内蒙赤峰地区若干主干断裂带的构造热年代学

刘伟 杨进辉 李潮峰
LIU Wei, YANG JinHui and LI ChaoFeng

中国科学院地质与地球物理研究所, 中国科学院地质与地球物理研究所, 北京 100010
Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100010, China
2002-12-10 收稿，2003-09-14 改稿。

Abstract On the basis of investigation of the macroscopic and microscopic characteristics of deformation and kinematics of the Heilhhe-Songsanjiu and the Xilamulun near E-W-trending faults and the Xiaochengzi-Balihan NNE-trending fault in the Chifeng area, Inner Mongolia, this paper performed biotite, K-feldspar, plagioclase, and whole rock internal Rb-Sr isochron dating of mylonitic rocks, and single-grain laser fusion 40Ar/39Ar dating of biotite from these faults. Deformational features of the two E-W-trending faults have shown dextral shearing, whereas the Xiaochengzi-Balihan fault is characterized by sinistral shear on the horizontal plan and normal slip in the cross-section. According to the difference of feldspar porphyroclast and ductile matrix in grain size, the mylonitic rock samples collected from the three faults were broken to successively finer grains from which K-feldspar, plagioclase, and biotite were separated after removal of feldspar porphyroclasts. Mineral internal Rb-Sr isochron dating yielded reliable results. It shows that mylonitization has caused complete isotope resetting of the ductile matrix from the fault mylonitic rocks. Age of deformation along the Heilhhe-Songsanjiu fault is dated at 232Ma, whereas the shearing and sliding of the Xilamulun fault is dated at 165Ma. The collisional suturing of the Mongolian Paleozoic magmatic arc with the North China block in the early Mesozoic, and far field effect of the collisional suturing of the combined North China-Mongol block with the Siberia plate from Late Jurassic to Early Cretaceous are responsible for the above two stages of deformation, respectively. Ages of the sinistral shear and normal slip of the Xiaochengzi-Balihan fault are dated at about 125Ma and 117Ma. Both ages are concurrent with the rapid uplift of the Harkin metamorphic core complex. We concluded that the mantle-crust upwelling prompted ductility in the middle-lower crust and detachment of cover rocks from the basement. These conditions eventually resulted in the sinistral shear and normal slip along the NNE-trending faults.

Key words Mineral internal Rb-Sr isochron dating, Single-biotite laser fusion 40Ar/39Ar dating, Fault mylonite, Ductile matrix, Major fault, Chifeng area of the Inner Mongolia

摘 要 黑里河-宋三家和西拉木仑近东西向断裂的宏观和显微结构特征并指示了右行走滑剪切; 小城子-八里罕北北东向断裂也显示了平面上的左行剪切和制面上的正断式剪切。根据断裂带基岩中长石变斑与韧性基质在粒径上的显著差异, 采用逐级破碎、逐级分选的方法, 次次剔除长石变斑。从细粒韧性基质中分选出钾长石、斜长石和黑云母, 经过黑云母矿物内部 Rb-Sr 等时线定年和单颗粒黑云母的激光熔化 40Ar/39Ar 定年。定年结果显示, 断裂岩化促进了于标本尺度上的同位素均一化, 形成了原岩同位素等时的重置。定年结果表明, 黑里河-宋三家断裂形成的年龄为 232Ma; 西拉木仑断裂右行走滑的年龄为 165Ma。蒙古古生代岩浆弧与华北地块北缘的碰撞拼贴, 以及华北-蒙古联合地块与西伯利亚地块的碰撞拼贴的远程效应, 导致了上述 2 期变形。小城子-八里罕断裂的左行和正断式剪切的年龄介于 127 ~ 117Ma, 与喀喇沁核杂岩的快速隆升时期相同。壳幔隆升促进了中下地壳的韧性化和拆离, 导致了北北东向断裂的左行和正断式剪切。

