P wave velocity of the pumice from the Okinawa Trough at high temperature and high pressure. Acta Petrologica Sinica, 18(3):401–407

Abstract  P wave velocity of the pumice sample from the middle Okinawa Trough and andesite sample from vicinity Kyushu volcanic island, Kyushu Japan were measured at temperature (from room temperature to 1500°C) and pressure (from room pressure to 2.4GPa) using a multi-anvil pressure apparatus called the YJ-3000 press. The measured data shows that at low temperature and low pressure (<1GPa, <800°C), the P wave velocity of pumice is lower than that of andesite, while at high temperature and high pressure (>1GPa, >800°C) the P wave velocity of pumice and andesite becomes consistent (5.9km/s). The paper points out that 1GPa/800°C is the point of thermodynamic phase transformation Okinawa Trough pumice and vicinity andesite, and the point is deeper than 18km.

Key words  Okinawa Trough, Pumice, High temperature and high pressure, P wave velocity

1

(Lee, 1980; Liu, 1995; Liu et al., 1997a).
冲绳海槽海底广泛分布火山岩，大致以北纬26°附近为界，其北海底表面有大面积的浮岩分布和多处现代海底热液活动区。在海底垂直剖面上，还至少有2层浮岩夹在沉积层中。

冲绳海槽海底的浮岩和玄武岩是不同地质构造环境中的产物，因此许多的研究家们试图从研究冲绳海槽海底的浮岩和玄武岩成分和结构等地质特征来探讨冲绳海槽的地壳结构。

浮岩是源于地幔的岩浆物质，是在其侵入地壳的过程中岩浆本身的结晶分异和地壳物质的加入混染后形成的产物。李巍然等认为冲绳海槽南部海底玄武岩具有洋中脊玄武岩的相似特点，玄武岩是源自地幔的分异程度低，混染作用弱的初始岩浆，在冲绳海槽海底扩张过程中快速上涌的产物。而浮岩与玄武岩岩浆一样也是源于地幔的岩浆，在快速上升和断裂的分隔的构造环境下导致它与玄武岩岩浆在岩石化学上的差异。

在不同温度与压力下，岩石会发生相变，物理性质也相应地发生改变。在地球内部热动力过程中，岩石存在状态的改变，地震纵波速度值会随之改变。所以地球内部地震纵波速度值和岩浆物质演变的确定，必须参照相应深度热过程，温度、压力的测量数据。

本文部分作者在讨论冲绳海槽深部热场结构的地球动力学热模拟时，根据冲绳海槽海底地壳热流值计算出海槽中部海底下50深处温度是1200°C，深处温度1150°C。除此之外，目前没有更多的有关冲绳海槽深部热过程资料来佐证地震法测量出的岩石纵波速值和火山岩演变的确切性。

如上所述，浮岩是冲绳海槽中北部海底一种普遍分布的典型火山岩，它的形成和演变反映了海底下深处的热状态。为了获得冲绳海槽中北部海底浮岩的熔点，不同温度和压力下的地震纵波速度值等物理参数，给进一步探讨冲绳海槽海底深部热过程和地壳结构提供最基本的必要数据。我们对冲绳海槽中部海底的浮岩样品及其邻近陆地安山岩样品，日本鹿儿岛樱岛火山进行高温高压试验，以获得样品纵波速度的变化特征。本文主要是阐述这一试验的方法，结果和初步认识。
实验样品与实验方法

实验样品

实验样品是浮岩及与其对比的邻近陆地的安山岩

浮岩样品为科学一号调查船采自冲绳海槽中部海底：安山岩样品由本文作者采自日本九州鹿儿岛樱岛火山

浮岩样品呈灰白色：质轻：性脆：泡沫状气孔构造发育：气孔定向排列：大小不一：一般为<== !=;?==6==:

气孔约占总体积的@ A B左右：基质主要为玻璃质或显微隐晶质结构：基质折光率为6 % < A左右：斑晶矿物主要有斜长石：紫苏辉石和磁铁矿：其次为普通辉石：偶尔见橄榄石：石英和黑云母

一般认为冲绳海槽的灰白色浮岩为钙碱性英安浮岩

表6

<table>
<thead>
<tr>
<th>收</th>
<th>收</th>
<th>收</th>
<th>收</th>
<th>收</th>
<th>收</th>
<th>收</th>
<th>收</th>
<th>收</th>
</tr>
</thead>
<tbody>
<tr>
<td>水</td>
<td>上地壳</td>
<td>(0-km/s layer)</td>
<td>莫霍面</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1  Chemical compositions of Okinawa Trough pumice and andesite

<table>
<thead>
<tr>
<th></th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>FeO</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
</tr>
</thead>
<tbody>
<tr>
<td>66.53</td>
<td>0.32</td>
<td>12.74</td>
<td>1.13</td>
<td>2.42</td>
<td>0.09</td>
<td>0.93</td>
<td>2.76</td>
<td>5.90</td>
</tr>
<tr>
<td>58.65</td>
<td>0.9</td>
<td>15.92</td>
<td>1.9</td>
<td>4.96</td>
<td>0.213</td>
<td>1.55</td>
<td>3.78</td>
<td>5.65</td>
</tr>
</tbody>
</table>

