冀北中生代高 Sr 低 Y 和低 Sr 低 Y 型花岗岩：
地球化学、成因及其与成矿作用的关系

李承东¹ 张旗¹ 苗来成¹ 孟宪锋²
LI ChengDong¹, ZHANG Qi¹, MIAO LaiCheng¹ and MENG XianFeng²

1. 中国科学院地质与地球物理研究所，北京 100029
2. 河北省区域地质矿产调查研究所，廊坊 065000

1. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
2. Regional Geology and Mineral Resources Survey of Hebei Province, Langfang 065000, China
2003-08-18 收稿，2003-11-25 改回。

Abstract North Hebei is one of important gold-producing areas in China. Most gold deposits in the northern Hebei are related to Mesozoic intermediate-acid intrusions, although they are different in genetic types. Based on the studies of this paper, these intrusions can proximately be divided into two types: a high-Sr and low-Y type and a low-Sr and Y type. The first type of intrusions has the geochemical features of adakite, and therefore it is inferred to be a possible product of partial melting of the over-thickened continental lower crust with a residual phase of eclogite or amphibole eclogite. The second type, on the other hand, is different from the first one by its low Sr and Al contents and obviously negative Eu anomaly; on the other hand, it is similar to adakite by its low Y and HREE contents. Therefore, it is suggested that the low-Sr, low-Y type intrusions were generated by partial melting of relatively thick lower crust under high pressure granulite facies conditions with plagioclase to be the dominant residual phase. Considering that the gold deposits are spatio-temporally associated with the two types of intrusions and previous S, Pb, H, O and C isotopic data of the gold deposits in the North Hebei, which indicate that the mineralizing fluids and/or materials are most likely derived from mantle-lower crustal source, we concluded that the gold deposits have genetic relationships with high-Sr, low-Y type and low-Sr, low-Y type intrusions. This will be helpful in understanding the genesis and exploring mineral deposits in the northern Hebei Province.

Key words Mesozoic, Magmatism, High-Sr and low-Y type granitoids, Low-Sr and Y type granitoids, Gold deposit, North Hebei

摘 要 冀北是我国重要的金矿成矿区，冀北金矿有不同的类型，但大多与中生代中酸性侵入岩有关。本文的研究表明，
冀北与金矿有关的中酸性侵入岩体可划分为两类：一类为高 Sr 低 Y 型岩体，具有埃达克质岩的地球化学特征，推测可能是
加厚的下地壳部分熔融形成的，其残留相为榴辉岩或角闪榴辉岩；另一类为低 Sr 低 Y 型岩体，以较低的 Sr, Al 和具明显的负
异常而区别于埃达克质岩，又因其低 Y 和 HREE 而类似于埃达克质岩，推测源岩残留相中斜长石存在，相当于高压变质带
岩相的环境，可能也形成于加厚下地壳底部。冀北金矿的 S, Pb, H, O 和 C 同位素大量显示深源的特点，且在时空分布上与上述
两类中酸性侵入岩存在密切的关系，表明冀北金矿床的成矿物质和流体可能是幔源的，与中生代高 Sr 低 Y 和低 Sr 低 Y 型
岩浆的成因有关。这一认识对于理解冀北金矿的成因和找矿可能是有益的。

关键词 中生代；岩浆作用；高 Sr 低 Y 型花岗岩；低 Sr 低 Y 型花岗岩；金矿；冀北

中图法分类号 P588.121; P618.51

* 中国科学院知识创新工程项目(KZCX2-104)项目资助
第一作者简介：李承东，男，1963 年生，博士生，构造地质学专业，E-mail: lcd@mail.igeas.ac.cn
最近一些学者在研究中国东部燕山期岩浆作用时，指出中国东部普遍发育一套达克戈质岩（adakite rock）或 C型达克戈质岩（C-type adakite）张旗等（2001；李伍平等，2001；王焰等，2001；王烈等，2002），而引起国内外学术界的关注。近年来的研究发现，达克戈质岩与金属矿床，特别是Au、Ag、Cu、Mo热液矿床和斑岩型矿床密切相关。例如，Thieblemont等（1997）研究了全球43个Au、Ag、Cu、Mo低温热液和斑岩矿床，发现其中38个与达克戈质岩有关。据研究，我国华北地区东部、秦岭、黄土高原-北山、白乃至水库斑岩铜矿-长江中下游和德兴地区Cu-Au-Fe成矿区，如铁山铜镍矿、封山铜镍矿、沙溪铜金矿、德兴斑岩铜矿等都与达克戈质岩有关（张旗等，2001；王烈等，2002等）。

