陆壳垂向增生的两种方式：以大兴安岭为例 *

邵家安1 韩庆君2 张履桥3 茅保来1 乔广生2

1. 北京大学地质系, 北京 100871; 2. 中国科学院地质与地球物理研究所, 北京 100029;
3. 内蒙古地质研究所, 呼和浩特 010020.
1. Department of Geology, Peking University, Beijing 100871;
2. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029;
3. Inner Mongolia Institute of Geology, Huhhot 010020.
1999-01-23 收稿，1999-06-30 改回。

Abstract The paper expounds two kinds of vertical accretion of continental crust in Da Hinggan Mts. caused by Mesozoic mantle magmatic underplating: 1) representative of the mantle substance dominated hybrid granites and volcanic rocks which are originated from the crust-mantle mixing magma ponding at the base of the crust. Their intrusion or eruption during 145～115 Ma gives rise to growth of the upper-middle crust in the Late Mesozoic. and geochemically, they are characterized by distinct mantle isotopic features with positive εNd (t) (0～4) and low initial 87Sr/86Sr (0.704～0.708); 2) representative of the Early Mesozoic mafic-ultramafic cumulates (241～214 Ma). They are products of direct addition of the mantle substance to the lowermost continental crust by mafic magmatic underplating, which results in the vertical accretion of the lower continental crust in Da Hinggan Mts. in the Early Mesozoic.

Key words Da Hinggan mountains, Crust-mantle mixing magma, Mafic-ultramafic cumulate, Continental crust accretion, Underplating

摘要 本文讨论了大兴安岭由于中生代基性作用形成的两种类型的陆壳增生方式：1）来自地壳底部及底界面的岩浆活动的花岗岩和火山岩对上部陆壳的增生。岩浆的侵入和喷发集中在145～115 Ma。它们具有明显的慢生长岩同位素特征，如正的εNd(t)(0～4)、低的87Sr/86Sr初始比值(0.704～0.708)等；2）早中生代形成的镁铁-超镁铁质熔岩堆(241～214 Ma)对下部陆壳的增生。

关键词 大兴安岭；慢生长岩浆；镁铁-超镁铁质熔岩；陆壳增生；基性作用

中图法分类号 P588.1

1 引言

近年来大陆地质的研究表明，陆壳的演化和形成过程中与地幔的相互作用是大陆生长的重要方式。大兴安岭的成山过程清楚地记录了陆壳垂向增生的历史。

大兴安岭以北东走向横跨在古亚洲域不同时期形成的构造带之上，一直向南延伸到华北克拉通之上（图 1），它的形成与古亚洲域晚古生代(D2～C1)的板块碰撞造山有关；大兴安岭是中生代(J1～K1)快速隆起的山脉(Shao Jian et al., 1995)，它的形成与现代太平洋板块自晚中生代(K1)以来开

* 本文系国家自然科学基金（项目号：40672156）资助项目成果。
如果大规模中生代及新生代开始的构造演化历史可以追溯，大兴安岭属于大陆内部在晚新生代外呈造山带的典型（Sha J’ian et al., 1988）。早中生代有峨眉断崖酸性火成岩侵入及由龙山复杂岩浆携带上来的碳质岩浆喷发（241—202 Ma）。（Sr/Sm 始生比值 0.7081—0.7049）（Sha J’ian et al., 1990a）。早一中侏罗世晚期岩浆群侵入（199—170 Ma），Sr/Sr 初始比值 0.7036—0.7044）及少量白垩岩浆喷发（Sha J’ian et al., 1998）。晚侏罗世—早白垩世是温带气候下造山带，远处的大陆边缘地带与现代气候相似。因此，陆地壳层的物质基底大体上是位于地幔，与地幔基底有关，地壳地壳喷发体认为早生代存在有造山玄武岩浆通过至低等离子作用造成的增生。总之，陆地壳层的物质基底大体上是位于地幔。
表1 A型花岗岩的Y、Nb、Ce、Ta、Yb微量元素含量（μg/g）

