究还很薄弱,本文对潘田铁矿花岗岩进行了岩石地球化学特征、锆石U-Pb定年研究,探讨其岩石成因、形成时代、构造环境、及其与成矿的关系。LA-ICP-MS锆石U-Pb定年获得其结晶年龄为131.68±0.48Ma。该岩体为高钾钙碱性系列,属弱过铝质-准铝质岩石;稀土元素总量较低,轻稀土相对于重稀土富集,具有明显铕负异常,重稀土配分模式相对平坦,中稀土相对亏损。微量元素中相对富集大离子亲石元素而亏损高场强元素。岩石地球化学特征表明潘田岩体为高分异I型花岗岩,形成于碰撞后拉张环境。潘田铁矿床矿体与花岗岩体的空间分布规律与成因关系表明,花岗岩侵入作用是控制主成矿阶段矿体空间定位的地质作用,花岗岩是铁矿床的成矿地质体,林地组碎屑岩与黄龙组-栖霞组碳酸盐岩的接触界面是成矿有利部位,矿床类型属于典型“硅钙岩性界面”成矿,本矿床的成因类型属于“多因耦合、临界转换、边界成矿”的典型案例。Abstract: The Pantian iron ore deposit is a high-grade iron deposit with great prospecting potential. The orebodies mainly occur in silico-calcium lithologic boundaries in the outer contact zone of the granite, and the mineralization is closely related to the granitic intrusion. But there were little study on the granite. Therefore, petrogeochemistry characteristics and zircon U-Pb age of the granite is studied in this paper to discuss its petrogenesis, tectonic setting, emplacement age and the relationship with the iron ore mineralization. The LA-ICP-MS zircon U-Pb dating of the granite indicates that the granite intruded in Early Cretaceous (131.68±0.48Ma, MSWD=1.3). The granite is characterized by high-K calc-alkaline series and weakly peraluminous-metaluminous rocks, and has a moderate smooth REE pattern characterized by lower ∑REE, higher LREE than HREE, and obvious negative Eu anomalies, and has an intensive enrichment in LILE and different depletion in HFSE. The petrogeochemical analysis shows that Pantian granite belongs to highly fractionated I-type granites and forms on the post-collisional extensional environment. By analyzing the spatial distribution rule and genetic relation between iron orebodies and the granite, we infer that the granite intrusion determine the spatial orientation of main ore bodies, and the granite is the metallogenic geological body of Pantian iron ore deposit which is the typical silicon-calcium mineralization. The lithologic boundaries between the clastic rocks of Lindi Formation and carbonate rocks of Huanglong-Qixia formations are the beneficial ore-forming positions. And the deposit we study in this paper belongs to the typical metallogenic mechanism of "multi-factor coupling, critical transformation, and marginal metallogenesis".
-
[1] Andersen T. 2002. Correlation of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192: 59-79
[2] Chappell BW. 1999. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites. Lithos, 46(3): 535-551
[3] Cheng TZ. 2009. Geological structure properties of Pantian iron ore deposit and its genesis of formation. Mining Engineering, 7(4): 12-13 (in Chinese with English abstract)
[4] Eby GN. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implication. Geology, 20(7): 641-644
[5] Ge CH, Han F, Zou TR and Chen DQ. 1981. Geological characteristics of the Makeng iron deposit of marine volcano-sedimentary origin. Acta Geoscientica Sinica, 3(1): 47-69 (in Chinese with English abstract)
[6] Han F and Ge CH. 1983a. Geologicl and geochemical characteristics of the Makeng submarbine volcanic hydrothermal-sedimentary iron ore. Bulletin of Chinese Academy of Geological Sciences, (2): 154-156 (in Chinese)
[7] Han F and Ge CH. 1983b. Makeng iron deposit: A submarbine volcanic hydrothermal-sedimentary ore. Science in China (Series B), (5): 438-446 (in Chinese)