关键词 矿物内部 Rb-Sr 等时线定年; 黑云母的激光 40Ar/39Ar 定年; 断裂带基岩; 韧性基质; 主干断裂; 内蒙赤峰地区

中图法分类号 P597.3

* 中国科学院知识创新工程重大项目(KZCX1-07-04)资助。

第一作者简介：刘伟，男，1959 年生，博士，研究员，从事岩石学和地球化学研究。E-mail: liuw@ mail. igeas. ac. en
1 前言

变质和变形事件同位素定年的前提是变质和变形作用中同位素时钟的重置(reseting)。影响同位素时钟重置的因素包括变质、流体流动和矿物重结晶、化学成分和矿物粒径、放射成因同位素在难熔矿物中的溶解度的差异、岩石的可渗透性以及热事件的时间等(Maurel et al., 2003)。许多实例都强调了遍人性变形尤其是液被岩化作用对于驱动矿物同位素时钟重置的重要性(如Goodwin和Renne, 1991; West and Lux, 1993; Dunlap and Teyssier, 1995; Haines and Chenev, 1997; Kramar et al., 2001)。在缺乏遍人性变形和重结晶的条件下, 黑云母在高达近 700°C 的温度下都保持了同位素封闭特征，从而给出变质前的年龄(Di Vicenzo et al., 2001)。但是，遭受了遍人性变形和流体渗透的变性岩石，其矿物的同位素时钟则被彻底重置，从而记录了变形事件的年龄(Maurel et al., 2003)。所以，遍性岩是构造变形矿物中 Rb-Sr 同位素定年的理想对象。

中生代前后, 中国东部发生了构造与动力学体制的重大转折, 从挤压性伸展, 构造格局从东西向北东向转转(王瑜, 1996, 1997)。已有研究主要根据中生代沉积盆地填充历史、岩浆活动时代等, 对中生代而后的构造体制转换作出推测(如梁鸿德等, 1997; 任纪元等, 1999), 而中生代构造变形的同位素定年工作相对薄弱, 从而限制了研究工作的深入。近东西向断裂和北东-北东东向断裂作为中生代壳内变形的主要形式, 其运动方式体现了中国东部主要块体及其周边板块或板块相互作用的结果, 其热年代学则反映了中生代构造体制转换的时限。

本文在内蒙赤峰地区选择黑里河-宋家台, 西拉木伦河 2 条近东西向断裂和红山-八里罕北东北向断裂的南段(小城子-八里罕断裂), 在宏观和显微变形特征研究的基础上, 对断裂带中的钾长石, 斜长石、黑云母和金石样品进行内部 Rb-Sr 等时线定年和黑云母的激光玻璃“Ar/^{39}Ar 定年, 从而对断裂带中的热年代学和近东西向和西北-东北向断裂的活动转换时限给出详细限定, 结合主断层带变形特征和运动方式的研究, 探讨华北地台及其周边块体相互作用的方式和时限。

2 大地构造背景

如图 1, 华北北部包括华北地台北缘及其以北的兴蒙造山带。兴蒙造山带包括奥陶纪- 早二叠世岛弧, 古生代混合岩和蛇绿岩以及微陆块(何国琦和郝志安, 1983; 何志安, 1991; Seng' r and Naql'in, 1996)。华北地台在显生宙尤其是中生代发生了广泛强烈的岩浆作用, 因而已经不再具备克拉通的性质。华北地台与蒙古地块拼合的时限及其方式仍然存在着争议, 但是, 相当多的地质工作者认为两个地块从晚

![图 1 华北东部及其邻区的大地构造格架图](Image00001.png)

图 1 东北东部及其邻区的大地构造格架图

二叠世-早三叠世沿着燕山-林西缝合带拼合 (e.g., Wang 和 Mo, 1995; Yin and Nie, 1996; Zheng et al., 1996)。在燕山-林西缝合带以南, 分布着许多深成岩, 它们的同位素年龄介于 285~217 Ma (Cui 和 Wu, 1997)。因从, 从三叠纪-二叠纪, 荡海板块向南华地台发生了俯冲。

如图 1, 在华北地台与蒙古-鄂霍次克缝合带之间的中亚-东亚造山带东段, 分布着许多轴向东北-北东北的伸展盆地, 它们的沉积充填时代为侏罗纪-白垩纪。从东往西, 这些盆地包括依兰-伊通海地盆地 (YY), 松辽盆地 (SL), Tamsag-Hailar 盆地 (TH), 戈壁-二连盆地 (GE)。

