西秦岭新生代双峰式火山作用及南北构造带成因初探

喻学惠 莫宣学 赵志丹 和文言 李勇

中国地质大学地质过程与矿产资源国家重点实验室，北京 100083
State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
2011-04-15 收稿，2011-06-01 改回。

Abstract Presenting the analysis data of whole rock chemistry, REE and trace element and Sr, Nd, Pb isotopes of the rhyolite, and 27 isotopic dating of the Cenozoic bimodal volcanic rocks from West Qinling. The studies showed that the Cenozoic bimodal volcanic rocks like to East Africa rift, consisted of kamafugite, carbonatite, shoshonite, rhyolite and/or trachyte. The age of the bimodal volcanic rocks is from 23Ma to 7.1Ma determined by isotopic dating of K/Ar and 39Ar/40Ar. The 87Sr/86Sr = 0.704031 ~ 0.70525, 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb is 18.408 ~ 19.062, 15.476 ~ 15.677 and 38.061 ~ 39.414 respectively, εNd = 0.3 ~ 5.3 of the kamafugite and shoshonite in the bimodal volcanic rocks. All of these are similar to the feature of Neo-Tethyan mantle geochemical domain, the magma originated from depleted mantle reservoirs like Onto Java and FOZO mantle plume, suggest the origin and genesis of Cenozoic bimodal volcanic rocks related to northeastward migration and upwelling of the India-Asia collision-deduced mantle flow, and also responds to eastward expanding of the Tibetan plateau. Cenozoic bimodal volcanic rocks in West Qinling providing ideal lithoprobe for understanding N-S trending tectonic belt and support for the N-S trending tectonic belt is a continental rift. However, the rifting of N-S trending tectonic belt is not similar to Baikal rift, and is also not like East Africa rift formed in typical Craton, comparing geological setting, deep-geophysics and thermal-structure of mantle in West Qinling with the mantle beneath Baikal rift and East Africa rift. The genesis of the rift of N-S trending tectonic belt related to northeastward migration and upwelling of the India-Asia collision-deduced asthenosphere flow, the characteristics of the rift may have restrained by East Kunlun faults-north boundary of West Qinling and the move velocity and direction between the blocks. We suggest that the N-S trending tectonic belt is complex tectonic belt and is a developing boundary of plates.

Key words Cenozoic; Bimodal volcanic rocks; North-south tectonic belt; Continental rift; West Qinling

摘 要 本文提供了西秦岭新生代流纹岩的全岩化学、稀土微量元素和 Pb, Sr, Nd 同位素分析数据, 以及新生代双峰式火山岩 27 个同位素定年结果。研究表明, 西秦岭新生代双峰式火山岩具有与东非裂谷完全相同的岩石组合。K/Ar 和 39Ar/40Ar 同位素定年确定新生代双峰式火山岩的年龄从 23 ~ 7.1 Ma。双峰式火山岩中的钾离子长石岩与钾玄岩的 87Sr/86Sr 在 0.704031 ~ 0.70525 之间, 206Pb/204Pb 为 18.408 ~ 19.062, 207Pb/204Pb 和 208Pb/204Pb 为 15.476 ~ 15.677, 38.061 ~ 39.414, εNd = 0.3 ~ 5.3。几乎所有为正值, 与新特提斯海慢幔元地球化学成分相似, 岩浆起源于与 Onton Java 和 FOZO 地幔柱相似的亏损地慢源区。由此推测, 火山岩的成因与印-亚大陆碰撞诱发的软流圈地幔物质向东移动和上涌有关, 也是青藏高原向东扩展的一种响应。西秦岭新生代双峰式火山岩的定位为查明南北构造带的性质提供了岩石探针, 它证明南北构造带是一条大陆裂谷。但是, 将西秦岭的双峰式火山岩产出的大地构造背景, 深部地球物理以及地幔结构与印加尔裂谷和东非裂谷的地幔结构可以相比, 可以看出, 南北构造带的裂谷特征不同与东非大陆裂谷, 也与印加尔裂谷不尽相同。南北构造带的裂谷成因与印-亚大陆碰撞诱发的软流圈物质向东的移动和上涌有关, 其特征受到西秦岭周边各个小块休憩相对运动速度与方向以及东昆仑断裂-西秦岭
北缘断裂运动性质的联合制约。由此推测, 北南构造带是一条复杂的裂谷带, 也可能是一个发展中的板块边界。

