含铜镍岩浆起源及硫饱和机制:以新疆黄山南岩浆铜镍硫化物矿床Sr-Nd-Pb-S同位素和元素地球化学研究为例

赵云, 杨永强, 柯君君. 含铜镍岩浆起源及硫饱和机制:以新疆黄山南岩浆铜镍硫化物矿床Sr-Nd-Pb-S同位素和元素地球化学研究为例[J]. 岩石学报, 2016, 32(7): 2086-2098.
引用本文: 赵云, 杨永强, 柯君君. 含铜镍岩浆起源及硫饱和机制:以新疆黄山南岩浆铜镍硫化物矿床Sr-Nd-Pb-S同位素和元素地球化学研究为例[J]. 岩石学报, 2016, 32(7): 2086-2098.
ZHAO Yun, YANG YongQiang, KE JunJun. Origin of Cu- and Ni-bearing magma and sulfide saturation mechanism: A case study of Sr-Nd-Pb-S isotopic composition and element geochemistry on the Huangshannan magmatic Ni-Cu sulfide deposit, Xinjiang[J]. Acta Petrologica Sinica, 2016, 32(7): 2086-2098.
Citation: ZHAO Yun, YANG YongQiang, KE JunJun. Origin of Cu- and Ni-bearing magma and sulfide saturation mechanism: A case study of Sr-Nd-Pb-S isotopic composition and element geochemistry on the Huangshannan magmatic Ni-Cu sulfide deposit, Xinjiang[J]. Acta Petrologica Sinica, 2016, 32(7): 2086-2098.

含铜镍岩浆起源及硫饱和机制:以新疆黄山南岩浆铜镍硫化物矿床Sr-Nd-Pb-S同位素和元素地球化学研究为例

  • 基金项目:

    本文受国家自然科学基金项目(U1303292)、国家科技支撑计划项目(2011BAB06B02)和中国地质调查局工作项目(1212011085069)联合资助.

Origin of Cu- and Ni-bearing magma and sulfide saturation mechanism: A case study of Sr-Nd-Pb-S isotopic composition and element geochemistry on the Huangshannan magmatic Ni-Cu sulfide deposit, Xinjiang

  • 新疆黄山-镜儿泉一带是天山东段重要岩浆铜镍硫化物成矿带,但对其中含铜镍岩浆起源和硫饱和机制尚存较大争议。黄山南岩体是近年来在该成矿带中发现的另一个含矿性较好的重要岩体。岩体可分为超镁铁质岩相和镁铁质岩相,超镁铁质岩相为主要含铜镍矿岩相,而镁铁质岩相并未发生明显的矿化。超镁铁质岩相岩石类型包括二辉橄榄岩、斜辉橄榄岩、橄榄二辉岩、二辉岩、角闪二辉岩及少量粗粒辉长岩,其中二辉橄榄岩和二辉岩是主要含矿岩石类型。镁铁质岩相由苏长岩、辉长岩、角闪辉长岩、闪长岩及石英闪长岩组成。黄山南岩体的(87Sr/86Sr)i (0.7036~0.7057)、εNd(t) (-1.2~+7.4)、(206Pb/204Pb)i (17.152~18.088)、(207Pb/204Pb)i (15.385~15.571)和(208Pb/204Pb)i (37.127~38.252)变化范围均较大,显示了母岩浆遭受了较明显的壳源物质混染。岩浆源区在板片俯冲过程中壳源物质加入明显,而原始岩浆上升过程中壳源物质的混染有限。Sr-Nd-Pb同位素组成指示黄山南含矿岩体的形成与塔里木大火成岩省并无直接联系。虽然黄山南岩浆铜镍硫化物矿石δ34S值介于-1.54‰~2.03‰之间,落在幔源硫的范围内,但是Se(×106)/S比值表明壳源硫的加入对成矿母岩浆硫饱和起到重要作用。
  • 加载中
  • [1]

    Abzalov MZ and Both RA. 1997. The Pechenga Ni-Cu deposits, Russia: Data on PGE and Au distribution and sulphur isotope compositions. Mineralogy and Petrology, 61(1-4): 119-143

    [2]

    Aït-Djafer S, Ouzegane K, Paul-Liégeois J and Kienast JR. 2003. An example of post-collisional mafic magmatism: The gabbro-anorthosite layered complex from the Tin Zebane area (western Hoggar, Algeria). Journal of African Earth Sciences, 37(3-4): 313-330

