Mantle underplated pluton and stitching granite pluton from south side of the Karamaili fault in eastern Junggar: Geochronological, geochemical and Sr-Nd isotopic constraints on their petrogenesis and tectonic implications
-
摘要: 新疆富蕴县滴水泉-畜牧办侵入体出露于卡拉麦里断裂以南,呈北西西向带状分布,以碱长花岗岩体为主,也可见规模较小的角闪辉长岩体。碱长花岗岩体的岩石组合为碱长花岗斑岩+碱长花岗岩,高硅(SiO2=71.07%~76.71%),富碱(Na2O+K2O=7.41%~9.07%)、K2O>Na2O(平均为1.10),显示出A型花岗岩的特点。角闪辉长岩体涌动侵入于碱长花岗岩体之中,二者接触带附近发育浆混性质的石英闪长岩。辉长岩+花岗岩的双峰式岩石组合、构造判别图解R2-R1及区域地质背景指示滴水泉侵入体形成于陆内伸展环境,且花岗岩体具有"钉合岩体"的作用,穿插了卡拉麦里蛇绿岩带。结合岩体的LA-ICP-MS锆石年龄(碱长花岗岩的206Pb/238U加权平均年龄为321±2Ma,角闪辉长岩的206Pb/238U加权平均年龄为319±3Ma)可知,卡拉麦里洋盆在晚石炭世早期(321Ma)之前已经闭合。同位素及微量元素特征显示,碱长花岗岩为年轻地壳部分熔合融的产物,而角闪辉长岩则来源于亏损的软流圈地幔及俯冲交代的地幔楔物质,代表了同期花岗岩的底侵岩浆演化的产物。辉长岩与花岗岩相似的εNd(t)值及明显的岩浆混合作用表明该区的花岗岩体并非来源于底侵岩浆的高度分异或底侵体的部分熔融,而最可能为底侵体之上的年轻地壳的部分熔融,这一结论与最近一些学者研究的断裂以北的花岗岩体成因机制相同。晚石炭世早期幔源底侵体的发现,为卡拉麦里地区后碰撞花岗岩类的幔源底侵作用提供了可靠的地质依据。Abstract: Dishuiquan-Xumuban intrusions containing K-feldspar granite pluton and visible smaller hornblende-gabbro pluton are located in the south side of the Karamaili fault in Fuyun County, Xinjiang, which shows a characteristic of NWW zonal distribution. The K-feldspar granite pluton is made of K-feldspar granite porphyry and K-feldspar granite,whose characteristics is similar with A-type granite, such as high SiO2 content (71.07%~76.71%), K2O>Na2O (average of 1.10). The hornblende-gabbro pluton is surging K-feldspar granite pluton, quartz diorite is visible in the magma mixing zone. According to intrusion regional geology, the bimodal rock associations and R2-R1 diagram, we can find that a Dishuiquan intrusion is formed in intra-continent extension environment and the granite pluton is a stitching body. LA-ICPMS zircon U-Pb age shows that the K-feldspar granite 206Pb/238U ages is 321±2Ma and hornblende-gabbro is 319±3Ma, so the ocean basin of Karamaili has been closed before the early stage Late Carboniferous (321Ma). Isotope and trace element shows that K-feldspar granites are characterized of the young crust, however hornblende-gabbro source is composed of depleted asthenosphere mantle and wedge matasomasised by subducting slab. Even more important, hornblende-gabbros represent underplating magmas of granites from Late Carboniferous. The similar εNd(t) and obvious magma mixing between gabbro and granite indicate that Dishuiquan K-feldspar granite pluton is not from high differentiation of underplating magmas or partial melting of hornblende-gabbros, which most probably be from the young crust overhead the underplated hornblende-gabbro pluton. The conclusion is consistent with research achievements from granites in the north of Karamaili by some scholars. The finding of underplated hornblende-gabbro pluton in the early stage of Late Carboniferous provides a reliable geological basis for underplating of post-collision granitoids in Kalamaili.