[8] Hanchar JM and Miller CF. 1993. Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: Implications for interpretation of complex crustal histories. Chemical Geology, 110: 1-13
[9] Hong DW, Chen XZ, Li CJ and Yu SM. 1980. Typomorphic characteristics of the rock-forming minerals of the Juchow-Dayang granite and the conditions of their formation. Acta Geologica Sinica, 54(1): 52-69 (in Chinese with English abstract)
[10] Hu RZ, Mao JW, Fan WM, Hua RM, Bi XW, Zhong H, Song XY and Tao Y. 2010. Some scientific questions on the intra-continental metallogeny in the South China continent. Earth Science Frontiers, 17(2): 13-26 (in Chinese with English abstract)
[11] Jiang SY, Zhao KD, Jiang YH and Dai BZ. 2008. Characteristics and genesis of Mesozoic A-type granites and associated mineral deposits in the southern Hunan and northern Guangxi provinces along the Shi-Hang belt, South China. Geological Journal of China Universities, 14(4): 496-509 (in Chinese with English abstract)
[12] Jiang YH, Zhao P, Zhou Q, Liao SY and Jin GD. 2011. Petrogenesis and tectonic implications of Early Cretaceous S-and A-type granites in the northwest of the Gan-Hang rift, SE China. Lithos, 121(1): 55-73
[13] Le Maitre RW. 2002. Igneous Rocks: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks. Cambridge University Press, 1-236
[14] Li JK, Wang DH, Liang T, Xu YM, Zhang YJ, Liang HY, Lu HZ, Zhao B, Li JG, Qu WJ, Zhou SC, Wang RC, Wei LM and Lin JF. 2013. Progress of research on metallogenic regularity and deep exploration in Nanling region and its indication for W-Sn exploration in Tibet. Acta Geoscientica Sinica, 34(1): 58-74 (in Chinese with English abstract)
[15] Li XH, Li ZX, Li WX, Liu Y, Yuan C, Wei G and Qi C. 2007. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I-and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat-slab? Lithos, 96(1): 186-204
[16] Li Z, Qiu JS and Yang XM. 2014. A review of the geochronology and geochemistry of Late Yanshanian (Cretaceous) plutons along the Fujian coastal area of southeastern China: Implications for magma evolution related to slab break-off and rollback in the Cretaceous. Earth-Science Reviews, 128: 232-248
[17] Liang XJ and Qu GL. 1982. A preliminary experiment on the formation temperature and pressure of the iron deposit in Makeng, Fujian. Acta Geoscientica Sinica, 4(1): 83-94 (in Chinese with English abstract)
[18] Lin DY. 2011. Research on Late Paleozoic-Triassic tectonic evolution and metallogenetic regularities of iron-polymetalic deposits in the southwestern Fujian Province. Ph. D. Dissertation. Beijing: China University of Geosciences, 1-138 (in Chinese with English summary)
[19] Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China orogen: U-Pb dating, Hf isotopes and ttrace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571
[20] Ludwig KR. 2012. User's Manual for Isoplot 3.75: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center Special Publication, 1-75
[21] Mao JR, Xu NZ, Hu Q, Xing GF and Yang ZL. 2004. The Mesozoic rock-forming and ore-forming processes and tectonic environment evolution in Shanghang-Datian region, Fujian. Acta Petrologica Sinica, 20(2): 285-296 (in Chinese with English abstract)
[22] Mao JR, Chen R, Li JY, Ye HM and Zhao XL. 2006. Geochronology and geochemical characteristics of Late Mesozoic granitic rocks from southwestern Fujian and their tectonic evolution. Acta Petrologica Sinica, 22(6): 1723-1734 (in Chinese with English abstract)