    [3]

    Bai YL. 2000. Geotectonic setting of Huangshan-Jingerquan nickel-copper metallogenic system in Hami, Xinjiang. Acta Geologica Gansu, 9(2): 1-7 (in Chinese with English abstract)

    [4]

    Barnes SJ, Melezhik VA and Sokolov SV. 2001. The composition and mode of formation of the Pechenga nickel deposits, Kola Peninsula, northwestern Russia. The Canadian Mineralogist, 39(2): 447-471

    [5]

    Barnes SJ and Lightfoot PC. 2005. Formation of magmatic nickel-sulfide ore deposits and processes affecting their copper and platinum-group element contents. In: Hedenquist JW, Thompson JFH, Goldfarb RJ and Richards JP (eds.). Economic Geology 100th Anniversary Volume, SEG, 179-213

    [6]

    Bleeker W. 1990. Evolution of the Thompson Nickel Belt and its nickel deposits, Manitoba, Canada. Ph. D. Dissertation. New Brunswick: University of New Brunswick

    [7]

    Brenan JM, McDonough WF and Dalpé C. 2003. Experimental constraints on the partitioning of rhenium and some platinum-group elements between olivine and silicate melt. Earth and Planetary Science Letters, 212(1-2): 135-150

    [8]

    Bryan SE and Ernst RE. 2008. Revised definition of Large Igneous Provinces (LIPs). Earth-Science Reviews, 86(1-4): 175-202

    [9]

    Campbell IH and Griffiths RW. 1993. The evolution of the mantle's chemical structure. Lithos, 30(3-4): 389-399

    [10]

    Campbell IH. 2001. Identification of ancient mantle plumes. In: Ernst RE and Buchan KL (eds.). Mantle Plumes: Their Identification through Time. Boulder, Colorado: Geological Society of America, Special Paper, 352: 5-21

    [11]

    Chai FM. 2006. Comparison on petrologic geochemistry of three mafic-ultramafic intrusions associated with Ni-Cu sulfide deposits in northern Xinjiang. Ph. D. Dissertation. Beijing: China University of Geosciences, 1-154 (in Chinese with English summary)

    [12]

    Chaussidon M and Lorand JP. 1990. Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege (North-Eastern Pyrenees, France): An ion microprobe study. Geochimica et Cosmochimica Acta, 54(10): 2835-2846

    [13]

    Chen W, Sun S, Zhang Y, Xiao WJ, Wang YT, Wang QL, Jiang LF and Yang JT. 2005. 40Ar/39Ar geochronology of the Qiugemingtashi-Huangshan ductile shear zone in East Tianshan, Xinjiang, NW China. Acta Geologica Sinica, 79(6): 790-804 (in Chinese with English abstract)

    [14]

    Deng YF, Song XY, Chen LM, Cheng SL, Zhang XL and Li J. 2011. Features of the mantle source of the Huangshanxi Ni-Cu sulfide-bearing mafic-ultramafic intrusion, eastern Tianshan. Acta Petrologica Sinica, 27(12): 3640-3652 (in Chinese with English abstract)

    [15]

    Deng YF, Song XY, Zhou TF, Yuan F, Chen LM and Zheng WQ. 2012. Correlations between Fo number and Ni content of olivine of the Huangshandong intrusion, eastern Tianshan, Xinjiang, and the genetic significances. Acta Petrologica Sinica, 28(7): 2224-2234 (in Chinese with English abstract)

    [16]

    Deng YF, Song XY, Chen LM, Zhou TF, Pirajno F, Yuan F, Xie W and Zhang DY. 2014. Geochemistry of the Huangshandong Ni-Cu deposit in northwestern China: Implications for the formation of magmatic sulfide mineralization in orogenic belts. Ore Geology Reviews, 56: 181-198

    [17]

    Dobosi G, Downes H, Embey-Isztin A and Jenner GA. 2003. Origin of megacrysts and pyroxenite xenoliths from the Pliocene alkali basalts of the Pannonian basin (Hungary). Neues Jahrbuch Für Mineralogie-Abhandlungen, 178(3): 217-237

    [18]