-
Key words:
- Eastern Junngar /
- Karamaili /
- K-feldspar granites /
- Hornblende-gabbros /
- Intra-continental extension /
- Genesis of rocks /
- Underplating
-
-
[1] Chappell BW and White AJR. 1974. Two constrasting granite types. Pacific Geology, 8: 173-174
[2] Chappell BW. 1999. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos, 46(3): 535-551
[3] Chen B and Jahn BM. 2004. Genesis of post-collisional granitoids and basement nature of the Junggar Terrane, NW China: Nd-Sr isotope and trace element evidence. Journal of Asian Earth Sciences, 23(5): 691-703
[4] Coleman RG. 1989. Continental growth of Northwest China. Tectonics, 8(3): 621-635
[5] Frost BR, Barnes CG, Collins WJ et al. 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42(11): 2033-2048
[6] Frost CD and Frost BR. 2011. On ferroan (A-type) granitoids: Their compositional variability and modes of origin. Journal of Petrology, 52(1): 39-53
[7] Gao S, Rudnick RL, Yuan HL et al. 2004. Recycling lower continental crust in the North China craton. Nature, 432(7019): 892-897
[8] Gradstein FM, Ogg JG, Schmitz M et al. 2012. The Geologic Time Scale 2012, 2-Volume Sheet. Amsterdam: Elsevier
[9] Guo FF, Jiang CY, Lu RH et al. 2010. Petrogenesis of the Huangyangshan alkali granites in Kalamaili area, northern Xinjiang. Acta Petrologica Sinica, 26(8): 2357-2373 (in Chinese with English abstract)
[10] Guo ZF, Deng JF, Xu ZQ et al. 1998. Late Palaeozoic-Mesozoic intracontinental orogenic process and intermedate-acidic igneous rocks from the eastern Kunlun Mountains of northwestern China. Geoscience, 12(3): 344-352 (in Chinese with English abstract)
[11] Han BF, Wang SG, Jahn BM et al. 1997. Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China: Geochemistry and Nd-Sr isotopic evidence, and implications for Phanerozoic crustal growth. Chemical Geology, 138(3-4): 135-159
[12] Han BF, He GQ, Wang SG et al. 1998. Postcollisional mantle-derived magmatism and vertical growth of the continental crust in North Xinjiang. Geological Review, 44(4): 396-406 (in Chinese with English abstract)
[13] Han BF, Ji JQ, Song B et al. 2006. Late Paleozoic vertical growth of continental crust around the Junggar Basin, Xinjiang, China (Part I): Timing of post-collisional plutonism. Acta Petrologica Sinica, 22(5): 1077-1086 (in Chinese with English abstract)
[14] Han BF, Guo ZJ and He GQ. 2010. Timing of major suture zones in North Xinjiang, China: Constraints from stitching plutons. Acta Petrologica Sinica, 26(8): 2233-2246 (in Chinese with English abstract)
[15] Han YJ, Tang HF and Gan L. 2012. Zircon U-Pb ages and geochemical characteristics of the Laoyaquan A-type granites in East Junggar, North Xinjiang, China. Acta Mineralogica Sinica, 32(2): 193-199 (in Chinese with English abstract)
[16] Hong DW, Wang SG, Xie XL et al. 2000. Genesis of positive εNd(t) granitoids in the Da Hinggan Mts.-Mongolia orogenic belt and growth continental crust. Earth Science Frontiers, 7(2): 441-456 (in Chinese with English abstract)