<table>
<thead>
<tr>
<th>地点</th>
<th>岩性</th>
<th>Y (μg/g)</th>
<th>Nb (μg/g)</th>
<th>Ce (μg/g)</th>
<th>Ta (μg/g)</th>
<th>Yb (μg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>乌兰察布尔</td>
<td>花岗岩</td>
<td>14</td>
<td>20</td>
<td>36</td>
<td>16</td>
<td>31.5</td>
</tr>
<tr>
<td>布曲河</td>
<td>花岗岩</td>
<td>17.2</td>
<td>7</td>
<td>50.8</td>
<td>10</td>
<td>1.88</td>
</tr>
<tr>
<td>达古音通和</td>
<td>花岗岩</td>
<td>23.57</td>
<td>12.91</td>
<td>57</td>
<td>10</td>
<td>15.1</td>
</tr>
<tr>
<td>杜尔基</td>
<td>花岗岩</td>
<td>21.9</td>
<td>22.09</td>
<td>72.1</td>
<td>10</td>
<td>12.5</td>
</tr>
<tr>
<td>敖鲁交</td>
<td>花岗岩</td>
<td>20.7</td>
<td>16.1</td>
<td>76.5</td>
<td>2</td>
<td>2.14</td>
</tr>
<tr>
<td>犹戈尔</td>
<td>混合花岗岩</td>
<td>17.98</td>
<td>17.34</td>
<td>102</td>
<td>10</td>
<td>14.8</td>
</tr>
<tr>
<td>白石岭子</td>
<td>花岗岩</td>
<td>12.26</td>
<td>12</td>
<td>43.8</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>敖兰英沟</td>
<td>花岗岩</td>
<td>18.42</td>
<td>12</td>
<td>57.8</td>
<td>10</td>
<td>15.4</td>
</tr>
<tr>
<td>后新立地</td>
<td>花岗岩</td>
<td>7.11</td>
<td>12</td>
<td>52</td>
<td>10</td>
<td>2.2</td>
</tr>
<tr>
<td>巴尔虎**</td>
<td>花岗岩</td>
<td>364.4</td>
<td>333</td>
<td>425.4</td>
<td>23</td>
<td>27.6</td>
</tr>
<tr>
<td>西大桥</td>
<td>花岗岩</td>
<td>22.77</td>
<td>18.17</td>
<td>137</td>
<td>10</td>
<td>54.5</td>
</tr>
<tr>
<td>宁家沟</td>
<td>花岗岩</td>
<td>13.53</td>
<td>26.44</td>
<td>128</td>
<td>10</td>
<td>3.4</td>
</tr>
<tr>
<td>慕勒**</td>
<td>花岗岩</td>
<td>22.61</td>
<td>22.83</td>
<td>72.55</td>
<td>3.59</td>
<td>3.04</td>
</tr>
<tr>
<td>高尔哈</td>
<td>花岗岩</td>
<td>17.21</td>
<td>22.02</td>
<td>134.03</td>
<td>1.59</td>
<td>1.8</td>
</tr>
<tr>
<td>老道沟</td>
<td>花岗岩</td>
<td>32.57</td>
<td>15.76</td>
<td>88.32</td>
<td>10</td>
<td>4.28</td>
</tr>
<tr>
<td>老道沟</td>
<td>花岗岩</td>
<td>19.97</td>
<td>12</td>
<td>33.8</td>
<td>10</td>
<td>14.6</td>
</tr>
</tbody>
</table>

注：表中*者引自于林生 “内蒙古大兴安岭中段中生代火山岩浆作用及与新生金属矿床关系研究”，1990（内部报告）,数据由中国地质科学院测试中心测试。带*为本文数据；带**引自王自一光（1997）。

3 墙晶岩所反映的陆壳增生

近年来在大兴安岭中南段，自北而南从林东、林西，一直到赤峰以南的喀喇沁旗地区，陆续发现了若干被闪长质岩浆所嵌入的墙晶岩捕虏体，呈大小不等的孤立块体散见于闪长岩中，包括含含云母的橄榄二辉岩、二辉岩、辉石岩、含橄榄长岩、斜长岩、斜角岩及墙晶岩等。在矿物组合中包括典型的墙晶岩致密矿物，似闪石、钾云母、辉石、绿泥石、绿帘石、绿泥石等，它们不具地幔岩特征的变质构造，其矿物组合、结构特征、岩石化学组分都表明它们属于一套墙晶岩。辉石岩和斜长岩中出现明显的层状结构及条带状构造，镜下显示墙晶岩结构（Shao Jian et al., 1999a）。