    Eckstrand OR, Grinenko LN, Krouse HR, Paktunc AD, Schwann PL and Scoates RF. 1989. Preliminary data on sulphur isotopes and Se/S ratios and the source of sulphur in magmatic sulphides from the Fox River Sill, Molson Dykes and Thompson nickel deposits, northern Manitoba. Geological Survey of Canada Paper, 89-1C: 235-242

    [19]

    Farnetani CG and Richards MA. 1994. Numerical investigations of the mantle plume initiation model for flood basalt events. Journal of Geophysical Research, 99(B7): 13813-13833

    [20]

    Gao JF and Zhou MF. 2013. Generation and evolution of siliceous high magnesium basaltic magmas in the formation of the Permian Huangshandong intrusion (Xinjiang, NW China). Lithos, 162-163: 128-139

    [21]

    Gao JF, Zhou MF, Lightfoot PC, Wang CY, Qi L and Sun M. 2013. Sulfide saturation and magma emplacement in the formation of the Permian Huangshandong Ni-Cu sulfide deposit, Xinjiang, northwestern China. Economic Geology, 108(8): 1833-1848

    [22]

    Griffiths RW and Campbell IH. 1990. Stirring and structure in mantle starting plumes. Earth and Planetary Science Letters, 99(1-2): 66-78

    [23]

    Grinenko LI. 1985. Sources of sulfur of the nickeliferous and barren gabbro-dolerite intrusions of the northwest Siberian platform. International Geology Review, 27(6): 695-708

    [24]

    Han BF, Ji JQ, Song B, Chen LH and Li ZH. 2004. SHRIMP zircon U-Pb ages of Kalatongke No.1 and Huangshandong Cu-Ni-bearing mafic-ultramafic complexes, North Xinjiang, and geological implications. Chinese Science Bulletin, 49(22): 2424-2429

    [25]

    Hawkesworth CJ. 1982. Isotope characteristics of magmas erupted along destructive plate margins. In: Thorpe RS (ed.). Andesites: Orogenic Andesites and Related Rocks. New York: Wiley, 549-571

    [26]

    Hofmann C, Féraud G and Courtillot V. 2000. 40Ar/39Ar dating of mineral separates and whole rocks from the Western Ghats lava pile: Further constraints on duration and age of the Deccan traps. Earth and Planetary Science Letters, 180(1-2): 13-27

    [27]

    Irvine TN. 1974. Petrology of the Duke Island ultramafic complex southeastern Alaska. Geological Society of America Memoir, 138: 1-244

    [28]

    Jahn BM. 2004. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. In: Malpas J, Fletcher CJN, Ali JR and Aitchison JC (eds.). Aspects of the Tectonic Evolution of China. Geological Society, London, Special Publications, 226(1): 73-100

    [29]

    Jiao JG, Zheng PP, Liu RP, Duan J and Jiang C. 2013. SHRIMP zircon U-Pb age of the No.3 intrusion in the Tulargen Cu-Ni mining area, East Tianshan Mountains, Xinjiang, and its geological significance. Geology and Exploration, 49(3): 393-404 (in Chinese with English abstract)

    [30]

    Johan Z. 2002. Alaskan-type complexes and their platinum-group element mineralizaiton. In: Cabri LJ (ed.). The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum Group Elements. Calgary, Alberta Canada: Canadian Institute of Mining, Metallurgy and Petroleum, 669-719

    [31]

    Jugo PJ, Luth RW and Richards JP. 2005. Experimental data on the speciation of sulfur as a function of oxygen fugacity in basaltic melts. Geochimica et Cosmochimica Acta, 69(2): 497-503

    [32]

    Larsen RB and Tegner C. 2006. Pressure conditions for the solidification of the Skaergaard intrusion: Eruption of East Greenland flood basalts in less than 300000 years. Lithos, 92(1-2): 181-197

    [33]

    Li C and Ripley EM. 2005. Empirical equations to predict the sulfur content of mafic magmas at sulfide saturation and applications to magmatic sulfide deposits. Mineralium Deposita, 40(2): 218-230

    [34]

    Liu DQ. 1983. Plate tectonic and distribution of mineral resources in Xinjiang. Northwestern Geology, 4(2): 1-12 (in Chinese with English abstract)

    [35]

    Ma RS, Shu LS and Sun JQ. 1997. Tectonic Evolution and Metallogeny of Eastern Tianshan Mountains. Beijing: Geological Publishing House, 1-202 (in Chinese)