[17] Hoskin PWO and Black LP. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18(4): 423-439
[18] Huang G, Niu GZ, Wang XL et al. 2012. Formation and emplacement age of Karamaili ophiolite: LA-ICP-MS zircon U-Pb age evidence from the diabase and tuff in eastern Junggar, Xinjiang. Geological Bulletin of China, 31(8): 1267-1278 (in Chinese with English abstract)
[19] Institute of Geochemistry, Chinese Academy of Sciences. 1998. Higher Geochemistry. Beijing: Science Press, 174-188 (in Chinese)
[20] Jin ZM and Gao S. 1996. Underplating and its geodynamical significances for the evolution of crust-mantle boundary. Geological Science and Technology Information, 15(2): 1-7 (in Chinese with English abstract)
[21] Kwon ST, Tilton GR, Coleman RG et al. 1989. Isotopic studies bearing on the tectonics of the West Junggar region, Xinjiang, China. Tectonics, 8(4): 719-727
[22] Li XH, Li ZX, Ge WC et al. 2003. Neoproterozoic granitoids in South China: Crustal melting above a mantle plume at ca. 825Ma? Precambrian Research, 122(1-4): 45-83
[23] Li YC, Yang FQ, Zhao CS et al. 2007. SHRIMP U-Pb zircon dating of the Beilekuduk pluton in Xinjiang and its geological implications. Acta Petrologica Sinica, 23(10): 2483-2492 (in Chinese with English abstract)
[24] Li YJ, Yang GX, Wu HE et al. 2009. The determination of Beilekuduke aluminous A-type granites in East Junggar, Xinjiang. Acta Petrologica et Mineralogica, 28(1): 17-25 (in Chinese with English abstract)
[25] Lin JF, Yu HX, Yu XQ et al. 2007. Zircon SHRIMP U-Pb dating and geological implication of the Sabei alkali-rich granite from eastern Junggar of Xinjiang, NW China. Acta Petrologica Sinica, 23(8): 1876-1884 (in Chinese with English abstract)
[26] Liu CD, Mo XX, Luo ZH et al. 2004. Mixing events between the crust- and mantle-derived magmas in eastern Kunlun: Evidence from zircon SHRIMP Ⅱ chronology. Chinese Science Bulletin, 49(8): 828-834
[27] Liu HF, Liang HS, Li XQ et al. 2000. The coupling mechanisms of Mesozoic-Cenozoic rift basins and extensional mountain system in eastern China. Earth Science Frontiers, 7(4): 477-486 (in Chinese with English abstract)
[28] Liu YS, Hu ZC, Gao S et al. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43
[29] Liu YS, Gao S, Hu ZC et al. 2010a. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571
[30] Liu YS, Hu ZC, Zong KQ et al. 2010b. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546
[31] Ludwig KR. 2003. User's manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronlogical Center Special Publication, 25-32
[32] Luo ZH, Ke S, Cao YQ et al. 2002. Late Indosinian mantle-derived magmatism in the East Kunlun. Geological Bulletin of China, 21(6): 292-297 (in Chinese with English abstract)
[33] Mo XX, Luo ZH, Deng JF et al. 2007. Granitoids and crustal growth in the East-Kunlun orogenic Belt. Geological Journal of China Universities, 13(3): 403-414 (in Chinese with English abstract)