[23] Mao JW, Xie GQ, Li XF, Zhang CQ and Mei YX. 2004. Mesozoic large scale mineralization and multiple lithospheric extension in South China. Earth Science Frontiers, 11(1): 45-55 (in Chinese with English abstract)
[24] Mao JW, Xie GQ, Guo CL, Yuan SD, Cheng YB and Chen YC. 2008. Spatial-temporal distribution of Mesozoic ore deposits in South China and their metallogenic settings. Geological Journal of China Universities, 14(4): 510-526 (in Chinese with English abstract)
[25] Mao JW, Cheng YB, Chen MH and Franco P. 2013. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Mineralium Deposita, 48(3): 267-294
[26] Meng L, Li ZX, Chen H, Li XH and Wang XC. 2012. Geochronological and geochemical results from Mesozoic basalts in southern South China Block support the flat-slab subduction model. Lithos, 132: 127-140
[27] McDonough WF and Sun SS. 1995. The composition of the earth. Chemical Geology, 120(3): 223-253
[28] Pan KX, Lian TP, and Lin YS. 1982. Discussion on sedimento-altered reformed genesis of Makeng type iron deposit. Bull. Nanjing Inst. Geol. M. R., Chinese Acad. Geol. Sci., 3(2): 1-14 (in Chinese)
[29] Pearce JA. 1996. Sources and settings of granitic rocks. Episodes, 19: 120-125
[30] Peccerillo A and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58: 63-81
[31] Pei RF, Wu LS and Zhao Y. 1987. Formational environments, emplacement types and mineralization of granites in the South China region. Acta Geoscientica Sinica, 9(1): 53-72 (in Chinese)
[32] Rickwood PC. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22(4): 247-263
[33] Streckeisen A and Le Maitre RW. 1979. A chemical approximation to the model QAPF classification of the igneous rocks. Neues Jahrbuch Mineralogie Abteilung, 136: 169-206
[34] Wang DH, Chen ZH, Chen YC, Tang JX, Li JK, Ying LJ, Wang CH, Liu SB, Li LX, Qin Y, Li HQ, Qu WJ, Wang YB, Chen W and Zhang Y. 2010. New data of the rock-forming and ore-forming chronology for Chinese important mineral resources areas. Acta Geologica Sinica, 84(07): 1030-1040 (in Chinese with English abstract)
[35] Wang KX, Sun T, Chen PR, Ling HF and Xiang TF. 2013. The geochronological and geochemical constraints on the petrogenesis of the Early Mesozoic A-type granite and diabase in northwestern Fujian Province. Lithos, 179: 364-381
[36] Wei CS. 2000. The genetic model of A-type granites and their geodynamic significances. Earth Science Frontiers, 7(1): 238 (in Chinese)
[37] Whalen JB, Currie KL and Chappell BW. 1987. A-type granites: Geochemical characteristics, discrimination and petro-genesis. Contributions to Mineralogy and Petrology, 95(4): 407-419
[38] Wu FY, Li XH, Yang JH and Zheng YF. 2007. Discussions on the petrogenesis of granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract)
[39] Xu BL, Yan GH and Zhang C. 1998. Petrological subdivision and source material of A-type granites. Earth Science Frontiers, 5(3): 113-124 (in Chinese with English abstract)
[40] Yang SY, Jiang SY, Zhao KD, Jiang YH, Ling HF and Luo L. 2012. Geochronology, geochemistry and tectonic significance of two Early Cretaceous A-type granites in the Gan-Hang Belt, Southeast China. Lithos, 150: 155-170
[41] Yang Z. 1982. The sulfur isotope characteristics and the genesis of Pantian iron ore deposit in Anxi, Fujian Province. Geological Institute of Ministry of Metallurgical Industry, (1): 140-141 (in Chinese)