    [36]

    Malitch KN, Latypov RM, Badanina IY and Sluzhenikin SF. 2014. Insights into ore genesis of Ni-Cu-PGE sulfide deposits of the Noril'sk Province (Russia): Evidence from copper and sulfur isotopes. Lithos, 204: 172-187

    [37]

    Mao JW, Yang JM, Qu WJ, Du AD, Wang ZL and Han CM. 2002. Re-Os dating of Cu-Ni sulfide ores from Huangshandong deposit in Xinjiang and its geodynamic significance. Mineral Deposits, 21(4): 323-330 (in Chinese with English abstract)

    [38]

    Mao JW, Pirajno F, Zhang ZH, Chai FM, Wu H, Chen SP, Cheng LS, Yang JM and Zhang CQ. 2008. A review of the Cu-Ni sulphide deposits in the Chinese Tianshan and Altay orogens (Xinjiang Autonomous Region, NW China): Principal characteristics and ore-forming processes. Journal of Asian Earth Sciences, 32(2-4): 184-203

    [39]

    Mao YJ, Qin KZ, Tang DM, Xue SC, Feng HY and Tian Y. 2014. Multiple stages of magma emplacement and mineralization of eastern Tianshan, Xinjiang: Examplified by the Huangshan Ni-Cu deposit. Acta Petrologica Sinica, 30(6): 1575-1594 (in Chinese with English abstract)

    [40]

    Mavrogenes JA and O'Neill HSC. 1999. The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas. Geochimica et Cosmochimica Acta, 63(7-8): 1173-1180

    [41]

    McDonough WF and Sun SS. 1995. The composition of the Earth. Chemical Geology, 120(3-4): 223-253

    [42]

    Pettigrew NT and Hattori KH. 2006. The Quetico Intrusions of Western Superior Province: Neo-Archean examples of Alaskan/Ural-type mafic-ultramafic intrusions. Precambrian Research, 149(1-2): 21-42

    [43]

    Pirajno F, Mao JW, Zhang ZC, Zhang ZH and Chai FM. 2008. The association of mafic-ultramafic intrusions and A-type magmatism in the Tian Shan and Altay orogens, NW China: Implications for geodynamic evolution and potential for the discovery of new ore deposits. Journal of Asian Earth Sciences, 32(2-4): 165-183

    [44]

    Qian ZZ, Sun T, Tang ZL, Jiang CY, He K, Xia MZ and Wang JZ. 2009. Platinum-group elements geochemistry and its significances of the Huangshandong Ni-Cu sulfide deposit, East Tianshan, China. Geological Review, 55(6): 873-884 (in Chinese with English abstract)

    [45]

    Qin KZ, Zhang LC, Xiao WJ, Xu XW, Yan Z and Mao JW. 2003. Overview of major Au, Cu, Ni and Fe deposits and metallogenic evolution of the eastern Tianshan Mountains, Northwestern China. In: Mao JW, Goldfarb RJ, Seltmann R, Wang DW, Xiao WJ and Hart C (eds.). Tectonic Evolution and Metallogency of the Chinese Altay and Tianshan: International Symposium of the IGCP-473 Project, IAGOD Guidebook Series 10, Urumqi, Xinjiang, China. London: Natural History Museum, 227-249

    [46]

    Queffurus M and Barnes SJ. 2013. Processes affecting the sulfur to selenium ratio in magmatic nickel-copper and platinum-group element deposits. Ore Geology Reviews, doi: 10.1016/j.oregeorev.2013.08.009

    [47]

    Ripley EM. 1999. Systematics of sulphur and oxygen isotopes in mafic igneous rocks and related Cu-Ni-PGE mineralization. In: Keays RR, Lesher CM, Lightfoot PC and Farrow CEG (eds.). Dynamic Processes in Magmatic Ore Deposits and Their Application to Mineral Exploration. Geological Association of Canada. Short Course Notes, 13: 133-158

    [48]

    Ripley EM, Sarkar A and Li CS. 2005. Mineralogic and stable isotope studies of hydrothermal alteration at the Jinchuan Ni-Cu deposit, China. Economic Geology, 100(7): 1349-1361

    [49]

    Ripley EM. 2009. Magmatic sulfide mineralization in Alaskan-type complexes. In: Li CS and Ripley EM (eds.). New Developments in Magmatic Ni-Cu and PGE Deposits. Beijing: Geological Publishing House, 219-228