[34] Pearce J. 1996. Sources and settings of granitic rocks. Episodes, 19(4): 120-125
[35] Pearce JA, Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rock. Journal of Petrology, 25(4): 956-983
[36] Pearce JA, Bender JF, De Long SE et al. 1990. Genesis of collision volcanism in Eastern Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 44(1-2): 189-22
[37] Peccerillo A and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81
[38] Saunders AD, Storey M, Kent RW et al. 1992. Consequences of plume-lithosphere interactions. In: Storey BC, Alabaster T and Pankhurst RJ (eds.). Magmatism and the Causes of Continental Break-up. Geological Society, London, Special Publication, 68(1): 41-60
[39] Shand SJ. 1927. The Eruptive Rocks. New York: Wiley & Sons
[40] Streckeisen A and Le Maitre RWA. 1979. A chemical approximation to the model QAPF classification of igneous rocks. Neues Jahrbuch Fur Mineralogie-Abhandlungen, 136: 169-206
[41] Su YP, Tang HF, Liu CQ et al. 2006. The determination and a preliminary study of Sujiquan aluminous A-type granites in East Junggar, Xinjiang. Acta Petrologica et Mineralogica, 25(3): 175-184 (in Chinese with English abstract)
[42] Su YP, Tang HF, Sylvester PJ et al. 2007. Petrogenesis of Karamaili alkaline A-type granites from East Junggar, Xinjiang (NW China) and their relationship with tin mineralization. Geochemical Journal, 41(5): 341-357
[43] Su YP, Tang HF and Cong F. 2008. Zircon U-Pb age and petrogenesis of the Huangyangshan alkalinegranite body in East Junggar, Xinjiang. Acta Mineralogica Sinica, 28(2): 117-126 (in Chinese with English abstract)
[44] Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345
[45] Tang HF, Qu WJ, Su YP et al. 2007. Genetic connection of Sareshike tin deposit with the alkaline A-type granites of Sabei body in Xinjiang: Constraint from isotopic ages. Acta Petrologica Sinica, 23(8): 1989-1997 (in Chinese with English abstract)
[46] Tian J, Liao QA, Fan GM et al. 2015. The discovery and tectonic implication of Early Carboniferous post-collisional I-type granites from the south of Karamaili in eastern Junngar. Acta Petrologica Sinica, 31(5): 1471-1484 (in Chinese with English abstract)
[47] Turner S, Sandiford M and Foden J. 1992. Some geodynamic and compositional constraints on "postorogenic" magmatism. Geology, 20(10): 931-934
[48] Wang BY, Jiang CY, Li YJ et al. 2011. Geochemical characteristics and tectonic implications of Karamaili Jiangbasitao Formation volcanic rock in Xinjiang. Journal of Earth Sciences and Environment, 33(3): 237-245 (in Chinese with English abstract)
[49] Whalen JB, Currie KL and Chappell BW. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419
[50] Wilson M. 1989. Igneous Petrogenesis. London: Unwin Hyman, 1-466
[51] Woodhead JD, Hergt JM, Davidson JP et al. 2001. Hafnium isotope evidence for 'conservative' element mobility during subduction zone processes. Earth and Planetary Science Letters, 192(3): 331-346