华北地台北缘以南, 在西部和东部分布着中生代鄂尔多斯盆地 (OD, 图 1) 和晚中生代-新生代华北盆地和渤海湾盆地 (BB)。2 个盆地之间的太行山 (TS), 中生代褶皱和断裂的走向为东北-北东北, 并且与华北地台北缘的构造线方向相互交切。秦岭-大别造山带构成了华北与扬子地台的分界, 紧邻着秦岭-大别造山带的北东部, 分布着合肥盆 (HF)。
图 2 华北板块北缘中段地质略图
1-西拉木伦断裂；2-赤峰-开原断裂；3-南沟门-五官营子断裂；4-黑里河-宋三家断裂；5-红山-八里罕断裂；
6-锦山-美林断裂。2 个长方形图框表示图 3 和图 6 的位置
Fig. 2 Geological sketch map of the middle segment of the northern margin of the North China block

图 3 陈家营子-巴林桥一带地质略图
空心圆圈和编号表示采样位置和样品编号
Fig. 3 Geological sketch map of the middle segment of the Xilamulun river

3 主干断裂带的变形特征和运动方式

如图 2，本文研究的几条主干断裂带分布于从林西到赤峰市以南的黑里河地区，位于燕辽构造带的北边。从北到南依次分布着西拉木伦断裂(1, 图 2)，赤峰-开原断裂(2)，南沟门-五官营子断裂(3)，黑里河-宋三家断裂(4)。这些近东西向断裂与红山-八里罕(5)，锦山-美林(6)等北东-北北东向断裂相互交切。在两组断裂的围限下，尚发育了喀喇沁变质核杂岩(邵振安等，2001)，构成“三角”地带，是研究东西向断裂与北东-北北东向断裂活动转换时限以及中生代构造体制转折的良好地带。

3.1 西拉木伦断裂

如图 2 和 3，该断裂大致沿着西拉木伦河呈近东西向延伸，长约 350km，宽约 50km。断裂两侧的构造线，重力异常和
图 4 西拉木仑断裂带的野外照片

西拉木仑断裂切过奥陶-志留系地层，形成清晰的糜棱岩面理。陈家营子北西

Fig. 4 Photograph showing the Xilamulun fault that cuts the Ordovician-Silurian strata, forming distinct mylonitic plan

图 5 西拉木仑断裂带糜棱岩的显微组构特征

(a) 长石的长轴和双晶条带平行排列，为北东东向。 (b) 条带状石英和黑云母呈明显的定向排列，方向为北东东向。 (c) 长石残斑与 C 面理的 S-C 不对称组构，指示右行剪切。 (d) 长石残斑的长轴与 C 面理斜交，韧性基质挤入长石残斑的背力面，S-C 组构指示右行剪切。照片的横视域为 2mm, 样品 HB78。缩写字母的定义如下: Q - 石英; Bt - 黑云母; C - C 面理; S - S 面理

Fig. 5 Microscopic characteristics of the mylonite from the Xilamulun fault
航磁异常等值线的展布方向截然不同，断裂以北为北东-北东东向，以南为近东西向。在阿拉善台合-雅汗台地学断面上，该断裂表现为北倾的冲断带。断裂带两侧地壳和岩石圈的结构明显不同，尤其是转换圈顶面埋深在南侧为153km，在北侧则突降到93km（赵一鸣和张德全等，1997）。

如图3和4，断裂带在陈家营子-巴林左区段切过燕山早期花岗岩和奥陶-志留系地层，表现为宽数公里的挤压破碎带和糜棱岩带。如图3，样品HB78采自陈家营子北西的糜棱岩化岩石，原岩为奥陶-志留系碎屑沉积岩夹火山岩，火山碎屑岩。在显微镜下（图5(a)和(b)），长石的长轴和双晶条带，条带状石英和云母呈北东东向排列，波状消光，构成典型的糜棱岩面理。长石残斑的长轴与B面理长轴（图5(c)），韧性基质挤入长石残斑的背界面（图5(d)），S-C一组指示右行剪切。

样品HB78的长石残斑的粒径介于4×2.4mm²～2.4×1.8mm²，含量为55%±；韧性基质的粒径介于0.60×0.32mm²～0.06×0.04mm²，含量小于40%；黑云母多已发生绢云母化，含量小于3%。