除了墙晶岩ΣREE高（114.35μg/g和285.88μg/g），其它墙晶岩ΣREE均低（5.93 ~ 205.92μg/g），δEu呈正异常，此外高Sr和Sr含量变化大（66 ~ 3540μg/g），低Rb/Sr (0.0017 ~ 0.5164) 都是墙晶岩的特征，并可与美国Geroni-
表 2 大兴安岭中生代花岗岩的Sr、Nd、O、Pb同位素特征

<table>
<thead>
<tr>
<th>样品号</th>
<th>岩 性</th>
<th>年龄 (Ma)</th>
<th>187Sr/186Sr</th>
<th>εNd (t)</th>
<th>206Pb/204Pb</th>
<th>207Pb/204Pb</th>
<th>208Pb/204Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>B08</td>
<td>蛮长花岗岩</td>
<td>115.1</td>
<td>0.7048</td>
<td>9.43</td>
<td>0.512516±17</td>
<td>2.6</td>
<td>18.410</td>
</tr>
<tr>
<td>B01</td>
<td>熔凝状花岗岩</td>
<td>117.3</td>
<td>0.7088</td>
<td>62.9</td>
<td>0.512650±14</td>
<td>6.4</td>
<td>18.516</td>
</tr>
<tr>
<td>G24</td>
<td>高钾碱性花岗岩</td>
<td>125.2</td>
<td>0.7050</td>
<td>1.9–2.47</td>
<td>4.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1-1</td>
<td>伟晶状花岗岩</td>
<td>127.5</td>
<td>0.7056</td>
<td>18.2</td>
<td>0.512624±8</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>L1-2</td>
<td>蛮长花岗岩</td>
<td>136.6</td>
<td>0.7049</td>
<td>7.8</td>
<td>0.512654±10</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>J-1</td>
<td>黑云母二长花岗岩</td>
<td>137.1</td>
<td>0.7044</td>
<td>1.8</td>
<td>0.512865±17</td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td>B08</td>
<td>花岗岩</td>
<td>185.0</td>
<td>0.7058</td>
<td>21.5</td>
<td>7.7</td>
<td>18.076</td>
<td></td>
</tr>
<tr>
<td>Xh</td>
<td>黑云母花岗岩</td>
<td>213.6</td>
<td>0.7049</td>
<td>9.6</td>
<td>1.47</td>
<td>5.6</td>
<td>18.366</td>
</tr>
<tr>
<td>B09</td>
<td>白云母花岗岩</td>
<td>242.8</td>
<td>0.7058</td>
<td>21.5</td>
<td>7.7</td>
<td>18.076</td>
<td></td>
</tr>
</tbody>
</table>

上角 * 为 U-Pb 等时线年龄；* 为 Rb-Sr 等时线年龄；* * 为 K-Ar 级化法年龄；样品由中国科学院地质研究所同位素室王广生、赵升、桑海波以及沈阳地质矿产研究所吴春芳分析。

表 3 大兴安岭中生代火山岩的年代学和 Sr、Nd 同位素特征

<table>
<thead>
<tr>
<th>样品号</th>
<th>地点</th>
<th>岩石名称</th>
<th>年龄 (Ma)</th>
<th>187Sr/186Sr</th>
<th>εNd (t)</th>
<th>206Pb/204Pb</th>
<th>207Pb/204Pb</th>
<th>208Pb/204Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1111</td>
<td>哲里木</td>
<td>碱性玄武岩, 安粗岩</td>
<td>121.9±3.9</td>
<td>0.7047</td>
<td>3.8–3.3</td>
<td>1.7–22</td>
<td>5.8–11.4</td>
<td></td>
</tr>
<tr>
<td>B1001</td>
<td>骆驼峰</td>
<td>粗面安基酸性凝灰岩</td>
<td>121.3±2.1</td>
<td>0.7045</td>
<td>1.05–3.88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XD8</td>
<td>林东县</td>
<td>穗状安山岩</td>
<td>142.4±3.4</td>
<td>0.7054</td>
<td>0.39–0.49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2001</td>
<td>天山岩</td>
<td>灶状凝灰质</td>
<td>142.6±4.4</td>
<td>0.7048</td>
<td>-3.02–3.73</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