[52] Wu FY, Sun DY and Lin Q. 1999. Petrogenesis of the Phanerozoic granites and crustal growth in Northeast China. Acta Petrologica Sinica, 15(2): 181-189 (in Chinese with English abstract)
[53] Wu FY, Sun DY, Li HM et al. 2002. A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis. Chemical Geology, 187(1-2): 143-173
[54] Wu FY, Li XH, Yang JH et al. 2007. Discussions on the petrogenesis of granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract)
[55] Wu RJ, Zhang YY, Tan JY et al. 2009. The characteristics of different structure layers and tectonic implications since Late Paleozoic in Kalamaily area, Xinjiang. Earth Science Frontiers, 16(3): 102-109 (in Chinese with English abstract)
[56] Wu Q, Qu X, Chang GH et al. 2012. Geochronology of the Hongliuxia ductile shear zone and its constraint on the closure time of the Junggar Ocean. Acta Petrologica Sinica, 28(8): 2331-2339 (in Chinese with English abstract)
[57] Wu YB and Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(15): 1554-1569
[58] Xu XS and Qiu JS. 2010. Igneous Petrology. Beijing: Science Press (in Chinese)
[59] Yan CX, Yang GX, Li YJ et al. 2008. Petrochemistry feature and tectonic significance of the Kubusunan granitic rock mass in East Junggar, Xinjiang. Xinjiang Geology, 26(3): 220-224 (in Chinese with English abstract)
[60] Yang GX, Li YJ, Si GH et al. 2008. LA-ICP-MS zircon U-Pb dating of the Kubusunan granodiorite in the Kalamaili area, eastern Junggar, Xinjiang. Geology in China, 35(5): 849-858 (in Chinese with English abstract)
[61] Yang GX, Li YJ, Wu HE et al. 2009. LA-ICP-MS Zircon U-Pb dating of the Huangyangshan pluton and its enclaves from Kalamaili area in eastern Junggar, Xinjiang, and geological implications. Acta Petrologica Sinica, 25(12): 3197-3207 (in Chinese with English abstract)
[62] Yang GX, Li YJ, Si GH et al. 2010. LA-ICP-MS zircon U-Pb dating of Kubusunan granodiorite and the enclaves from Kalamaili area in eastern Junggar, Xinjiang, and its geological implications. Earth Science, 35(4): 597-610 (in Chinese with English abstract)
[63] Yang GX, Li YJ, Wu HG et al. 2011. Geochronological and geochemical constrains on petrogenesis of the Huangyangshan A-type granite from the East Junggar, Xinjiang, NW China. Journal of Asian Earth Sciences, 40(3): 722-736
[64] Yang KG and Yang WR. 1997. Post-collision orogeny process and origin of huge quantity granites in orogenic belt. Geological Science and Technology Information, 16(4): 16-22 (in Chinese with English abstract)
[65] Zhang YY, Pe-Piper G, Piper DJW et al. 2013. Early Carboniferous collision of the Kalamaili orogenic belt, North Xinjiang, and its implications: Evidence from molasse deposits. Geological Society of America Bulletin, 125(5-6): 932-944
[66] Zhou XR. 1994. Hybridization in the genesis of granitoids. Earth Science Frontiers, 1(1-2): 87-97 (in Chinese with English abstract)