    [50]

    Rudnick RL and Gao S. 2003. Composition of the continental crust. Treatise on Geochemistry, 3: 1-64

    [51]

    San JZ, Qin KZ, Tang ZL, Tang DM, Su BX, Sun H, Xiao QH and Liu PP. 2010. Precise zircon U-Pb age dating of two mafic-ultramafic complexes at Tulargen large Cu-Ni district and its geological implications. Acta Petrologica Sinica, 26(10): 3027-3035 (in Chinese with English abstract)

    [52]

    Şengör AMC, Natal'in BA and Burtman VS. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364(6435): 299-307

    [53]

    Song XY and Li XR. 2009. Geochemistry of the Kalatongke Ni-Cu-(PGE) sulfide deposit, NW China: Implications for the formation of magmatic sulfide mineralization in a postcollisional environment. Mineralium Deposita, 44(3): 303-327

    [54]

    Song XY, Xie W, Deng YF, Crawford AJ, Zheng WQ, Zhou GF, Deng G, Cheng SL and Li J. 2011. Slab break-off and the formation of Permian mafic-ultramafic intrusions in southern margin of Central Asian Orogenic Belt, Xinjiang, NW China. Lithos, 127(1-2): 128-143

    [55]

    Su BX. 2011. Mafic-ultramafic complexes in Beishan area, Xinjiang: Petrogenesis, mineralization and constraints on the tectonic evolution of the eastern Tianshan and Beishan, and the Early Permian mantle plume. Ph. D. Dissertation. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 1-196 (in Chinese)

    [56]

    Su BX, Qin KZ, Sun H, Tang DM, Sakyi PA, Chu ZY, Liu PP and Xiao QH. 2012. Subduction-induced mantle heterogeneity beneath eastern Tianshan and Beishan: Insights from Nd-Sr-Hf-O isotopic mapping of Late Paleozoic mafic-ultramafic complexes. Lithos, 134-135: 41-51

    [57]

    Su BX, Qin KZ, Tang DM, Sakyi PA, Liu PP, Sun H and Xiao QH. 2013. Late Paleozoic mafic-ultramafic intrusions in southern Central Asian Orogenic Belt (NW China): Insight into magmatic Ni-Cu sulfide mineralization in orogenic setting. Ore Geology Reviews, 51: 57-73

    [58]

    Sun H. 2009. Ore-forming Mechanism in conduit system and ore-bearing property evaluation for mafic-ultramafic complex in eastern Tianshan, Xinjiang. Ph. D. Dissertation. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 1-262 (in Chinese with English summary)

    [59]

    Sun T, Qian ZZ, Deng YF, Li CS, Song XY and Tang QY. 2013. PGE and Isotope (Hf-Sr-Nd-Pb) Constraints on the origin of the Huangshandong magmatic Ni-Cu sulfide deposit in the Central Asian Orogenic Belt, northwestern China. Economic Geology, 108(8): 1849-1864

    [60]

    Sun T, Wang DH, Qian ZZ, Fu Y, Chen ZH and Lou DB. 2014. Summary of metallogenic regularity for the nickel deposits, China. Acta Geologica Sinica, 88(12): 2227-2251 (in Chinese with English abstract)

    [61]

    Taylor HP. 1967. The zoned ultramafic complexes of southeastern Alaska. In: Wyllie PJ (ed.). Ultramafic and Related Rocks. New York: John Wiley & Sons, 97-121

    [62]

    Wang RM, Liu DQ and Yin DT. 1987. The conditions of controlling metallogny of Cu, Ni sulphide ore deposits and the orientation of finding ore Hami, Xinjiang, China. Minerals and Rocks, (1): 1-152 (in Chinese)

    [63]

    Wang YW, Wang JB, Wang LJ and Fang TH. 2004. REE characteristics of Cu-Ni sulfide deposits in the Hami area, Xinjiang. Acta Petrologica Sinica, 20(4): 935-948 (in Chinese with English abstract)

    [64]

    Windley BF, Allen MB, Zhang C, Zhao ZY and Wang GR. 1990. Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan range, Central Asia. Geology, 18(2): 128-131

    [65]