本文在综合作者和前人资料的基础上，将冀东（包括冀东和张旗地区）与金矿有关的中生代中酸性侵入岩划分为两类：一类具高Sr低Y的特点，类似埃达克岩的地球化学特征；另一类则表现为低Sr和低Y，不具有埃达克岩的特征，如与峨眉山和金厂峪金矿有关的峨眉山和中白口花岗岩。作者认为，虽然上述两类花岗岩表现出不同的地球化学特征，两者均具有来源深的特点。而且本文对其与斑岩型成矿作用的关系做了较深人的探讨。

2 区域地质背景

冀东在大地构造位置上处于华北克拉通北缘，其北部为北方造山带。区内部为太古代-早元古代的结晶基底，中元古代-新生代的沉积-火山岩盖层。区内断裂构造发育，以东西向和东北向两组为主。前者由北向南主要有康保—赤峰、丰宁-隆化、大庙-娘娘庙和尚义-平泉断裂带及横贯冀东地区的密云-西口断裂；后者主要为上旗-乌龙沟断裂及青龙-滦县断裂。中生代侵入岩和火山岩极发育，两者主要呈东北-北东向分布。张旗和冀东两个金矿区中均位于色的，另一种是红色的，两类花岗岩的SHRIMP年龄一致

尚义-平泉深大断裂带的南侧（图1.2）。

该区具达克戈质岩特征的侵入岩广泛分布，据张旗等（1993）的资料，北京-冀北-辽西一带的安家营子、山岳沟、赵家屯-旧门、碱厂、大梁梁、东石山、南猴顶、八所梁、望儿山、蒙山、磨山村、山河、大阳山、滦源、口前等花岗岩类均具有达克戈质岩的特征。据刘红涛等（2002）研究，在华北北缘（冀北-辽西-赤峰地区）具高Sr低Y特征的侵入岩体达64个之多，时代从230～110 Ma，相当于印支-燕山期，其中以晚侏罗世-早白垩世时期最为发育。

2.1 岩体特征及时代

张旗和张旗地区与金矿有关的花岗岩类广泛分布，按照银剑等（1995）和中国人民武装警察部队（1996）的资料，张旗地区大部分的花岗岩为燕山期，张旗花岗岩（张秋生等，1991）为印支期-燕山期。而据最近的资料，张旗地区也存在印支期花岗岩（Miao et al., 2002），类似该物以为燕山早期（早侏罗世-晚侏罗世）；张旗地区花岗岩主要为燕山早期，较少部分为燕山晚期（早白垩世）。花岗岩类包括闪长岩、二长闪长岩、二长岩、花岗闪长岩、二长花岗岩及花岗岩等，多以岩株-岩基，少数以岩脉形式产出（图1.2）。

图 1 张家地区地质图(据 Miao et al., 2002, 有修改)
Fig. 1 Sketch geological map of the Zhangjiakou-Xuanhua area, Hebei Province (modified from Miao et al., 2002)

图 2 张家地区地质略图(据宋瑞先等,1994,有修改)图例同图 1
Fig. 2 Sketch geological map of the eastern Hebei Province (modified from Song et al., 1994)

浆的产物(张秋生等,1991)。青山口花岗岩的 SHRIMP 年龄为 199 ± 2 Ma,而牛心山花岗岩的 SHRIMP 年龄为 172 ± 2 Ma (苗来成,2000)。看来,张家地区低 Sr 低 Y 型花岗岩大多是燕山早期的。

2.2 地球化学特征

许保良等(1999)把东北地区花岗岩分为碱长性、过铝质和碱质 3 个系列。从金矿与花岗岩的关系来看,本文把该区中生代岩体分为 3 类:(1) 大多数岩体具高 Sr 低 Y 的特点, 类似埃达克岩的地球化学特征; (2) 少数岩体特别富 Si, 贫 Al 和 Sr, 强烈亏损 HREE 和 Y, 具明显或不明显的负铕异常, 本文称之为低 Sr 低 Y 型岩体, 如张家的青石口、峪耳崖、牛心山岩体等; (3) 极低 Sr(3.33 ~ 11.42 μg/g, 王孔志等, 1994) 和低 Y 型岩体, 富 Si 贫 Al, 具强烈的负铕异常, 高的碱含量; 一般含有碱性暗色矿物, 属 A 型花岗岩类, 相当于许保良划分的碱质系列(许保良等,1999)。其中, 前两类与金矿关系密切, 第三类(A 型花岗岩) 一般与金矿关系不密切, 个别如张家丰宁的老虎沟花岗岩体可能与牛圈沟金、
表1 张宣和冀东地区与成矿有关的花岗岩的同位素定年资料