[42] Ye TZ and Xue JL. 2007. Geological study in search of metallic ore deposits at depth. Geology in China, 34(5): 855-969 (in Chinese with English abstract)
[43] Ye TZ, Xiao KY and Yan GS. 2007. Methodology of deposit modeling and mineral resource potential assessment using integrated geological information. Earth Science Frontiers, 14(5): 11-19 (in Chinese with English abstract)
[44] Ye TZ. 2013. Theoretical framework of methodology of deposit modeling and integrated geological information for mineral resource potential assessment. Journal of Jilin University (Earth Science Edition), 43(4): 1053-1072 (in Chinese with English abstract)
[45] Zhai YS, Wang JP, Peng RM and Liu JJ. 2009. Research on superimposed metallogenic systems and polygenetic mineral deposits. Earth Science Frontiers, 16(6): 282-290 (in Chinese with English abstract)
[46] Zhai YS. 2014. A preliminary discussion on fundamental model of metallogenic mechanism. Earth Science Frontiers, 21(1): 1-8 (in Chinese with English abstract)
[47] Zhang CS, Su HM, Yu M and Hu ZG. 2012a. Zircon U-Pb age and Nd-Sr-Pb isotopic characteristics of Dayang-Juzhou granite in Longyan, Fujian Province and its geological significance. Acta Petrologica Sinica, 28(1): 225-242 (in Chinese with English abstract)
[48] Zhang CS, Li L, Zhang CQ and Wang JR. 2012b. LA-ICP-MS zircon U-Pb ages and Hf isotopic compositions of Dayang granite from Longyan, Fujian Province. Geoscience, 26(3): 433-444 (in Chinese with English abstract)
[49] Zhang CS, Mao JW, Xie GQ, Zhao CS, Yu M, Wang JX and Liu WG. 2012c. Molybdenite Re-Os ages of Makeng skarn Fe-Mo deposit and their geological significance in Fujian Province. Journal of Jilin University (Earth Science Edition), 42(Suppl.1): 224-236 (in Chinese with English abstract)
[50] Zhang CS. 2012d. Geology and geochemistry of Makeng Fe-Mo deposit, Fujian. Ph. D. Dissertation. Beijing: China University of Geosciences, 1-188 (in Chinese with English summary)
[51] Zhang D, Wu GG, Di YJ, Wang CM, Yao JM, Zhang YY, Lv LJ, Yuan Y and Shi JJ. 2012. Geochronology of diagenesis and mineralization of the Luoyang iron deposit in Zhangping City, Fujian Province and its geological significance. Earth Science, 37(6): 1217-1231 (in Chinese with English abstract)
[52] Zhao XL, Liu K, Mao JR, Ye HM, Yu SY. 2013. The differences of geochemical characteristics and relative with ore-forming processes of two types Early-Cretaceous granites in southwestern Fujian Province. Bulletin of Mineralogy, Petrology and Geochemistry, 32 (1): 87-96 (in Chinese with English abstract)
[53] Zhao YM, Tan HJ and Sun JH. 1982. Characteristics of the skarn zoning of the Makeng and Yangshan iron ore deposits in Fujian and their relationship with the mineralization zoning. Acta Petrologica Mineralogica et Analytica, 1(01): 11-22 (in Chinese with English abstract)
[54] Zhao YM, Tan HJ, Xu ZN, Yuan RG, Bi CS, Zheng RL, Li DX and Sun JH. 1983. The calcic-skarn iron ore deposit of Makeng type in southwestern Fujian. Bulletin of the Institute of Mineral Deposits, Chinese Academy of Geological Sciences, (1): 1-141 (in Chinese with English abstract)
[55] Zhao ZF, Zheng YF, Wei CS and Wu YB. 2007. Post-collisional granitoids from the Dabie orogen in China: Zircon U-Pb age, element and O isotope evidence for recycling of subducted continental crust. Lithos, 93(3): 248-272