[67] Zorpi MJ, Coulon C, Orsini JB et al. 1989. Magma mingling, zoning and emplacement in calc-alkaline granitoid plutons. Tectonophysics, 157(4): 315-329
[68] Zhu ZX, Li SZ and Li SL. 2005. The characteristics of sedimentary system-continental facies volcano in Late Carboniferous Batamayineishan Formation, Zhifang region, East Junggar. Xinjiang Geology, 23(1): 14-18 (in Chinese)
[69] 郭芳放, 姜常义, 卢荣辉等. 2010. 新疆北部卡拉麦里地区黄羊山碱性花岗岩的岩石成因. 岩石学报, 26(8): 2357-2373
[70] 郭正府, 邓晋福, 许志琴等. 1998. 青藏东昆仑晚古生代末-中生代中酸性火成岩与陆内造山过程. 现代地质, 12(3): 344-352
[71] 韩宝福, 何国琦, 王式洸等. 1998. 新疆北部后碰撞幔源岩浆活动与陆壳纵向生长. 地质论评, 44(4): 396-406
[72] 韩宝福, 季建清, 宋彪等. 2006. 新疆准噶尔晚古生代陆壳垂向生长(Ⅰ)——后碰撞深成岩浆活动的时限. 岩石学报, 22(5): 1077-1086
[73] 韩宝福, 郭召杰, 何国琦. 2010. "钉合岩体"与新疆北部主要缝合带的形成时限. 岩石学报, 26(8): 2233-2246
[74] 韩宇捷, 唐红峰, 甘林. 2012. 新疆东准噶尔老鸦泉岩体的锆石U-Pb年龄和地球化学组成. 矿物学报, 32(2): 193-199
[75] 洪大卫, 王式洸, 谢锡林等. 2000. 兴蒙造山带正εNd(t)值花岗岩的成因和大陆地壳生长. 地学前缘, 7(2): 441-456
[76] 黄岗, 牛广智, 王新录等. 2012. 新疆东准噶尔卡拉麦里蛇绿岩的形成和侵位时限:来自辉绿岩和凝灰岩LA-ICP-MS锆石U-Pb年龄的证据. 地质通报, 31(8): 1267-1278
[77] 金振民, 高山. 1996. 底侵作用(underplating)及其壳-幔演化动力学意义. 地质科技情报, 15(2): 1-7
[78] 李月臣, 杨富全, 赵财胜等. 2007. 新疆贝勒库都克岩体的锆石SHRIMP U-Pb年龄及其地质意义. 岩石学报, 23(10): 2483-2492
[79] 李永军, 杨高学, 吴宏恩等. 2009. 东准噶尔贝勒库都克铝质A型花岗岩的厘定及意义. 岩石矿物学杂志, 28(1): 17-25
[80] 林锦富, 喻亨祥, 余心起等. 2007. 新疆东准噶尔萨北富碱花岗岩SHRIMP锆石U-Pb测年及其地质意义. 岩石学报, 23(8): 1876-1884
[81] 刘成东, 莫宣学, 罗照华等. 2004. 东昆仑壳-幔岩浆混合作用: 来自锆石SHRIMP年代学的证据. 科学通报, 49(6): 596-602
[82] 刘和甫, 梁慧社, 李晓清等. 2000. 中国东部中新生代裂陷盆地与伸展山岭耦合机制. 地学前缘, 7(4): 477-486
[83] 罗照华, 柯珊, 曹永清等. 2002. 东昆仑印支晚期幔源岩浆活动. 地质通报, 21(6): 292-297
[84] 莫宣学, 罗照华, 邓晋福等. 2007. 东昆仑造山带花岗岩及地壳生长. 高校地质学报, 13(3): 403-414
[85] 苏玉平, 唐红峰, 刘丛强等. 2006. 新疆东准噶尔苏吉泉铝质A型花岗岩的确立及其初步研究. 岩石矿物学杂志, 25(3): 175-184
[86] 苏玉平, 唐红峰, 丛峰. 2008. 新疆东准噶尔黄羊山碱性花岗岩体的锆石U-Pb年龄和岩石成因. 矿物学报, 28(2): 117-126
[87] 唐红峰, 屈文俊, 苏玉平等. 2007. 新疆萨惹什克锡矿与萨北碱性A型花岗岩成因关系的年代学制约. 岩石学报, 23(8): 1989-1997
[88] 田健, 廖群安, 樊光明等. 2015. 东准噶尔卡拉麦里断裂以南早石炭世后碰撞花岗岩的发现及其地质意义. 岩石学报, 31(5): 1471-1484
[89] 汪帮耀, 姜常义, 李永军等. 2011. 新疆卡拉麦里姜巴斯套组火山岩地球化学特征与构造意义. 地球科学与环境学报, 33(3): 237-245
[90] 吴福元, 孙德有, 林强. 1999. 东北地区显生宙花岗岩的成因与地壳增生. 岩石学报, 15(2): 181-189
[91] 吴福元, 李献华, 杨进辉等. 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238
[92] 吴琪, 屈迅, 常国虎等. 2012. 红柳峡韧性剪切带形成时代及其对准噶尔洋盆闭合时限的约束. 岩石学报, 28(8): 2331-2339
[93] 吴润江, 张元元, 谭佳奕等. 2009. 新疆卡拉麦里地区晚古生代以来不同构造层特征及大地构造意义.地学前缘, 16(3): 102-109
[94] 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604
[95] 徐夕生, 邱检生. 2010. 火成岩岩石学. 北京: 科学出版社
[96] 闫存兴, 杨高学, 李永军等. 2008. 东准库布苏南岩体岩石化学特征及其地质意义. 新疆地质, 26(3): 220-224
[97] 杨高学, 李永军, 司国辉等. 2008. 东准库布苏南岩体LA-ICP-MS锆石U-Pb测年. 中国地质, 35(5): 849-858
[98] 杨高学, 李永军, 吴宏恩等. 2009. 东准噶尔卡拉麦里地区黄羊山花岗岩和包体LA-ICP-MS锆石U-Pb测年及地质意义. 岩石学报, 25(12): 3197-3207
[99] 杨高学, 李永军, 司国辉等. 2010. 东准库布苏南岩体和包体的LA-ICP-MS锆石U-Pb测年及地质意义. 地球科学, 35(4): 597-610
[100] 杨坤光, 杨巍然. 1997. 碰撞后的造山过程及造山带巨量花岗岩的成因. 地质科技情报, 16(4): 16-22
[101] 中国科学院地球化学研究所. 1998. 高等地球化学. 北京: 科学出版社, 174-188
[102] 周珣若. 1994. 花岗岩混合作用. 地学前缘, 1(1-2): 87-97
[103] 朱志新, 李少贞, 李嵩龄. 2005. 东准噶尔纸房地区晚石炭世巴塔玛依内山组陆相火山-沉积体系特征. 新疆地质, 23(1): 14-18
-
计量
- 文章访问数:
- PDF下载数:
- 施引文献: 0