栾锡武等

冲绳海槽浮岩的高温高压纵波速度
实验方法

高温高压下岩石样品的纵波速度测量是在中国科学院地球化学研究所深部物质实验室及压力机上进行（实验样品的组装方式见图1）。实验样品为长直径的圆柱体。（传热介质为经过焙烧的叶蜡石立方块，加热器选用不锈钢片）。

实验中为了避免换能器受压力温度的影响（将换能器置于碳化钨压砧的背后），用23%的声波检测仪和43256/7的数据采集示波仪得到某一温度压力条件下超声波通过上下碳化钨压砧和实验样品的时间。

由于碳化钨压砧在实验压力范围内几乎不被压缩，因此可以在实验前测量超声波通过上下碳化钨压砧的时间，并将其视为常数。同一温度压力条件下实验样品长度的压缩量是用电感位移计测量的。

实验采用锆钛酸铅压电陶瓷片换能器，其谐振频率为。图2实验装置图

根据时间测量误差、长度测量误差实际测量的高压下样品长度和超声波通过样品的时间可以算出理论误差。但实际上由于换能器与碳化钨压砧的偶合、高压下碳化钨压砧的微小压缩、圆柱状样品端面的平整程度等因素都会引起测量误差。依据重复测量同一个样品的实验结果，得出实际的波速测量误差小于！

该装置曾经测量了测量过的岩石样品，两者测量的相对误差小于！

本次实验内容主要有两个方面，一是在室温条件下给岩石样品加压（观测岩石纵波速度随压力的变化情况），其次是给岩石样品恒定压力（在一定压力条件下升温，观测岩石样品的纵波速度随温度的变化情况）。考虑到冲绳海槽地区岩石圈底界可能具有的温度和压力（实验中设计的最高压力和温度分别为！），实验中以的速度将压力升至目标压力（稳定分钟后升温（以！的速率升温至所需的温度（恒温分钟后），进行纵波速度测定。以此反复至实验结束。高压腔体的温度和压力校正在实验前进行，样品室的温度标定用热电偶进行，温度测量误差小于！。温度测量结果未经过压力校正。样品室压力用铜熔融曲线及石英%柯石英相变方法标定，压力测量误差小于！。

实验结果图3给出了在室温条件下浮岩样品和安山岩样品的纵波速度随压力增大而变化的曲线。从图上可以看出，在低压阶段，安山岩的纵波速度明显高于浮岩的纵波速度。如在！安山岩的纵波速度为/，而浮岩的纵波速度只有/。在高压部分（即压力在！范围内，安山岩的纵波速度和浮岩的纵波速度相差不大，在图3上两条曲线基本上重合在一起。如在！时，浮岩的纵波速度为，安山岩的纵波速度为/。在！时，浮岩的纵波速度为，安山岩的纵波速度为/。最为明显的特征是，整个压力区间上（浮岩和安山岩的纵波速度随压力的增大而单调上升，纵波速度值在&之间。图0给出了压力为！和！条件下浮岩和安山岩的纵波速度随温度变化而变化的曲线。温度从室温升至，从图上可以看出，在低压条件下，在同等温度条件下，安山岩岩石的纵波速度明显高于浮岩的纵波速度。在！时，浮岩的纵波速度为，安山岩的纵波速度为/。在！时，浮岩的纵波速度为，安山岩的纵波速度为/。
图 4  纵波速度与压力的关系图

图 5  纵波速度随温度的变化

1. 安山岩 2. 浮岩 3. 安山岩 4. 浮岩

Fig. 4  Vp—Pressure at room temperature of the pumice and andesite from the Okinawa Trough

Fig. 5  Vp—Temperature at given pressure of the pumice and andesite from the Okinawa Trough.

岩石的速度随温度的升高一般呈现下降趋势。这和本文的实验结果有很大不同。冲绳海槽浮岩和安山岩在恒压情况下纵波速度随温度的升高而增大，只是在温度较高的情况下（70°C左右）纵波速度才有所降低，但降低的幅度非常有限。温度导致岩石纵波速度下降的确切机制是一个需要深入研究的问题。在压力小于856 MPa.的条件下实验证实矿物的差异热膨胀导致矿物颗粒边缘的裂隙张开，裂隙的存在可能导致纵波速度的下降。另外，大量的实验结果支持矿物脱水和相变是引起岩石纵波速度下降的重要原因。如石英岩在恒定压力下在接近石英= quartz 相转变的温度范围时，岩石纵波速度的急剧下降。宋茂双等，周文戈等对福建塔庄粗面玄武岩的纵波速度实验研究发现在压力大于580°C的高温段，纵波速度有明显的增高，增大到一个最大值后迅速下降。并分析认为实验产物中隐晶> quartz 微晶集合体的出现是高温高压条件下粗面玄武岩纵波速度异常的主要原因。前面已经提到冲绳海槽浮岩和安山岩都不含有角闪石和黑云母，因而高压下不存在脱水的问题，其中的石英含量也很少，从而在石英= quartz 相转变的温度范围内石英= quartz 相转变所产生速度效应不会很明显。本次实验的浮岩样品和安山岩样品都有很高的空隙度，因而压力的增大样品中空隙和微裂隙的调整是主要的，而且随着温度的升高在压力作用下这种空隙和微裂隙的调整可能更容易些，从而使我们观察到恒压时随温度的升高浮岩和安山岩的纵波速度是增大的而不是下降的。