关键词 新生代; 双峰式火山岩; 北南构造带; 大陆裂谷; 西秦岭

中图法分类号 P588.14

西秦岭-松潘构造结位于中国主要大陆板块与造山带汇聚交接转换的重要部位, 是青藏高原向东部大陆扩展的前沿, 也是中国东西部地质地貌转换过度的关键地区。该构造结以东西宽600余千米、南北长近3000千米的南北构造带与东秦岭分野, 是我国现今东、西部地质构造、地理及生态环境的分界面, 也是青藏高原东西缘色池地球物理异常度度带(马松垣, 1987; 丁国渝, 1991; 张国伟等, 2006)。有关研究表明, 该南北构造带横穿秦岭构造带的部分, 地壳表层为近东西向构造, 而深部地球物理显示了近南北向构造特征(张国伟等, 2001)。这种立交桥式的地质结构特征是自中新生代以来青藏高原隆升及向中国东部大陆扩展的结果。西秦岭-松潘构造结之东段(图1)。火山岩的空间分布明显受NE向武都-凤县大型剪切带和NNE向(近南北向) 隐伏深断裂控制, 主要出露在该剪切带和隐伏深断裂以西的天水, 礼县, 宕昌等地。新生代火山岩主要以火山颈部的和/或侵

图1 西秦岭双峰式火山岩分布区的大地构造背景及南北构造带

Fig. 1 Sketch map of tectonic background of Cenozoic bimodal volcanic rocks distribution in West Qinling and N-S trending tectonic belt

Red lines are N-S trending tectonic belt
表 1 西秦岭双峰式火山岩的同位素定年结果

<table>
<thead>
<tr>
<th>序号</th>
<th>样品号</th>
<th>岩石类型</th>
<th>测年方法</th>
<th>测年结果</th>
<th>采样位置</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HT92-1</td>
<td>黄长质煌斑岩的球状火山集块</td>
<td>7.1Ma</td>
<td>好细</td>
<td>喻学惠, 1994</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>HT92-2</td>
<td>黄长质煌斑岩的层状熔岩</td>
<td>7.9Ma</td>
<td>好细</td>
<td>喻学惠, 1994</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>HT92-3</td>
<td>黄长质煌斑岩的球状火山集块</td>
<td>18.9Ma</td>
<td>好细</td>
<td>喻学惠, 1994</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>FS192-4</td>
<td>含气孔的层状熔岩</td>
<td>18.3Ma</td>
<td>分水岭</td>
<td>喻学惠, 1994</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>WP92-5</td>
<td>黄长质煌斑岩的球状火山集块</td>
<td>8.7Ma</td>
<td>王坪</td>
<td>喻学惠, 1994</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>WP92-6</td>
<td>黄长质煌斑岩的层状熔岩</td>
<td>13.8Ma</td>
<td>王坪</td>
<td>喻学惠, 1994</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>DS92-7</td>
<td>含气孔的层状熔岩</td>
<td>8.4Ma</td>
<td>牛头山</td>
<td>喻学惠, 1994</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>XS9-8</td>
<td>黄长质煌斑岩的球状火山集块</td>
<td>15.1Ma</td>
<td>小顶山</td>
<td>本文</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>XS9-9</td>
<td>黄长质煌斑岩的球状火山集块</td>
<td>18.3Ma</td>
<td>小顶山</td>
<td>本文</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>SWJ92-10</td>
<td>黄长质煌斑岩的球状火山集块</td>
<td>13.1Ma</td>
<td>上文家</td>
<td>喻学惠, 1994</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>SWJ92-11</td>
<td>含气孔的层状熔岩</td>
<td>14.6Ma</td>
<td>上文家</td>
<td>喻学惠, 1994</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>DS92-10</td>
<td>黄长质煌斑岩的球状火山集块</td>
<td>15.7Ma</td>
<td>小顶山</td>
<td>本文</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>ST91-02</td>
<td>黄长质煌斑岩的球状火山集块</td>
<td>14.7Ma</td>
<td>小顶山</td>
<td>本文</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>ST91-03</td>
<td>黄长质煌斑岩的球状火山集块</td>
<td>14.9Ma</td>
<td>小顶山</td>
<td>本文</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>BC92-01</td>
<td>含气孔的层状熔岩</td>
<td>15.9Ma</td>
<td>硬石</td>
<td>本文</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>YG92-01</td>
<td>黄长质煌斑岩的球状火山集块</td>
<td>11.7Ma</td>
<td>牛头山</td>
<td>本文</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>ND92-01</td>
<td>浅粉红色流纹质熔岩喷发岩</td>
<td>13.6Ma</td>
<td>牛头山</td>
<td>本文</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>ND92-02</td>
<td>浅粉红色流纹质熔岩喷发岩</td>
<td>11.4Ma</td>
<td>牛头山</td>
<td>本文</td>
<td></td>
</tr>
</tbody>
</table>