3.2 黑里河-宋三家断裂

如图6，该断裂（1）长约100km，沿走向呈斜坡状，在东段被北北东向断裂切错，断裂西段地表标志和断线性特征明显，延伸大于5km，往北倾斜。断裂东段延伏于中生界覆盖层之下，延伸大于10km，往南倾斜。断裂在西段地表表现为韧性剪切带，剪切带中次级断裂和片理化岩石发育，常见变质线状解理。变形岩石由黑云母长石岩、黑云母长英质糜棱岩组成。较粗粒石英质富拉长，较细粒石英质细粒镶嵌，黑云母细小、新鲜，无蚀变，三者呈近东西向排列，构成清晰的C面理（图7(a)）。长石残斑发生顺时针旋转，沿着背力方向挤入韧性基质，构成B型残斑系，指示右行剪切（图7(b)），与西拉木伦断裂的运动学特征相同。样品HB41进行单矿物分离和矿物内部Rb-Sr等时线年代测定。样品HB41的长石残斑的粒径大于0.8×0.3mm²，含量42%；韧性基质的粒径介于0.2×0.1mm²，含量58%；黑云母的含量小于1%。
图 7 鳟里河一宋三家断裂带中的变质及同位素特征
(a) 枝片状变质破碎带, 枝片状变质带形状, 两者同向呈东北向排列, 形成明显的枝片状带。样品 HB41。 (b) 面状变质带,长石枝片带发生旋转, 沿着枝片的背向面挤入韧性基质, 指示右行剪切。样品 HB41

Fig. 7 Microscopic characteristics of mylonitic rocks from the Heilhe-Songsanjiang fault

3.3 小城子一八里罕韧性剪切带

如图 6, 小城子一八里罕韧性剪切带 (2) 是红山一八里罕断裂的南段, 也呈露得最好的一段, 其走向为北东 30° 7, 倾向南东, 倾角 30° ～50°, 宽度 5 ～10 km。韧性剪切带切过前寒武系变质岩和晚白垩纪花岗岩体的东部边缘, 形成清楚的枝片状带 (图 8)。变形岩石由花岗质糜棱岩、长英质糜棱岩组合而成。图 9 (a)、枝片状带发育透入性的 C 面理和滑动面理, C 面理由黑云母、长条状石英和长石平行排列构成。图 9 (b)～(c), 长石枝片带或枝片形带在平面上和剖面上与 C 面理斜交, 构成 S 面理。根据长石机械双晶、双晶条带扭折、蠕变石与 C 面理所显示的不对称几何关系, 指示平面上的左行剪切和剖面上的正断式剪切。图 6, 从花岗质糜棱岩中采集了 HB48 和 HB49 样品, 进行矿物内部 Rb-Sr 等时线年龄测定和单颗粒黑云母的激光熔化 40Ar/39Ar 定年。样品 HB48 的长石枝片带的枝片介于 1.6 ～ 0.5 mm^2, 含量

图 8 小城子一八里罕韧性剪切带的野外照片
小城子一八里罕北东向韧性剪切带切过喀斯特花岗岩的东部边缘, 形成一组密集的枝片状带。小城子西采林

Fig. 8 Photograph showing the Xiaochengzi-Balihan ductile shear zone that cuts the eastern margin of the Harkin granite pluton, forming the concentrated NNE-trending mylonitic plans

4 实验流程和分析方法

几条断裂带的变质带由长石枝片和细粒枝片基质构成。如上文所述, 在变质带化过程中, 枝片基质发生了充分的粒化腐质, 因而其粒度上界达到了同一组枝片的均一化。长石枝片粒度较大, 在其两端或尾部往往破碎较强, 并且有新的矿物生长在。但是, 长石枝片内部不同程度地保留了原岩的矿物残留核, 不能保证这些残留长石在变质化过程中达到了完全的同位素组成均一化。所以, 刺制长石枝片是单独基质分选和枝片带的矿物组成等时线定年的关键。如前文所述, 长石枝片的粒度一般在 mm 尺度上变化, 分为 0.1 mm 粒级, 但是, 一般大于 0.5 mm。枝片基质的粒度在 0.0 mm

<5.0 mm 的尺度上变化, 因而, 大于 0.5 mm(约 40 目) 的粗粒长石矿物碎屑是粗粒枝片粘石屑, 0.5 mm - 0.2 mm(40 目 - 80 目) 粒度的纯碎长石碎屑既包含了粗粒枝片碎屑, 也有枝片基质中的长石矿物。为了进一步防制, 剔除 0.2 mm(80 目) 以上粒级的纯碎长石矿物碎屑, 将剩余样品破碎到更细粒级, 而后分别称长石、斜长石。
Fig. 9 Microscopic features of mylonitic rocks from the Xiaochengzi - Balian ductile shear zone
表 1 内蒙赤峰地区主干断裂带糜棱岩矿物 Rb-Sr 同位素组成