上角 * 号者根据陈文和 (1977) ; * * 号者据 Rb-Sr 等时线法 ; 样品号为 G 和 XD 的分析测试在中国科学院地质研究所同位素室完成，分析者为乔广生、张杰。

图 3 中生代花岗岩和火山岩Sr-Nd同位素相关图

DM 为亏损地幔; PM 为原始地幔; HIMU 为高 δ 18O 地幔; EMI 为 I 型富集地幔; EMI1 为 I 型富集地幔; 1. 花岗岩; 2. 火山岩; 3. 火山岩（数据引自陈文和等，1977）

Fig. 3 Isotopic Sr-Nd plot of the Mesozoic granites and volcanic rocks

mo 火山区碱性玄武岩中的锆石-超铼铁质包裹对比（Kemp-pton et al.，1990）。微量元素 Sr 与 Al₂O₃, Sm/Nd 与 Al₂O₃的

相关关系均反映这些微量元素在岩石中的分布符合稀疏分布定律，所研究岩石是分离结晶的产物；所含的元素 Ni 与不

相容元素 Zr 的关系也明显地反映在岩石形成过程

中的重要作用（Shao Jia et al.，1999a）。这套套砾岩是由幔

源玄武质岩浆通过底侵作用形成的，是陆壳向增生的直接

证据。

本区基性岩中含铁铁矿和钛辉石。超铼铁质基性岩和麻粒岩均

含金属云母，通过同位素年龄测定，本区基性岩体轴部的年龄

为晚中生代，晚三叠世前。237~202 Ma (表 4)

除了这些岩类外，最近在岩类中也发现了基性麻粒岩捕

体，其主要矿物组合为斜方辉石＋单斜辉石＋富镁云母（主

要为金云母），不含角闪石，明显不同于华北板块北缘地

区表出露的上寒武纪麻粒岩。详细内容将另文讨论。前人曾对

20组大陆-大陆地震定年数据进行了分析（如 Christen

sen，1987；郭峰等，1996），并将其分为 A、B 两个端元

组，分别代表幔源底侵岩浆结晶分凝产物和古老大陆物质。

本区基性岩和麻粒岩可与组分 A 对比（表 5)。

堆晶岩所代表的幔源增生层与前文提到的壳幔混合层

都是岩浆增生的证据。本区发现的被早中生代闪长岩捕虏体的
表4 堆晶岩捕掳体的同位素年龄及Sr、Nd同位素组成

<table>
<thead>
<tr>
<th>岩性</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>MgO</th>
<th>K₂O</th>
<th>TiO₂</th>
<th>(⁹⁰Sr/⁸⁷Sr)</th>
<th>εNd (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>62~67</td>
<td>16~18</td>
<td>3.5~4.5</td>
<td>0.03~0.06</td>
<td>5.5~6.5</td>
<td>0.710~0.730</td>
<td>-17~29</td>
</tr>
<tr>
<td>A</td>
<td>47~52</td>
<td></td>
<td>7.5~8.5</td>
<td>2.0~2.5</td>
<td>2.0~2.5</td>
<td>0.703~0.706</td>
<td>-5~5</td>
</tr>
<tr>
<td>木</td>
<td>51~62</td>
<td>17~26</td>
<td>1.2~0.7</td>
<td>0.8~1.16</td>
<td>0.01~0.19</td>
<td>0.703~0.7055</td>
<td>0.54~6.31</td>
</tr>
<tr>
<td>檀</td>
<td>42~52</td>
<td>4~6</td>
<td>3.5~6.5</td>
<td>0.3~1.16</td>
<td>0.25~1.91</td>
<td>0.703~0.7055</td>
<td>0.54~6.31</td>
</tr>
<tr>
<td>区</td>
<td>17~28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A 为幔源底侵岩浆晶核分凝产物，B 为古老大陆壳物质（转引自郭峰等（1996）。）