说明: 样品 1-18 由中国地质科学院地质所同位素年代学实验室测定; 样品 19-23 由中国地质科学院地质所同位素年代学实验室测定; 样品 24-27 由中国地质大学(北京)同位素年代学实验室测定。

出露的岩石

西秦岭地区出露于天水北道以东，渭河断裂带北侧的伯阳-牛头山地区。流纹质含晶屑岩层的凝灰熔岩和角砾岩的凝灰熔岩不整合赋存于更新世沉积物上。出露面积为37km²左右(赵振忠等, 2006)。另一处出露于会宁县牛头山一带。流纹质含晶屑岩层的凝灰熔岩及凝灰质熔岩层中, 出露面积37km²左右(赵振忠等, 2006)。
表2 西秦岭礼县牛顶山酸性火山岩的全岩化学(wt%)、稀土微量元素 (×10^-6) 及 Pb, Sr, Nd同位素

Table 2 Chemical composition(wt%), REE and trace (×10^-6) elements and isotopes of Pb, Sr, Nd of whole acidic volcanic rocks in Niuding mountain, West Qinling

<table>
<thead>
<tr>
<th>样品号</th>
<th>岩石类型</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>FeO</th>
<th>MnO</th>
<th>CaO</th>
<th>MgO</th>
<th>K₂O</th>
<th>Na₂O</th>
<th>P₂O₅</th>
<th>H₂O 含量</th>
<th>CO₂</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND2019</td>
<td>流纹岩</td>
<td>72.15</td>
<td>0.35</td>
<td>13.93</td>
<td>0.44</td>
<td>1.5</td>
<td>0.05</td>
<td>0.75</td>
<td>1.36</td>
<td>4.58</td>
<td>3.5</td>
<td>0.13</td>
<td>0.74</td>
<td>0.09</td>
<td>99.57</td>
</tr>
<tr>
<td>ND2014</td>
<td>流纹岩</td>
<td>71.49</td>
<td>0.35</td>
<td>12.33</td>
<td>1.27</td>
<td>0.37</td>
<td>0.04</td>
<td>0.52</td>
<td>2.31</td>
<td>3.52</td>
<td>2.12</td>
<td>0.14</td>
<td>4.14</td>
<td>1.37</td>
<td>99.97</td>
</tr>
<tr>
<td>ND2022</td>
<td>粗面岩</td>
<td>72.24</td>
<td>0.27</td>
<td>15.18</td>
<td>2.12</td>
<td>5.53</td>
<td>0.19</td>
<td>3.92</td>
<td>5.63</td>
<td>4.86</td>
<td>3.25</td>
<td>0.38</td>
<td>1.16</td>
<td>0.23</td>
<td>99.73</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>样品号</th>
<th>岩石类型</th>
<th>La</th>
<th>Ce</th>
<th>Pr</th>
<th>Nd</th>
<th>Sm</th>
<th>Eu</th>
<th>Gd</th>
<th>Tb</th>
<th>Dy</th>
<th>Ho</th>
<th>Er</th>
<th>Tm</th>
<th>Yb</th>
<th>Lu</th>
<th>Y</th>
<th>ΣREE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND2019</td>
<td>流纹岩</td>
<td>46.42</td>
<td>82.46</td>
<td>9.71</td>
<td>32.92</td>
<td>6.07</td>
<td>0.6</td>
<td>4.54</td>
<td>0.72</td>
<td>3.47</td>
<td>0.65</td>
<td>1.75</td>
<td>0.29</td>