图A表明在低压状态下，浮岩样品和安山岩样品的纵波速度有明显的差别，浮岩样品的纵波速度小于安山岩样品的纵波速度。而在高压状态下浮岩样品和安山岩样品的纵波速度几乎接近一致。图B表明在低压状态下浮岩样品和安山岩样品的纵波速度大约以5.9 km/s为界，在这个温度以下浮岩样品的纵波速度明显小于安山岩样品的纵波速度，在这个温度以上二者的纵波速度又接近一致。这一结果表明，在低压和较低温度状态下浮岩样品和安山岩样品岩石结构的不同。岩浆体在水气饱和骤冷的海底必然形成多孔疏松的浮岩，具有较低的纵波速度。安山岩在逐渐冷却降压下形成致密块状，少气孔，具有较高的纵波速度。在较高压力和较高温度状态下浮岩样品和安山岩样品处于成分相同或接近相同的熔融状态，具有接近一致的纵波速度。是浮岩样品和安山岩样品纵波速度的转变点。这就是说在这样的热动力条件下浮岩和安山岩的 existence state 由固相向液相改变，纵波速度由各自的速度值转变到接近一致的速度值。

由于条件所限，本次没有进行再加大压力的实验。如果再加大压力波速有可能发生跳跃性的增大。热模拟计算冲绳海槽中部海底下温度为180°C的深度是1.8 km。可以推测这个相变点的深度应该略大于1.8 km，地壳的厚度也应大于1.8 km。D结论
冲绳海槽中部海底浮岩样品和樱岛安山岩样品的高温高压实验在高压高温下具有接近相一致的较高的纵波速度值。在较低压和低温度状态下它们的纵波速度彼此的速度值不同，表明它们同属于源自地壳深处或地幔7熔融岩浆体，在其侵入上涌的过程中发生了岩石结构和成分的差异。冲绳海槽中部海底浮岩样品和樱岛安山岩样品的热动力的相变点是2.4 GPa/800°C。推测深度应深于2.4 km。本次实验测得的浮岩样品和安山岩样品的纵波速度小于D5-GHIJ 60属于地壳岩层的纵波速度值。

没有测得大于这个速度值的数值，原因是本次实验估计冲绳海槽地区岩石圈底界可能压力小于856 MPa.，偏低。

References
Fountain D M. 1976. The Ira-Verban and Strona-Ceneri zones, Northern Italy: A cross section of the continental crust–New evidence from seismic velocities. Tectonophysics, 33; 145–165
Kern H. 1978. The effect of high temperature and high confining pressure on compressional wave velocities in quartz-bearing and quartz-free igneous and metamorphic rocks. Tectonophysics, 44; 185–203
Sun Jiashi, Mo Min. 1982. Discussion on the origin of the pumice in Okinawa Trough. Marine Geology Research. 2(3);24–35(Gin Chinese with English abstract)
Zhai Shibui, Gan Xiaoqun. 1995. Study of basalt from the hydrothermal field of the Okinawa Trough. Oceanologica et Limnologica Sinica. 26(2);115–123(Gin Chinese with English abstract)
Zhao Zhidan, Gao Shan, Luo Tingchuan, Zhang Benren, Xie Hongsen, Zhang Yueming, Xu Huigang, Guo Jie. 1996. Origin of the crustal low velocity layer of Qinling and North China, evidence from laboratory measurement of P-wave velocity in rocks at high P-T conditions. ACTA Geophysica Sinica. 39(5);642–652(Gin Chinese with English abstract)
Zhou Wenge, Xie Hongsen, Li Yuwen, Guo Jie, XuZuming. 1998. Discussion on the abnormal phenomenon of cempressive wave velocities in trachy-basait at high temperature and high pressure. Geological Science and Technology Information. 17(4);19–24(Gin Chinese with English abstract)
Zhou Wenge, Zhao Zhidan, Xie Hongsen. 1998. Compressional wave velocities in some volcanic rocks at pressure up to 4.5 GPa. J. of China Univ. of Geosci., 9(2);159–164

附中文参考文献

李乃胜(0113(海洋与湖沼)
李巍然(011N.冲绳海槽南部橄榄拉斑玄武岩研究
杨作升(0112(#*KV*J)-;76';76;*$-
张保民(011E(冲绳海槽地球动力学热模拟
王先兰(011Z(海洋科学集刊
宋茂双(011Z(高温高压下碱性橄榄玄武岩纵波速度及其影响因素
孙嘉诗(012F(冲绳海槽浮岩成因的探讨
莫珉(012F(海洋地质研究
周文戈(012F(秦岭和华北地区地壳低速层的成因探讨

栾锡武等(011Z(冲绳海槽浮岩的高温高压纵波速度