<table>
<thead>
<tr>
<th>样品编号</th>
<th>矿物</th>
<th>Rb (ppm)</th>
<th>Sr (ppm)</th>
<th>Rb/Sr</th>
<th>Sr/Sr</th>
<th>±2σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>WL13</td>
<td>HB78Kf</td>
<td>1065</td>
<td>327</td>
<td>764.2</td>
<td>679.1</td>
<td>1.394</td>
</tr>
<tr>
<td>WL18</td>
<td>HB78Pg</td>
<td>256.2</td>
<td>78.63</td>
<td>745</td>
<td>661.8</td>
<td>0.3439</td>
</tr>
<tr>
<td>WL20</td>
<td>HB78R</td>
<td>629.7</td>
<td>193.2</td>
<td>621.5</td>
<td>552.2</td>
<td>1.013</td>
</tr>
<tr>
<td>LW1</td>
<td>HB41Kf</td>
<td>594.1</td>
<td>182.4</td>
<td>877.1</td>
<td>779.5</td>
<td>0.6774</td>
</tr>
<tr>
<td>LW9</td>
<td>HB41Pg</td>
<td>218.2</td>
<td>66.98</td>
<td>870</td>
<td>773.1</td>
<td>0.2508</td>
</tr>
<tr>
<td>LW14</td>
<td>HB41R</td>
<td>261.3</td>
<td>80.21</td>
<td>701.2</td>
<td>623.1</td>
<td>0.3727</td>
</tr>
<tr>
<td>LW5</td>
<td>HB35Bt</td>
<td>420.4</td>
<td>1290</td>
<td>36.95</td>
<td>33.58</td>
<td>113.8</td>
</tr>
<tr>
<td>LW10</td>
<td>HB35Kf</td>
<td>1335</td>
<td>409.9</td>
<td>1656</td>
<td>1472</td>
<td>0.8065</td>
</tr>
<tr>
<td>LW7</td>
<td>HB35R</td>
<td>482.5</td>
<td>148.1</td>
<td>1267</td>
<td>1126</td>
<td>0.3808</td>
</tr>
<tr>
<td>LW2</td>
<td>HB48Br</td>
<td>370.7</td>
<td>1138</td>
<td>17.56</td>
<td>16.14</td>
<td>211.1</td>
</tr>
<tr>
<td>LW11</td>
<td>HB48Kf</td>
<td>1143</td>
<td>350.7</td>
<td>535.6</td>
<td>476</td>
<td>2.134</td>
</tr>
<tr>
<td>LW16</td>
<td>HB48Pg</td>
<td>177.3</td>
<td>54.41</td>
<td>844.5</td>
<td>750.2</td>
<td>0.2099</td>
</tr>
<tr>
<td>LW8</td>
<td>HB48R</td>
<td>681.9</td>
<td>209.3</td>
<td>553.6</td>
<td>491.9</td>
<td>1.232</td>
</tr>
<tr>
<td>LW11</td>
<td>HB49Bt</td>
<td>3758</td>
<td>1153</td>
<td>11.81</td>
<td>11.08</td>
<td>318.2</td>
</tr>
<tr>
<td>LW6</td>
<td>HB49Kf</td>
<td>826.8</td>
<td>253.8</td>
<td>556.9</td>
<td>495.1</td>
<td>1.485</td>
</tr>
<tr>
<td>LW13</td>
<td>HB49Pg</td>
<td>76.09</td>
<td>23.35</td>
<td>618.3</td>
<td>549.6</td>
<td>0.1231</td>
</tr>
<tr>
<td>LW19</td>
<td>HB49R</td>
<td>615.7</td>
<td>189.0</td>
<td>450.6</td>
<td>400.6</td>
<td>1.366</td>
</tr>
</tbody>
</table>