<td>1.8</td>
<td>0.26</td>
<td>18.8</td>
<td>210.5</td>
</tr>
<tr>
<td>ND2022</td>
<td>粗面岩</td>
<td>46.63</td>
<td>89.65</td>
<td>11.45</td>
<td>45</td>
<td>9.07</td>
<td>1.71</td>
<td>7.18</td>
<td>1.07</td>
<td>5.43</td>
<td>0.05</td>
<td>2.59</td>
<td>0.38</td>
<td>2.24</td>
<td>0.33</td>
<td>27.1</td>
<td>249.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>样品号</th>
<th>岩石类型</th>
<th>Sr</th>
<th>Ba</th>
<th>Zr</th>
<th>Hf</th>
<th>Nb</th>
<th>Ta</th>
<th>U</th>
<th>Pb</th>
<th>Cs</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND2019</td>
<td>流纹岩</td>
<td>827</td>
<td>291</td>
<td>179</td>
<td>576</td>
<td>184</td>
<td>28.7</td>
<td>4.1</td>
<td>35.4</td>
<td>4.7</td>
</tr>
<tr>
<td>ND2022</td>
<td>粗面岩</td>
<td>150</td>
<td>381</td>
<td>1550</td>
<td>211</td>
<td>6.1</td>
<td>20</td>
<td>0.5</td>
<td>12.1</td>
<td>4.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>样品号</th>
<th>岩石类型</th>
<th>^87Sr/^86Sr</th>
<th>Nd</th>
<th>^208Pb</th>
<th>^208Pb</th>
<th>^208Pb</th>
<th>^208Pb</th>
<th>^208Pb</th>
<th>^208Pb</th>
<th>^208Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND2019</td>
<td>流纹岩</td>
<td>0.73635</td>
<td>0.512688</td>
<td>18.832</td>
<td>15.699</td>
<td>39.255</td>
<td>0.98</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注：全岩化学与稀土微量元素由湖北省地质实验中心测定; Sr, Nd, Pb同位素由中国地质科学院地质所同位素室测定

近如 (赖升东等, 2006), 能否归为该区双峰式火山岩组合, 尚待进一步研究。

2 新生代双峰式火山岩的岩石组合及特征

西秦岭新生代双峰式火山岩组合的岩石类型及各端元火山岩的岩石学特征概括如下;

（1）碱性超基性岩(钾钠辉长岩, 后同) 具有原生岩浆的各种特征(喻学惠, 1991)。化学成分以强烈亏损 SiO₂、Al₂O₃、富 TiO₂、Co、MgO 含有 Na₂O 为特征。SiO₂ 通常小于 40%、Al₂O₃ 通常小于 10%、CaO 通常高于 15%、MgO 通常大于 11%、K₂O + Na₂O 在 3%～5% 左右。根据 Foley et al. (1987) 有关超基性岩的分类, 确定为钾钠辉长岩。岩石具斑状结构, 斑晶矿物有橄榄石, 单斜辉石和金云母, 基质中含大量单斜辉石/白榴石/黄长石/霞石的微晶或微斑晶, 不含任何长石类矿物。岩石中含有的地幔包体, 橄榄石捕虏体, 单斜辉石、金云母微晶, 还含有大量碳酸岩的分凝体(喻学惠等, 2001, 2004)。

（2）碳酸岩空间上与钾钠辉长岩密切共生。化学成分 CaO 含量达 50% 以上, SiO₂ 小于 2%。矿物成分中出现大量 (50%以上) 方解石, 在碳酸岩中有时可见单斜辉石、磷灰石和霞石的微晶。此外, 碳酸岩中还含有大量钾钠辉长岩的岩屑(或火山灰), 偶见强烈风化的橄榄岩包体(喻学惠等, 2003, 2004)。

