
Abstract Isotopic geochronology, petrology and geochemistry of diorites containing mafic-ultramafic cumulate and basic granulate xenoliths from Harqin area of Inner-Mongolia have been studied. The results suggest that (1) K-Ar datings of whole rock and single mineral of diorites give ages of 218–223 Ma; (2) diorites have no genetic correlation with cumulate and granulate xenoliths; (3) these diorites in different lithologies are probably products of highly partial melting of Archean amphibolite; (4) the Early Mesozoic underplating lead to the formation of diorites, reflecting an extensional tectonic setting.

Key words Harqin, Early Mesozoic, Diorite, Geochemistry

Abstract Isotopic geochronology, petrology and geochemistry of diorites containing mafic-ultramafic cumulate and basic granulate xenoliths from Harqin area of Inner-Mongolia have been studied. The results suggest that (1) K-Ar datings of whole rock and single mineral of diorites give ages of 218–223 Ma; (2) diorites have no genetic correlation with cumulate and granulate xenoliths; (3) these diorites in different lithologies are probably products of highly partial melting of Archean amphibolite; (4) the Early Mesozoic underplating lead to the formation of diorites, reflecting an extensional tectonic setting.

Key words Harqin, Early Mesozoic, Diorite, Geochemistry
<table>
<thead>
<tr>
<th>Element</th>
<th>Si3</th>
<th>Dy7</th>
<th>Xd</th>
<th>H15</th>
<th>Xd-1</th>
<th>Xd-2</th>
<th>T3e</th>
<th>Hn4</th>
<th>S11</th>
<th>Ji</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>55.62</td>
<td>56.49</td>
<td>60.56</td>
<td>56.62</td>
<td>63.18</td>
<td>61.22</td>
<td>62.74</td>
<td>59.95</td>
<td>63.41</td>
<td>63.66</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.97</td>
<td>0.62</td>
<td>0.88</td>
<td>0.48</td>
<td>0.65</td>
<td>0.90</td>
<td>0.83</td>
<td>0.83</td>
<td>0.87</td>
<td>0.95</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>17.9</td>
<td>20.97</td>
<td>15.56</td>
<td>17.89</td>
<td>15.7</td>
<td>15.81</td>
<td>16.34</td>
<td>16.71</td>
<td>16.07</td>
<td>14.82</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>2.45</td>
<td>3.41</td>
<td>1.96</td>
<td>3.26</td>
<td>0.86</td>
<td>1.12</td>
<td>1.09</td>
<td>2.24</td>
<td>1.76</td>
<td>1.54</td>
</tr>
<tr>
<td>FeO</td>
<td>4.29</td>
<td>2.50</td>
<td>3.06</td>
<td>3.18</td>
<td>3.65</td>
<td>4.21</td>
<td>4.52</td>
<td>2.87</td>
<td>2.71</td>
<td>3.52</td>
</tr>
<tr>
<td>MnO</td>
<td>0.12</td>
<td>0.12</td>
<td>0.08</td>
<td>0.18</td>
<td>0.06</td>
<td>0.06</td>
<td>0.12</td>
<td>0.08</td>
<td>0.07</td>
<td>0.05</td>
</tr>
<tr>
<td>MgO</td>
<td>4.02</td>
<td>1.35</td>
<td>4.30</td>
<td>2.69</td>
<td>2.75</td>
<td>3.46</td>
<td>0.83</td>
<td>3.63</td>
<td>2.54</td>
<td>3.16</td>
</tr>
<tr>
<td>CaO</td>
<td>8.07</td>
<td>6.41</td>
<td>4.63</td>
<td>5.59</td>
<td>4.09</td>
<td>4.45</td>
<td>2.04</td>
<td>5.42</td>
<td>3.35</td>
<td>3.62</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2.86</td>
<td>5.59</td>
<td>3.30</td>
<td>3.71</td>
<td>4.04</td>
<td>3.94</td>
<td>5.60</td>
<td>4.15</td>
<td>3.57</td>
<td>3.69</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.57</td>
<td>0.79</td>
<td>3.07</td>
<td>3.91</td>
<td>3.52</td>
<td>3.72</td>
<td>4.49</td>
<td>2.58</td>
<td>3.6</td>
<td>3.66</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.17</td>
<td>0.29</td>
<td>0.27</td>
<td>0.33</td>
<td>0.24</td>
<td>0.32</td>
<td>0.224</td>
<td>0.27</td>
<td>0.28</td>
<td>0.24</td>
</tr>
<tr>
<td>H₂O⁺</td>
<td>1.36</td>
<td>0.68</td>
<td>2.06</td>
<td>1.13</td>
<td>0.67</td>
<td>0.49</td>
<td>0.49</td>
<td>0.75</td>
<td>1.14</td>
<td>0.90</td>
</tr>
<tr>
<td>Loss</td>
<td>0.16</td>
<td>0.32</td>
<td>0.01</td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
<td>0.32</td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Major element content (%), rare earth element and trace element (μg/g) concentration of the early Mesozoic diorites from Harqin area
Fig. 2 Harker diagram of major elements of the Early Mesozoic diorites from Harqin area

Fig. 3 (MgO + TFeO) - CaO - (K₂O + Na₂O) diagram of the diorites (after Lemaitre, 1976)

Fig. 4 Chondrite normalized REE patterns of the diorites
Fig. 5 Primary mantle normalized incompatible element patterns of the diorites.

Jahn et al. (1984) suggested that the diorites plot in a fractionation trend between the upper and lower crust. The diorites are characterized by high Sr and low Ba contents, indicating a subduction zone setting. The diorites are also enriched in LREE and depleted in HREE, consistent with a mantle source. The diorites are thought to have formed by partial melting of the mantle, indicating a subduction zone setting.

Fig. 6 (La/Yb)N vs (Yb)N plots of the Lower Mesozoic diorites from Harqin area.
saturated melting of basaltic and andesitic and greenstone and amphibolites at 1, 3 and 6.9 kbar. J. Petrol., 32;365~401
Hanson G N. 1978. The application of trace elements to the petrogenesis of igneous rocks of granitic composition, Earth Planet. Sci. Lett., 38;26~43
Harley S L. 1989. The origin of granulites; a metamorphic perspective. Geol. Mag., 126;215~247
Helz R T. 1976. Phase relations of basalt’s in their melting ranges at P1=5kb. Part I. Melit Composition. J. Petrol., 17;139 ~193
Lemaitre R W. 1976. The chemical variability of some common igneous rocks. J. Petrol., 28;117~23

Shao J, Han Q, Li Huimin. 2000b. Discovery of the Early Mesozoic granulite xenoliths in Huabei Craton, China. Science in China (Series D), (in press)

Taylor S R and McLennan S M. 1981. The composition and evolution of the continental crust; rare earth element evidence from sedimentary rocks, Phil. Trans. R. Soc. Lond., A310, 381~399