    Xia MZ. 2009. The mafic-ultramafic intrusions in the Huangshan region eastern Tianshan, Xinjiang: Petrogenesis and mineralization implication. Ph. D. Dissertation. Xi'an: Chang'an University, 1-157 (in Chinese with English summary)

    [66]

    Xia MZ, Jiang CY, Qian ZZ, Xia ZD, Wang BY and Sun T. 2010. Geochemistry and petrogenesis of Huangshandong intrusion, East Tianshan, Xinjiang. Acta Petrologica Sinica, 26(8): 2413-2430 (in Chinese with English abstract)

    [67]

    Xiao WJ, Zhang LC, Qin KZ, Sun S and Li JL. 2004. Paleozoic accretionary and collisional tectonics of the eastern Tianshan (China): Implications for the continental growth of central Asia. American Journal of Science, 304(4): 370-395

    [68]

    Xie W, Song XY, Deng YF, Wang YS, Ba DH, Zheng WQ and Li XB. 2012. Geochemistry and petrogenetic implications of a Late Devonian mafic-ultramafic intrusion at the southern margin of the Central Asian Orogenic Belt. Lithos, 144-145: 209-230

    [69]

    Yuan F, Zhou TF, Zhang DY, Jowitt SM, Keays RR, Liu S and Fan Y. 2012. Siderophile and chalcophile metal variations in basalts: Implications for the sulfide saturation history and Ni-Cu-PGE mineralization potential of the Tarim continental flood basalt province, Xinjiang Province, China. Ore Geology Reviews, 45: 5-15

    [70]

    Zhang MJ, Li CS, Fu PE, Hu PQ and Ripley EM. 2011. The Permian Huangshanxi Cu-Ni deposit in western China: Intrusive-extrusive association, ore genesis, and exploration implications. Mineralium Deposita, 46(2): 153-170

    [71]

    Zhao HJ, Mao JW, Xiang JF, Zhou ZH, Wei KT and Ke YF. 2010. Mineralogy and Sr-Nd-Pb isotopic compositions of quartz diorite in Tonglushan deposit, Hubei Province. Acta Petrologica Sinica, 26(3): 768-784 (in Chinese with English abstract)

    [72]

    Zhao Y, Xue CJ, Zhao XB, Yang YQ and Ke JJ. 2015. Magmatic Cu-Ni sulfide mineralization of the Huangshannan mafic-untramafic intrusion, Eastern Tianshan, China. Journal of Asian Earth Sciences, 105: 155-172

    [73]

    Zhou MF, Lesher CM, Yang ZX, Li JW and Sun M. 2004. Geochemistry and petrogenesis of 270Ma Ni-Cu-(PGE) sulfide-bearing mafic intrusions in the Huangshan district, eastern Xinjiang, Northwest China: Implications for the tectonic evolution of the Central Asian orogenic belt. Chemical Geology, 209(3-4): 233-257

    [74]

    Zhou MF, Zhao JH, Jiang CY, Gao JF, Wang W and Yang SH. 2009. OIB-like, heterogeneous mantle sources of Permian basaltic magmatism in the western Tarim basin, NW China: Implications for a possible Permian large igneous province. Lithos, 113(3-4): 583-594

    [75]

    Zindler A and Hart S. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14(1): 493-571

    [76]

    Zonenshain LP, Kuzmin MI and Natapov LM. 1990. Geology of the USSR: A plate-tectonic synthesis. In: Page BM (ed.). Geodynamics Series. American Geophysical Union, 242

    [77]

    白云来. 2000. 新疆哈密黄山-镜儿泉镍铜成矿系统的地质构造背景. 甘肃地质学报, 9(2): 1-7

    [78]

    柴凤梅. 2006. 新疆北部三个与岩浆型Ni-Cu硫化物矿床有关的镁铁-超镁铁质岩的地球化学特征对比研究. 博士学位论文. 北京: 中国地质大学, 1-154

    [79]

    陈文, 孙枢, 张彦, 肖文交, 王义天, 王清利, 姜立丰, 杨俊涛. 2005. 新疆东天山秋格明塔什-黄山韧性剪切带40Ar/39Ar年代学研究. 地质学报, 79(6): 790-804

    [80]

    邓宇峰, 宋谢炎, 陈列锰, 程松林, 张新利, 李军. 2011. 东天山黄山西含铜镍矿镁铁-超镁铁岩体岩浆地幔源区特征研究. 岩石学报, 27(12): 3640-3652