表5 大陆下地壳物质组成和同位素组成

<table>
<thead>
<tr>
<th>岩性</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>MgO</th>
<th>K₂O</th>
<th>TiO₂</th>
<th>(⁹⁰Sr/⁸⁷Sr)</th>
<th>εNd (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>62~67</td>
<td>16~18</td>
<td>3.5~4.5</td>
<td>0.03~0.06</td>
<td>5.5~6.5</td>
<td>0.710~0.730</td>
<td>-17~29</td>
</tr>
<tr>
<td>A</td>
<td>47~52</td>
<td></td>
<td>7.5~8.5</td>
<td>2.0~2.5</td>
<td>2.0~2.5</td>
<td>0.703~0.706</td>
<td>-5~5</td>
</tr>
<tr>
<td>木</td>
<td>51~62</td>
<td>17~26</td>
<td>1.2~0.7</td>
<td>0.8~1.16</td>
<td>0.01~0.19</td>
<td>0.703~0.7055</td>
<td>0.54~6.31</td>
</tr>
<tr>
<td>檀</td>
<td>42~52</td>
<td>4~6</td>
<td>3.5~6.5</td>
<td>0.3~1.16</td>
<td>0.25~1.91</td>
<td>0.703~0.7055</td>
<td>0.54~6.31</td>
</tr>
<tr>
<td>区</td>
<td>17~28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

麻粒岩，尽管目前尚未取得麻粒岩的可靠年代，只能推测这是早中生代下地壳因幔源基性岩浆底侵作用的产物。内蒙古东部地震波速结构表明在下地壳中部存在一个10km厚的低速层（Vₚ=3.7~3.8 km/s）或低速域（由陈英等，1995），它可能代表一个幔源物质熔融的岩浆房，或者暗示下地壳自中生代以来形成过一个幔源物质源的岩浆房，它标志着下地幔部分岩浆柱曾经引起的底侵作用。这种底侵作用既可以导致了壳内大规模熔融和变化，形成幔源熔体的岩浆房，又可以促使大量幔源物质的渗透，形成幔源岩浆的岩浆房，此外，华北东部地壳中幔源部分存在一个Vₚ=7.0~8.0 km/s的异常高速的波速带（李力勤等，1992），也可能暗示了基性麻粒岩的来源，因为地震波速实验表明，在压力为0.6 GPa 时，Vₚ为7.10~7.40 km/s，正是基性麻粒岩的波速（邓玉明等，1997）。

4 讨论

Fyfe（1973）最早提出下地壳玄武质岩浆的底侵作用是太古宙大陆生长的重要形式和过程，Furlong et al.（1986）较全面论述了大陆地壳的底侵作用，认为底侵作用是幔源物质添加到大陆地壳的一种过程（Furlong et al.，1986），而且这对于陆壳垂直增生机制是十分关键的。大兴安岭存在两种陆壳垂向增生的方式，尽管在岩浆活动方面二者有所区别，但是有幔源物质参与陆壳增生这一点是相同的。

幔源岩浆侵入对中上地壳的增生具有重要贡献。前述花岗岩的Sr、Nd、O、Pb等同位素特征均表明幔源岩浆中有相当一部分来自地幔，笔者建议采用“幔源混融岩浆”表述较合理的岩浆房。通常认为，花岗岩主要是幔源成因的，而不是地幔部分熔融的产物，实验岩石学也证明富硅熔体不能与丰富的熔体熔合共生，由幔源的斜长花岗岩也只占全球花岗岩的5%。大兴安岭中生代花岗岩和中酸性火山岩的成因很难全部用幔源岩浆的分异作用来解释。如果它们是幔源岩浆分异的产物，则需要更大量的基性-超基性岩相参与，事实上，大兴安岭并没有发现大量的中生代基性-超基性岩石分布，但是，这些花岗岩和火山岩明显εNd (t)、³⁹Sr/³⁶Sr 值的偏值，这同源类物质反映在富壳过程中幔源物质具有重要的贡献。

这些幔源混融岩浆的成因有以下几种可能的解释：1）通过幔源岩浆的分异并混入陆壳（AFC）；2）由幔源岩浆底侵作用使得大兴安岭基底古生代残余的大陆陆壳片增厚。
成；3）在地幔物质与一种从地幔分异出来不久的新生地壳物质，例如本区发现的早中生代堆晶岩相互作用而形成。本区究竟是哪一种成因，或者几种成因兼而有之，还有待于进一步研究。本文作者倾向于认为在底侵作用下，幔岩物质向下地壳渗透，与熔融的下地壳物质发生混合，在幔岩边界形成混合的岩浆池。在岩石圈伸展作用的背景下，幔岩源区岩浆从这里通过多通道、多层次的复杂渠道到达中上地壳，促成陆壳的增生。