* 缩写字母的定义：Bt-黑云母；Kf-钾长石；Pg-斜长石；R-全岩

表 2 HB49 黑云母的单颗粒激光熔化^{40}Ar/^{39}Ar 分析结果

<table>
<thead>
<tr>
<th>样品编号</th>
<th>原子 %</th>
<th>^{38}Ar/^{39}Ar</th>
<th>^{40}Ar/^{39}Ar</th>
<th>表面年龄 (Ma)</th>
<th>1σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1417</td>
<td>8.84</td>
<td>8.54E-03</td>
<td>7.92E-03</td>
<td>1.74E-02</td>
<td>3.35E+03</td>
</tr>
<tr>
<td>1418</td>
<td>7.41</td>
<td>6.89E-03</td>
<td>9.51E-07</td>
<td>2.07E-02</td>
<td>2.75E+01</td>
</tr>
<tr>
<td>1419</td>
<td>8.86</td>
<td>8.29E-03</td>
<td>8.44E-07</td>
<td>2.08E-02</td>
<td>2.77E+01</td>
</tr>
<tr>
<td>1420</td>
<td>6.73</td>
<td>6.20E-03</td>
<td>8.45E-03</td>
<td>2.04E-02</td>
<td>2.72E+01</td>
</tr>
<tr>
<td>1421</td>
<td>3.47</td>
<td>3.07E-03</td>
<td>1.22E-03</td>
<td>1.75E-02</td>
<td>2.62E+01</td>
</tr>
<tr>
<td>1422</td>
<td>8.41</td>
<td>8.00E-03</td>
<td>1.23E-03</td>
<td>1.89E-02</td>
<td>2.81E+01</td>
</tr>
<tr>
<td>1423</td>
<td>4.90</td>
<td>4.54E-03</td>
<td>6.01E-03</td>
<td>1.83E-02</td>
<td>2.74E+01</td>
</tr>
<tr>
<td>1424</td>
<td>13.22</td>
<td>1.40E-02</td>
<td>2.97E-06</td>
<td>1.95E-02</td>
<td>3.13E+01</td>
</tr>
<tr>
<td>1501</td>
<td>5.29</td>
<td>4.91E-03</td>
<td>3.75E-06</td>
<td>1.60E-02</td>
<td>2.75E+01</td>
</tr>
<tr>
<td>1502</td>
<td>3.26</td>
<td>2.93E-03</td>
<td>9.41E-07</td>
<td>1.75E-02</td>
<td>2.66E+01</td>
</tr>
<tr>
<td>1503</td>
<td>4.87</td>
<td>4.55E-03</td>
<td>2.02E-06</td>
<td>2.73E-02</td>
<td>2.76E+01</td>
</tr>
<tr>
<td>1504</td>
<td>2.79</td>
<td>2.45E-03</td>
<td>6.31E-07</td>
<td>1.77E-02</td>
<td>2.59E+01</td>
</tr>
<tr>
<td>1505</td>
<td>9.40</td>
<td>9.07E-03</td>
<td>3.09E-03</td>
<td>2.00E-02</td>
<td>2.85E+01</td>
</tr>
<tr>
<td>1506</td>
<td>6.24</td>
<td>6.04E-03</td>
<td>5.05E-03</td>
<td>1.84E-02</td>
<td>2.86E+01</td>
</tr>
<tr>
<td>1507</td>
<td>5.50</td>
<td>5.29E-03</td>
<td>5.02E-03</td>
<td>1.77E-02</td>
<td>2.84E+01</td>
</tr>
<tr>
<td>1508</td>
<td>1.84</td>
<td>1.60E-03</td>
<td>5.41E-03</td>
<td>1.69E-02</td>
<td>2.57E+01</td>
</tr>
<tr>
<td>1509</td>
<td>4.91</td>
<td>4.54E-03</td>
<td>1.20E-02</td>
<td>1.85E-02</td>
<td>2.74E+01</td>
</tr>
<tr>
<td>1510</td>
<td>1.38</td>
<td>1.19E-03</td>
<td>6.13E-07</td>
<td>1.65E-02</td>
<td>2.56E+01</td>
</tr>
</tbody>
</table>

J - value = 0.00288144 +/ - 0.00000283; Total Gas Age = 128.6 +/- 0.2 Ma; Mean /ge = 129.6 (STDEV = 2.9Ma)
Fig. 10 Mineral internal Rb – Sr isochrones of mylonitic rocks collected from the Heilihe – Songsanjia (a) and the Xilamuhun (b) faults.