（3）基性岩(钾玄岩) SiO₂ > 45%, Al₂O₃ > 10%, CaO < 10%, 常出现在 7%～8%、MgO < 10%、在 5%～8%、K₂O + Na₂O 在 5%到 15% 左右。在 Foley et al. (1987) 有关超基性岩的分类中, 归类到镁铁质变辉长岩区 (喻学惠等, 2009)。岩石具斑状结构, 斑晶矿物具橄榄石 + 单斜辉石 + 单斜长石组合以及橄榄岩捕虏体。基质中含有大量单斜辉石微晶/微斑晶, 无单斜辉石微晶/微斑晶, 无小长石微晶/微斑晶, 不含白榴石/霞石和黄长石。钾玄岩中偶见橄榄岩包体或橄榄岩捕虏体(喻学惠等, 2009)。

（4）中酸性端元主要是流纹岩及少量粗面岩。酸性岩为浅粉红色, 斑状结构, 偏斜层状构造, 偶见气孔构造, 薄片中可见石英斑晶/晶屑以及岩屑。基质为隐晶质/玻璃质。化学成分具有高的 SiO₂ (达 70%) 及 Al₂O₃ (在 13%～15% 左右), 但 CaO 和 MgO 低于, 小于 2%～3%, 2 个流纹岩样品的 K₂O + Na₂O 含量相差较大, 为 9.08%和 5.64%。为此综合确定为含晶屑岩岩的流纹质凝灰熔岩。中性火山岩样品具状不均一, 薄片下可见斑状结构, 基质量少为长石长, 偶见黑云母和石英斑晶/晶屑。基质部分为隐晶质/玻璃质。化学成分为 SiO₂ 57.24%, Al₂O₃ 15.28%, CaO 3.29%, MgO 5.63%, K₂O + Na₂O 达 8.11%, 初步确定为粗面岩。

3 双峰式火山岩的 Sr, Nd, Pb同位素地球化学

新生代双峰式火山岩套中酸性火山岩的 Sr, Nd, Pb 同位素分析结果及计算的 εNd值见表 2, 钾钠辉长岩、钾玄岩与碳酸岩的Sr, Nd, Pb 同位素特征参见喻学惠等(2001, 2003, 2004, 2009)。将本区火山岩与青藏高原同时期的厚碰撞钾钠质火山岩的地球化学特征对比发现, 本区新生代双峰式火山岩中的钾钠辉长岩、钾玄岩和部分碳酸岩的初始 ^87Sr/^86Sr 在 0.704031～0.70525 之间, ^208Pb/ ^204Pb 为 18.408 ～19.062, ^207Pb/ ^204Pb 为 15.476 ～15.677, ^208Pb/ ^204Pb 为 38.061～39.414, 且 εNd 为 0.3～5.3, 全部为正值, 与赵志丹和莫宜学(2009) 确定的新特提斯地幔端元地球化学特征十分相似 (图3), 也与地幔柱成因的Ontong Java 和 FOZO 火山岩的地球化学特征相似 (图4)。由此证明该双峰式火山岩具有
图 2 双峰式火成岩的 TAS 图
Fig. 2 TAS diagram for the Cenozoic bimodal volcanic rocks in West Qinling

图 3 西泰岭双峰式火山岩的87Sr/86Sr-εNd关系图
Fig. 3 The diagram of 87Sr/86Sr-εNd of the Cenozoic bimodal volcanic rocks in West Qinling

印度洋地幔楔的地球化学特征,岩浆来自亏损的地幔源区,其成因与地幔柱活动有关。

酸性端元流纹岩的87Sr/86Sr 值高于基性端元流纹岩的87Sr/86Sr 值,且其87Sr/86Sr 值 在$\varepsilon_{Nd} = -1.02 \sim -0.98$之间,与其它208Pb/204Pb, 207Pb/204Pb, 206Pb/204Pb 以及δ^{13}C和δ^{18}O值也与钾碱橄榄岩相接近,显示了亏损的软流圈地幔与地壳混合的特征。由此推测流纹岩可能是在软流圈地幔上涌的条件下,由地壳的部分熔融作用形成的。