大陆地壳的另一种增生方式是基性玄武质岩浆直接进入下地壳，在相对封闭的岩浆房中分离结晶，形成堆晶岩，在持续的底侵作用下，这些堆晶质堆晶岩可以发生麻粒岩变质作用，形成麻粒岩。这种幔岩物质的直接添加是下大陆壳增生的重要方式，前文提到的堆晶岩与麻粒岩就是这种底侵作用的直接产物，是华北陆壳早中生代增生的重要方式，同时它也是华北克拉通中生代活化的重要因素。这一作用可持续到晚中生代，河北海内滩新生代玄武岩中发现了晚中生代的基性麻粒岩捕虏体，其锆石 U-Pb 稀释法年龄为 120～140Ma（樊广义等，1998）。

后一种方式对陆壳增生的意义不可低估，在幔隆背景中，幔岩物质可以发生大面积的相互作用，美国科罗拉多州 P0% 的地壳是镁铁质的，其中 25% 是由这种底侵方式形成的 (Smithson，1988)，澳大利亚昆士兰陆壳的 20% (约 8km) 也是由底侵作用形成的（Rudnick，1990），与陆壳增生相关的底侵作用多发生在在由幔隆引起的伸展构造活跃的地区，是探讨大陆板块岩石圈演化的重要地区。中国东部正是中生代以来构造岩浆作用十分活跃的地区，也是研究底侵作用最好的天然实验室。

5 结论

大兴安岭及其南延的华北克拉通地区自中生代以来存在两种陆壳增生的方式，早中生代以堆晶岩和麻粒岩岩成为代表的下陆壳增生，晚中生代以幔岩源区岩浆侵位方式为代表的中上陆壳增生。这两种方式都是陆壳增生的作用结果。

References

Smithson S B. 1988. The nature of the granulitic crust based on seismic reflection profiling. Terra Cognita, 8 (3), 273

附中文参考文献

陈国英, 宋仲秋, 安昌强, 苏小兰. 1995. 中国北部及其邻区地壳上地幔三维速度结构. 地球物理学报, 38 (3); 321~327
邓万明, 张大贵. 1997. 元-燕成变带及其在岩石圈构造演化中的地
质意义. 科学通报, 42 (23); 2474~2482
樊振诚, 刘志新, 李建民, 李国, 陶建立, 林卓然. 1998. 汉诺坦峰
体麻粒岩热年代学及稀土元素地球化学. 科学通报, 1998, 43
(2); 133~137
邸峰, 彭晓秋, 范蔚茗. 1995. 大陆下地壳物质组成和同位素组成
及其指示意义. 地质科技情报, 15 (1), 45~49
李培忠, 孙泽生. 1993. 喜马拉雅区山字窗碱性花岗岩体年龄及其
意义. 地球化学, (4); 389~397
卢进勋, 马怀德. 1992. 内蒙古东乌珠穆沁旗至辽宁东沟地学断面
. 地球物理学报, 35 (6); 765~772
邵士安, 张震, 肖保德. 1999b. 大兴安岭中生代伸展造山过程中
的岩浆作用. 地学通报, 6 (4); 339~346
吴利仁. 1995. 中国东部中生代花岗岩类. 岩石学报, 1 (1); 1~10
徐永生. 1985. 明昌地区蛇绿岩带中晚期花岗岩. 科学通报, 28 (19); 1564~1566
张继金. 1993. 大兴安岭南段不同构造环境中的两类花岗岩. 岩石
矿物学杂志, 12 (1); 1~11
赵国龙, 傅正林, 王志, 付嘉富, 邢永琢. 1989. 大兴安岭中南部中
生代火山岩. 北京: 北京科学技术出版社, 247; 76~89
赵一鸣, 王大权, 张继金等. 1994. 内蒙古东南部铜多金属成矿地
质条件及找矿模型. 北京: 地震出版社, 194~197