Fig. 11 Mineral internal Rb – Sr isochrones of mylonitic rocks collected from the Xiaoqinhe – Balihan ductile shear zone.
5 讨论和结论

5.1 矿物内部 Rb-Sr 等时线定年法的基础和意义

样品均采自橄榄岩化岩石。橄榄岩化作用包括岩石和矿物颗粒的碎裂、细粒化、动态重结晶、溶解-再沉积和晶体位错等。其次，变形岩石尤其是橄榄岩发生了显著的流体活动和质量传输，导致元素的带出和同位素组成的分解（如，O’Hara, 1988；Silverstone et al., 1991；Newman and Mitra, 1993）。第三，Sr 在钾长石和斜长石以及 Rb 在钾长石和斜长石中具有较高溶解度，有利于 Rb-Sr 同位素在 3 种矿物之间交换。上述 3 项因素极大地便利了手标尺尺度上的同位素均一化作用，引起橄榄岩同位素时钟的重置。因而，矿物内部 Rb-Sr 等时线定年法确定断裂橄榄岩尤其是花岗质和长英质橄榄岩的形成年龄是可行的。碱性长石在次固相下的微粒结构微粒构造发生于 400° - 500°C 的温度下（Worden et al., 1990；Lee et al., 1997；Wei, 2002）。碱性长石的 Sr 同位素封闭温度为 300° ± 50°C (Rollinson, 1993)。因而，碱性长石、黑云母、斜长石和全岩样品的内部 Rb-Sr 等时线年龄大致代表了 300° ± 温度下的冷却年龄。赤峰地区橄榄岩的形成温度介于 450° - 550°C (王时麟等, 1994)，以平均值 500°C 为代表，假定冷却速率为 20° - 30°C/Ma，橄榄岩的形成年龄应比 300°C 温度下的冷却年龄老了 6 - 10Ma。因而，矿物内部 Rb-Sr 等时线年龄大致代表了断裂橄榄岩的形成年龄。
5.2 近东西向断裂右行挤压滑动的时期及其动力学背景

如图10(a)，样品 HB48的钾长石、斜长石及全岩样品的Rb-Sr等时线年龄为232±10Ma，MSWD=0.00021，代表了黑里河-宋三家断裂近东西向糜棱岩带的形成年龄，即该断裂右行挤压滑动的时期。黑里河-宋三家断裂在232Ma的右行挤压滑动，是由以下2个原因造成的：第一，蒙古古生代岩浆弧与华北地块北缘英安期火山体的碰撞结合。第二，古亚洲洋向华北地块之下的南向俯冲导致前陆地区的挤压剪切变形，由于华北地块东侧逃逸物出，因而造成了近东西向断裂的挤压滑动的运动学特征。

如图10(b)，样品 HB78的钾长石、斜长石及全岩样品的Rb-Sr等时线年龄为165±4.3Ma，MSWD=0.036，该年龄明显小于奥陶-志留纪碎屑沉积岩层的年龄，因而，代表了西拉木伦断裂发生右行挤压滑动的年龄。该期变形反应了晚侏罗-早白垩世的北西-南东向右行挤压滑动。晚侏罗世-早白垩世，蒙古-俄罗斯地壳发生逆时针旋转闭合（Zho a et al., 1990; Zonenshain et al., 1990; Enkin et al., 1992; Ooster, 1994），华北-蒙古联合地块与西伯利亚板块碰撞拼接。两大地块碰撞的远期效应，重新活化华北北缘先存的近东西向断裂，后者对碰撞的远期应力产生聚集作用，从而加强了晚侏罗世-早白垩世的陆内变形。近年来的研究（如 Davis et al., 2001）指出，华北背斜燕山地区晚侏罗世-早白垩世的挤压滑动变形比原先设想的要强烈得多，也与本文的研究相吻合。

5.3 小城子-八里罕韧性剪切带左行滑动的时期及其动力学背景

关于喀喇沁花岗岩体的侵位年代，薛济安等（2001）从岩体内部未受边缘糜棱岩化作用影响的岩石采样样品，测定的两条全岩Rb-Sr等时线年龄分别为180±6.0Ma(采样位置为罗家营子，如图6)和166.8±4.5Ma(采样位置为板桥沟，如图6)，代表了喀喇沁花岗岩体的侵位年代。