4 讨论:双峰式火山岩的成因及南北构造带的裂谷性质

以SiO$_2$为主要标志具有显著成分间断(Daly间断)的2套火山岩组合,被定义为双峰式岩浆组合。大量研究表
明,双峰式火山岩组合可以产于大陆裂谷,大陆拉张(Duncan et al., 1984; Pin and Marini, 1993; Garland et al., 1995),弧后盆地(Hochstaeddler et al., 1990a, b), 洋岛(Geist et al., 1995)、造山后拉张(Coulon et al., 1986)以及成熟岛弧(Frey et al., 1984; Pin et al., 1997)等各种构造环境。因为大陆裂谷是双峰式火山岩产出最普遍最典型的地区,也是研究最深人的双峰式岩石-构造组合之一,因而备受地学界关注。

东非裂谷是双峰式火山岩最具代表性的产区之一,以出现富碱的基性岩(碱性玄武岩),SiO$_2$ 为主要内容的过碱性超钾质岩,如霞岗岩,黄长质炽辉岩类或钾锌橄榄黄长岩及碳酸岩等,偏碱性的粗面岩、玄岩以及(碱性)流纹岩组合为特征(Wilson,1989)。特别是钾碱橄榄黄长岩和火山喷发碳酸岩,长期以来被认为是东非裂谷最具代表性的岩石,也是大陆裂谷双峰式岩成岩组合的典型代表。甘肃西泰岭新生代火山岩出露在贺兰-川滇南北构造带北段之鄂尔多斯地块西缘,地理坐标大致为 $105^\circ30' \sim 105^\circ36'$, $33^\circ35' \sim 34^\circ40'$。

火山岩分布区总体呈 NNE 近 SN 向展布,与本区深部构造线方向一致。新生代火山岩中出现大量钾酸橄榄黄长岩与硅酸岩以及基性的钾玄岩类,是否可以将西泰岭新生代火山岩归为大陆裂谷火山岩? 南北构造带是否具有大陆裂谷性质? 长期以来一直困扰着学者。该区新生代流纹岩类的发现和同位素定年,为确定西泰岭新生代大陆裂谷双峰式火山岩组合提供了地质依据,也为探讨南北构造带的成因和性质提供了条件。

双峰式火山岩中的基性与超基性端元来自地幔岩石的低度部分熔融,为研究者们公认。但对其的碱性岩(流纹岩)的成因一直存在不同的认识。一种解释认为流纹岩是由基性-超基性岩浆作用的热诱发地壳熔融形成的 (Christiansen,1984); 而另一种解释认为流纹岩中仅含极少或更本不含何地壳物质,认为流纹岩是基性-超基性岩浆分离结晶作用的产物(MacDonald and Sun, 1987; Bacon and Druir, 1988)。西泰岭新生代火山岩具有钾酸橄榄黄长岩,碳酸岩,钾玄岩和流纹岩,粗面岩组合,与东非裂谷双峰式火山岩组合几乎完全相同。火山岩的Sr,Nd,Pb 同位素地球化学证明超基性-基性端元直接源于亏损的软流圈地幔,火山作用的深部动力学机制与印度-欧亚大陆的碰撞引发的软流圈物质向东的移动有关,也是青藏高原向东扩展的主要原因(吴学惠等2009)。该区酸性火山岩来自何处? 是地壳熔融作用的产物? 还是来自超基性-基性岩浆的分离结晶作用? 对于华盖县-宕昌地区新生代酸性岩火山岩具有较高的初始87Sr/86Sr 比值,但具有与同时代的钾酸橄榄黄长岩和钾玄岩相似的稀土,微量元素以及 Nd,Pb 同位素地球化学特征,因此我们初步推测,酸性火山岩的成因与软流圈地幔上涌诱发的地壳物质的部分熔融有关。

有关裂谷成因问题自 20 世纪 30 年代以来就有“拉张说”与“挤压说”之争(车自成等,1987)。20 世纪 70 年代以
图 4 两秦岭双峰式火山岩的$^{207}\text{Pb}/^{204}\text{Pb}$-$^{206}\text{Pb}/^{204}\text{Pb}$ 和$^{208}\text{Pb}/^{204}\text{Pb}$ 图

Fig. 4 The diagram of $^{207}\text{Pb}/^{204}\text{Pb}$-$^{206}\text{Pb}/^{204}\text{Pb}$ and $^{208}\text{Pb}/^{204}\text{Pb}$ of the Cenozoic bimodal volcanic rocks in West Qinling