[56] Zhou XM and Li WX. 2000. Origin of Late Mesozoic igneous rocks in southeastern China: Implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326(3): 269-287
[57] Zou TR, Ge CF, Han F and Chen DQ. 1981. On the minerogenetic characteristics of the Makeng iron deposits and their conditions of formation. Institute of Mineral Deposit Geology Branch of Bulletin Chinese Academy of Geological Sciences, 2(1): 1-25 (in Chinese with English abstract)
[58] 程天枝. 2009. 潘田铁矿床地质构造特征及矿床成因探讨. 矿业工程, 7(4): 12-13
[59] 葛朝华, 韩发, 邹天人, 陈德潜. 1981. 马坑铁矿火山沉积成因探讨. 地球学报, 3(1): 47-69
[60] 韩发, 葛朝华. 1983a. 福建马坑铁矿床海相火山热液-沉积成因的地质地球化学特征. 中国地质科学院年报, (2): 154-156
[61] 韩发, 葛朝华. 1983b. 马坑铁矿——一个海相火山热液-沉积型矿床. 中国科学(B辑), (05): 438-446
[62] 洪大卫, 陈学正, 李纯杰, 余始美. 1980. 福建龙岩莒舟-大洋花岗岩体造岩矿物的标型特征和形成条件. 地质学报, 54(1): 52-69
[63] 胡瑞忠, 毛景文, 范蔚茗, 华仁民, 毕献武, 钟宏, 宋谢炎, 陶琰. 2010. 华南陆块陆内成矿作用的一些科学问题. 地学前缘, 17(2): 13-26
[64] 蒋少涌, 赵葵东, 姜耀辉, 戴宝章. 2008. 十杭带湘南-桂北段中生代A型花岗岩带成岩成矿特征及成因讨论. 高校地质学报, 14(4): 496-509
[65] 李建康, 王登红, 粱婷, 许以明, 张怡军, 梁华英, 卢焕章, 赵斌, 李建国, 屈文俊, 周四春, 王汝成, 韦龙明, 林锦福. 2013. 南岭区域成矿与深部探测的研究进展及其对西藏钨锡找矿的指示. 地球学报, 34(1): 58-74
[66] 梁祥济, 曲国林. 1982. 福建马坑铁矿床形成温度和压力实验的初步研究. 地球学报, 4(1): 83-94
[67] 林东燕. 2011. 闽西南地区晚古生代-三叠纪构造演化与铁多金属矿成矿规律研究. 博士学位论文.北京: 中国地质大学, 1-138
[68] 毛建仁, 许乃政, 胡青, 邢光福, 杨祝良. 2004. 福建省上杭-大田地区中生代成岩成矿作用与构造环境演化. 岩石学报, 20(2): 285-296
[69] 毛建仁, 陈荣, 李寄嵎, 叶海敏, 赵希林. 2006. 闽西南地区晚中生代花岗质岩石的同位素年代学、地球化学及其构造演化. 岩石学报, 22(6): 1723-1734
[70] 毛景文, 谢桂青, 李晓峰, 张长青, 梅燕雄. 2004. 华南地区中生代大规模成矿作用与岩石圈多阶段伸展. 地学前缘, 11(1): 45-55
[71] 毛景文, 谢桂青, 郭春丽, 袁顺达, 程彦博, 陈毓川. 2008. 华南地区中生代主要金属矿床时空分布规律和成矿环境. 高校地质学报, 14(4): 510-526
[72] 潘廓祥, 连天萍, 林永生. 1982. 再论马坑式铁矿的沉积-改造(再造)成因. 中国地质科学院南京地质矿产研究所所刊, 3(2): 1-14
[73] 裴荣富, 吴良士, 赵余. 1987. 华南地区花岗岩形成环境、侵位类型与成矿. 地球学报, 9(1): 53-72
[74] 王登红, 陈郑辉, 陈毓川, 唐菊兴, 李建康, 应立娟, 王成辉, 刘善宝, 李立兴, 秦燕, 李华芹, 屈文俊, 王彦斌, 陈文, 张彦. 2010. 我国重要矿产地成岩成矿年代学研究新数据. 地质学报, 84(7): 1030-1040
[75] 魏春生. 2000. A型花岗岩成因模式及其地球动力学意义. 地学前缘, 7(1): 238
[76] 吴福元, 李献华, 杨进辉, 郑永飞. 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238
[77] 许保良, 阎国翰, 张臣. 1998. A型花岗岩的岩石学亚类及其物质来源. 地学前缘, 5(3): 113-124
[78] 杨志. 1982. 福建安溪潘田铁矿硫同位素地质特征及矿床成因. 冶金工业部地质研究所所报, (1): 140-141
[79] 叶天竺, 薛建玲. 2007. 金属矿床深部找矿中的地质研究. 中国地质, 34(5): 855-969
[80] 叶天竺, 肖克炎, 严光生. 2007. 矿床模型综合地质信息预测技术研究. 地学前缘, 14(5): 11-19
[81] 叶天竺. 2013. 矿床模型综合地质信息预测技术方法理论框架. 吉林大学学报(地球科学版), 43(4): 1053-1072
[82] 翟裕生, 王建平, 彭润民, 刘家军. 2009. 叠加成矿系统与多成因矿床研究. 地学前缘, 16(6): 282-290
[83] 翟裕生. 2014. 试论矿床成因的基本模型. 地学前缘, 21(1): 1-8
[84] 张承帅. 2012. 福建马坑铁矿床地质与地球化学. 博士学位论文.北京: 中国地质大学, 1-188
[85] 张承帅, 苏慧敏, 于淼, 胡兆国. 2012a. 福建龙岩大洋-莒舟花岗岩锆石U-Pb年龄和Sr-Nd-Pb同位素特征及其地质意义. 岩石学报, 28(1): 225-242
[86] 张承帅, 李莉, 张长青, 王九如. 2012b. 福建龙岩大洋花岗LA-ICP-MS锆石U-Pb 测年, Hf 同位素组成及其地质意义. 现代地质, 26(3): 433-444
[87] 张承帅, 毛景文, 谢桂青, 赵财胜, 于淼, 王金祥, 刘武刚. 2012c. 福建马坑矽卡岩型铁(钼)矿床地质特征及辉钼矿Re-Os同位素年龄. 吉林大学学报(地球科学版), 42(S1): 224-236
[88] 张达, 吴淦国, 狄永军, 王长明, 姚继明, 张垚垚, 吕良冀, 袁远, 石建基. 2012. 福建漳平洛阳铁矿床成岩成矿年代学及其地质意义. 地球科学, 37(6): 1217-1231
[89] 赵希林, 刘凯, 毛建仁, 叶海敏, 于胜尧. 2013. 闽西南地区早白垩世两类花岗质岩体地球化学异同及其与成矿作用关系. 矿物岩石地球化学通报, 32 (1): 87-96
[90] 赵一鸣, 谭惠静, 孙静华. 1982. 福建马坑、阳山铁矿床的矽卡岩分带特征及其与矿化分带的关系. 岩矿测试, 1(1): 11-22
[91] 赵一鸣, 谭惠静, 许振南, 袁润广, 毕承思, 郑人来, 李大新, 孙静华. 1983. 闽西南地区马坑式钙矽卡岩型铁矿床. 中国地质科学院矿床地质研究所所刊, (1): 1-141
[92] 邹天人, 葛朝华, 韩发, 陈德潜. 1981. 论马坑铁矿的成矿特征和形成条件. 中国地质科学院院报(矿床地质研究所分刊), 2(1): 1-25
计量
- 文章访问数: 6022
- PDF下载数: 7373
- 施引文献: 0