如图11(a)和(b)，样品 HB48和HB49的黑云母、钾长石、斜长石及全岩样等Rb-Sr等时线年龄分别为117±1Ma和125±1.1Ma，MSWD分别为0.092和1.00。图11(c)和(d)分别为样品 HB48和HB49去掉黑云母后的黑云母、斜长石和全3个点样所拟合的等时线，年龄分别为117±2.5Ma和127±2.0Ma，MSWD分别为0.16和0.15。HB48、HB49去掉黑云母后的3点等时线年龄与包括黑云母的4点等时线年龄在误差范围内几乎相等。如图12(a)，HB49黑云母样品的18个点样的14C-39Ar表面年龄表现出135±1.1Ma，130±0.6Ma，126.8±0.5Ma三个峰值。前两个峰值代表了同位素部分重置的年龄，最后一个峰值126.8±0.5Ma代表了同位素彻底重置的年龄。如图12(b)，9个点样拟合的等时线年龄为126±0.7Ma，MSWD=2.01。HB49的黑云母样品的39Ar/39Ar年龄与该样品的矿物内部Rb-Sr等时线年龄在误差范围内相等，表明新喀喇沁花岗岩体侵位的年龄，可以代表了糜棱岩化作用的年龄。但是，HB684和HB49的矿物内部Rb-Sr等时线年龄的差别介于8.1-9.7Ma，可能反映了小城子-八里罕逃逸断层从中下地壳往上升的地质学。

从空间分布上来看，在小城子-八里罕北东向韧性剪切带、横山-美林北北东向韧-脆性剪切带以及黑里河-宋三家近东西向断裂的限界下，发育了喀喇沁变质核杂岩（图6）。上述空间关系构成了一个“三角”地带，该区域是东西向断裂与北北东向断裂的活动转换时期，以及变质核杂岩与北北东向韧性剪切带形成的因果关系的理论地带。黑里河-宋三家近东西向断裂的挤压剪切时代为232Ma。喀喇沁变质核杂岩范围内的晚侏罗世花岗岩均不同程度地经历过变形变质作用，晚侏罗世早白垩世花岗岩质岩石仅发育了轻微的脆性变形。薛济安等（2001）以晚侏罗世马尼图组的时代为下限，早白垩世外家湾组花岗岩的时代为上限，认为130-100Ma是喀喇沁变质核杂岩快速隆升的时期。小城子-八里罕北北东向韧性剪切带左行滑动的时代介于127-117Ma，与喀喇沁核杂岩的快速隆升时期相同。在剖面上的正断式剪切特征也与核杂岩的隆升共同反映了壳-幔隆升。壳-幔隆升引起区域地壳异常，从而促进了中下地壳的韧性化（软化）和拆离作用；同时，在中国东部转换大陆边缘背景下，导致了以左行剪切滑脱为特征的北北东向断裂。

References

He GQ., and Sha JO. 1983. Determination of Early Paleozoic ophiolites
in the southeastern Inner Mongolia and their geotectonic significance. In: Collected works on the plate tectonics of the North China, 1; 243 – 249 (in Chinese with English abstract)

Wei L. 2002. Fluid – rock interaction during subsolidus microtextural development of alkali granite as exemplified by the Særtiellieke pluton, Ulungur of the northern Xinjiang, China. Chemical Geology, 182; 473 – 482

West DP, Lux DL. 1993. Dating mylonitic deformation by the 40Ar-39Ar method; an example from the Norumbega Fault Zone, Maine. Earth Planet. Sci. Lett., 120; 221 – 237

附中文参考文献

王时勤，孙承志，常文元等。1994。内蒙古赤峰地区金矿地质。呼和浩特:内蒙古人民出版社，138 – 156

王瑜。1996。内蒙古－燕山造山带晚生代晚期-中生代的造山作用过程。北京:地质出版社

王瑜。1997。中生代以来华北地区造山带与盆地的演化及动力学过程。北京:地质出版社

任纪锋，牛宝贞，刘志刚。1999。软碰撞，叠覆造山和多旋回造山作用。地学前沿，6(3); 85 – 93

何国琦，郎熙明，1983。内蒙古东南部（昭盟）西拉木伦河一带早古生代蛇绿岩带的确认及其大地构造意义。见: 中国北方板块构造文集(第1集), 243 – 249

邸安。1991。中朝板块北缘中段地壳演化。北京:北京大学出版社

邸安，张振锋，贾文等。2001。内蒙古喀喇沁旗变质核杂岩及其隆升机制探讨。岩石学报, 17(2); 283 – 290

赵一鸣和张德全，等。1997。大兴安岭及其邻区多金属矿床成矿规律与远景评价。北京:地质出版社，11页

赵越，杨振宇，马醒华。1994。东亚大地构造发展的重要转折。地质科学，29(2); 105 – 114

梁鸿德，许坤，王瑜等。1997。区域地质概况。见: 陈义贤和陈文友，辽西及邻区中生代火山岩，北京:地震出版社，6 – 27