来，随着对东非裂谷、贝加尔裂谷等研究的深入，大量的地质构造、火山岩以及地球物理资料证明，地幔底辟上涌是裂谷形成的深部动力学机制，也是最根本原因。为此，一些研究者依据裂谷形成的动力学机制，将裂谷的成因类型分为主动裂谷和被动裂谷两大类。前者以东非裂谷为代表，大陆岩石圈最初的张裂（裂谷作用）主要是由软流圈物质上涌引起的。而在被动裂谷中，岩石圈最初的张裂主要是由软流圈板块相互运动所产生的差异应力引起的。然而，随后的大量研究表明，无论是主动裂谷还是被动裂谷，其形成的动力因素都要比理想模式复杂得多。有如曾经被认为是被动裂谷典型代表的贝加尔裂谷，深入的研究进一步揭示贝加尔裂谷与东非裂谷一样同属主动裂谷，二者的差异可能与地幔热柱上升的深远过程有关，也与软流圈和区域应力场联合作用的情况有关（杨巍然等，1995；邓晋福等，1996）。因此，深部地质作用（特别是地幔柱）是制约大陆裂谷最重要的因素（杨巍然等，1995）。

南北构造带北段的西秦岭地区地壳厚度达52km，岩石圈底界埋深在120km以上，明显高于华北、东非等典型克拉通地区（林长宏等，1995）；采用幔条带体的西秦岭地区地温也明显高于华北克拉通地区，而更靠近大洋地温（史兰斌等，2003），这证明南北构造带北段的西秦岭不具备典型克拉通的岩石圈特征，而更像是一个构造带岩石圈。邓晓福等（1996）在对中华板块与中华板块尺度的构造分析中，提出西秦岭是一个由造山带与其周边多个较小的克拉通基块共同组成的“块体群”。正是由于南北构造带岩石圈的这种特殊性决定了其裂谷性质与东非大陆裂谷有明显不同，也与贝加尔裂谷不完全相同。

综合分析西秦岭新生代构造带的构造背景，结合中国地壳分布及地球化学特征（结合Liu et al.（2004）和Flower（2004）对与印-欧亚大陆碰撞引发的软流圈地幔流的运动学特征的分析，我们认为，南北构造带裂谷的成因主要受制于印度-欧亚大陆碰撞诱发的高原下软流圈物质向东南运动及上涌，但裂谷的特征与西秦岭特殊的岩石圈结构有关，也与周边多个块体相互作用速度与方向及东昆仑断裂-西秦岭北缘断裂的活动特征等有关。总而言之，南北构造带是一条复杂的裂谷带，也可能是发展中的板块边缘。

5 结论

（1）西秦岭新生代双峰式火山岩的基性端元的钾质基质长岩，钾玄岩，碳酸岩和酸性端元的流纹岩组成。火山作用的时代在23～7.1Ma之间，落在青藏高原后碰撞岩浆作用时限范围内。推测火山作用的成因与印度-欧亚大陆碰撞引起的高原下软流圈物质向东南运动及上涌，也是青藏高原向东扩展的记录。

（2）西秦岭新生代双峰式火山岩的Sr，Nd，Pb同位素地球化学显示，基性端元的钾质基质长岩，钾玄岩及部分碳酸岩岩浆具有与新特提斯地幔相似的地球化学特征，也与地幔柱成因的Omntong Java和FOZO火山岩相似，推测基性端元的钾质基质长岩，钾玄岩和碳酸岩岩浆来自亏损的软流圈地幔的部分熔融，其成因与印度-欧亚大陆碰撞引发的高原下软流圈物质向东南运动有关。而酸性端元流纹岩的成因可能与软流圈上涌引发的花岗岩物质的熔融有关。

（3）西秦岭新生代双峰式火山岩的厘定，为探讨南北构造带的性质提供了火山岩约束，并证明南北构造带是一条大陆裂谷。但是，南北构造带的裂谷性质既不同于贝加尔裂谷，也不同于东非裂谷，其成因与特征受印度-欧亚大陆碰撞引发的高原下软流圈物质向东南运动的约束，也与西秦岭特殊的岩石圈结构以及周边小块体之间的相对运动特征与昆仑断裂-西秦岭北缘断裂的运动性质等有关。