    [81]

    邓宇峰, 宋谢炎, 周涛发, 袁峰, 陈列锰, 郑文勤. 2012. 新疆东天山黄山东岩体橄榄石成因意义探讨. 岩石学报, 28(7): 2224-2234

    [82]

    韩宝福, 季建清, 宋彪, 陈立辉, 李宗怀. 2004. 新疆喀拉通克和黄山东含铜镍矿镁铁-超镁铁杂岩体的SHRIMP锆石U-Pb年龄及其地质意义. 科学通报, 49(22): 2324-2328

    [83]

    焦建刚, 郑鹏鹏, 刘瑞平, 段俊, 姜超. 2013. 东天山图拉尔根Ⅲ号岩体锆石年龄及地质意义. 地质与勘探, 49(3): 393-404

    [84]

    刘德权.1983.新疆板块构造与矿产分布. 西北地质,4(2): 1-12

    [85]

    马瑞士, 舒良树, 孙家齐. 1997. 东天山构造演化与成矿. 北京: 地质出版社, 1-202

    [86]

    毛景文, 杨建民, 屈文俊, 杜安道, 王志良, 韩春明. 2002. 新疆黄山东铜镍硫化物矿床Re-Os同位素测定及其地球动力学意义. 矿床地质, 21(4): 323-330

    [87]

    毛亚晶, 秦克章, 唐冬梅, 薛胜超, 冯宏业, 田野. 2014. 东天山岩浆铜镍硫化物矿床的多期次岩浆侵位与成矿作用-以黄山铜镍矿床为例. 岩石学报, 30(6): 1575-1594

    [88]

    钱壮志, 孙涛, 汤中立, 姜常义, 何克, 夏明哲, 王建中. 2009. 东天山黄山东铜镍矿床铂族元素地球化学特征及其意义. 地质论评, 55(6): 873-884

    [89]

    三金柱, 秦克章, 汤中立, 唐冬梅, 苏本勋, 孙赫, 肖庆华, 刘平平. 2010. 东天山图拉尔根大型铜镍矿区两个镁铁-超镁铁岩体的锆石U-Pb定年及其地质意义. 岩石学报, 26(10): 3027-3035

    [90]

    苏本勋. 2011. 新疆北山镁铁-超镁铁岩的成岩过程、成矿作用及对东天山-北山构造演化与早二叠世地幔柱的制约. 博士学位论文. 北京: 中国科学院地质与地球物理研究所, 1-196

    [91]

    孙赫. 2009. 东天山镁铁-超镁铁岩铜镍硫化物矿床通道式成矿机制与岩体含矿性评价研究. 博士学位论文. 北京: 中国科学院地质与地球物理研究所, 1-262

    [92]

    孙涛, 王登红, 钱壮志, 付勇, 陈郑辉, 娄德波. 2014. 中国镍矿成矿规律初探. 地质学报, 88(12): 2227-2251

    [93]

    王润民, 刘德权, 殷定泰. 1987. 新疆哈密土墩-黄山一带铜镍硫化物矿床成矿控制条件及找矿方向的研究. 矿物岩石, (1): 1-152

    [94]

    王玉往, 王京彬, 王莉娟, 方同辉. 2004. 新疆哈密黄山地区铜镍硫化物矿床的稀土元素特征及意义. 岩石学报, 20(4): 935-948

    [95]

    夏明哲. 2009. 新疆东天山黄山岩带镁铁-超镁铁质岩石成因及成矿作用. 博士学位论文. 西安: 长安大学, 1-157

    [96]

    夏明哲, 姜常义, 钱壮志, 夏昭德, 汪帮耀, 孙涛. 2010. 新疆东天山黄山东岩体岩石地球化学特征与岩石成因. 岩石学报, 26(8): 2413-2430

    [97]

    赵海杰, 毛景文, 向君峰, 周振华, 魏克涛, 柯于富. 2010. 湖北铜绿山矿床石英闪长岩的矿物学及Sr-Nd-Pb同位素特征. 岩石学报, 26(3): 768-784

  • 加载中
计量
  • 文章访问数:  4605
  • PDF下载数:  4790
  • 施引文献:  0
出版历程
收稿日期:  2015-12-20
修回日期:  2016-03-10
刊出日期:  2016-07-31

目录