References

Pin C and Marini F. 1993. Early Ordovician continental break-up in Variscan Europe; Nd-Sr isotope and trace element evidence from bimodal igneous association of the southern Massif Central, France. Lithos, 29; 177 – 196

Yu XH, Mo XX, Zhao ZD, Huang XK, Li Y and Wei YF. 2009. Two types of Cenozoic potassic volcanic rocks in Western Qingling, Gansu Province: Their petrology, geochemistry and petrogenesis. Earth Science Frontiers, 16 (2); 79 – 89 (in Chinese with English abstract)

Zhang GW, Guo AL and Yao AP. 2006. Western Qingling-Songpan continental tectonic node in China`s continental tectonic. Earth Science Frontiers, 11 (3); 23 – 32 (in Chinese with English abstract)

Zhang GW, Dong YP, Guo AL, Chen YS et al. 2008. The different evolution and deep processes between east and west of Chinese continent since Mesozoic to Cenozoic. In: N-S Trending Tectonic Belt Workshop. Xian; Northwest University, 2008

Acta Petrologica Sinica 岩石学报 2011, 27 (7)

附中文参考文献

邓青福, 赵海英, 莫显德等. 1996. 中国大陆地幔柱-柱构造——大陆动力学的钥匙. 北京: 地质出版社

丁瑞瑜. 1991. 中国岩石圈动力学概论. 北京: 地震出版社, 584

冯锐, 马宗晋, 方剑, 吴宜. 2007. 发展中的板块边界: 天山-贝加尔构造带. 地学前沿, 14 (4); 1 – 17

赖绍聪, 张国伟, 奉延峰等. 2006. 青藏高原东北缘伯阳地区第三系岩浆岩石化学及岩石成因. 地学前沿, 13 (4); 212 – 220

林长佑, 王玉霞, 杨长福. 1995. 天水地区奥面附近的中层及壳幔过渡带. 地学前沿, 17 (2); 230 – 236

马奇智. 1987. 中国岩石圈动力学纲要. 北京: 地质出版社

任继舜, 王作勋, 陈炳勇等. 1999. 从全球看中国大地构造——中国及邻区大地构造简要说明. 北京: 地质出版社

史兰斌, 林传男, 谭明. 2003. 由甘肃宕昌好粒鳞片角闪片组成的上地幔物质组成, 热结构和流变学特征. 地震地质, 25 (4); 525 – 542

杨焕然, 纪克诚, 孙继源, 邢集善等. 1995. 大陆裂谷研究中的几个前景问题. 地学前沿, 2 (1 – 2); 93 – 102

喻学惠. 1991. 甘肃宕昌好粒鳞片超基性火山岩: 一种上地幔横薄的基性-超基性火成岩. 地质论评, 37 (2); 144 – 153

喻学惠. 1994. 甘肃礼县-宕昌地区新生代基性龈基性火山岩的特征及成因. 特提斯地质, 18; 114 – 129

喻学惠, 莫显德, Flower M et al. 2001. 甘肃西秦岭新生代钾长石橄榄岩下长岩火山作用及其构造含义. 岩石学报, 17 (3); 367 – 376

喻学惠, 莫显德, 苏尚功, 董芳, 赵欣, 王辰. 2003. 甘肃礼县新生代火山喷发坨岩的发现及意义. 岩石学报, 19; 105 – 112

喻学惠, 赵志丹, 莫显德等. 2004. 甘肃西秦岭新生代钾长石橄榄岩的微量元素, 稀土和 Sr, Pb 同位素地球化学: 地幔柱-岩石圈交换的证据. 岩石学报, 20 (3); 483 – 494

喻学惠, 莫显德, 赵志丹, 黄行凯, 李勇, 陈延芳, 韦玉芳. 2009. 甘肃西秦岭两类新生代钾质火山岩: 岩石地球化学与成因. 地学前沿, 16 (2); 79 – 89

张幼伟, 陈安林, 姚安平. 2006. 中国大陆构造中的西秦岭-松潘大陆构造带. 地学前沿, 11 (3); 23 – 32