<table>
<thead>
<tr>
<th>岩体</th>
<th>主要岩性</th>
<th>类型</th>
<th>测试方法</th>
<th>年龄(Ma)</th>
<th>资料来源</th>
</tr>
</thead>
<tbody>
<tr>
<td>都(3)</td>
<td>二长花岗岩</td>
<td>1</td>
<td>SHRIMP</td>
<td>223±3</td>
<td>苗来虎 (2000)</td>
</tr>
<tr>
<td>都(4)</td>
<td>石英二长岩</td>
<td>1</td>
<td>Rh-Sr</td>
<td>248</td>
<td>张秋生等 (1991)</td>
</tr>
<tr>
<td>都(5)</td>
<td>二长花岗岩</td>
<td>1</td>
<td>U-Pb</td>
<td>215</td>
<td>王季亮等 (1994)</td>
</tr>
<tr>
<td>柏杖子(1)花岗岩</td>
<td>1</td>
<td></td>
<td>SHRIMP</td>
<td>222</td>
<td>苗来虎 (2000)</td>
</tr>
<tr>
<td>都(2)</td>
<td>石英二长闪长岩</td>
<td>1</td>
<td>K-Ar</td>
<td>149-192</td>
<td>本文</td>
</tr>
<tr>
<td>都(1)</td>
<td>二长闪长岩</td>
<td>1</td>
<td>Rh-Sr</td>
<td>137</td>
<td>吴永祥等 (1989)</td>
</tr>
<tr>
<td>贡山园</td>
<td>花岗岩,闪长岩</td>
<td>1</td>
<td>K-Ar</td>
<td>123</td>
<td>余昌涛等 (1989)</td>
</tr>
<tr>
<td>大石桥</td>
<td>石英闪长岩,花岗闪长岩</td>
<td>1</td>
<td>K-Ar</td>
<td>123</td>
<td>本文</td>
</tr>
<tr>
<td>桥台子</td>
<td>闪长岩,花岗闪长岩</td>
<td>1</td>
<td>K-Ar</td>
<td>131</td>
<td>本文</td>
</tr>
<tr>
<td>都(3)</td>
<td>斑状二长花岗岩</td>
<td>1</td>
<td>K-Ar</td>
<td>146-157</td>
<td>苗来虎 (2000)</td>
</tr>
<tr>
<td>青山口</td>
<td>花岗岩</td>
<td>2</td>
<td>SHRIMP</td>
<td>199±2</td>
<td>苗来虎 (2000)</td>
</tr>
<tr>
<td>蓝耳崖</td>
<td>灰白色花岗岩</td>
<td>2</td>
<td>SHRIMP</td>
<td>175±1</td>
<td>苗来虎 (2000)</td>
</tr>
<tr>
<td>蓝耳崖</td>
<td>红色花岗岩</td>
<td>2</td>
<td>SHRIMP</td>
<td>174±3</td>
<td>苗来虎 (2000)</td>
</tr>
<tr>
<td>牛心山</td>
<td>花岗岩</td>
<td>2</td>
<td>SHRIMP</td>
<td>172±2</td>
<td>苗来虎 (2000)</td>
</tr>
<tr>
<td>上水泉</td>
<td>钠长花岗岩</td>
<td>2</td>
<td>SHRIMP</td>
<td>144</td>
<td>Miao et al. (2002)</td>
</tr>
<tr>
<td>谷咀子</td>
<td>斑状花岗岩</td>
<td>1</td>
<td>K-Ar</td>
<td>115</td>
<td>林树明 (1992)</td>
</tr>
<tr>
<td>红花梁</td>
<td>二长花岗岩</td>
<td>1</td>
<td>K-Ar</td>
<td>127</td>
<td>中国人武警黄金指挥部 (1996)</td>
</tr>
<tr>
<td>沂水沟</td>
<td>斑状花岗岩</td>
<td>1</td>
<td>K-Ar</td>
<td>171</td>
<td>胡小龙 (1999)</td>
</tr>
</tbody>
</table>

(1) 1: 50000 迁西幅月调报告 (1995); ② 1: 50000 寿王坟区调报告 (1975), ① 高Sr低Y型； ② 高Sr低Y型表1

图3 张宣和冀东地区花岗岩 SiO₂-K₂O图(据Peccherillo et al., 1976)

环太平洋埃达克质岩和中国东部中新生代埃达克质岩范围(据吴福元等, 2002)

Fig.3 SiO₂-K₂O diagram for granitoid rocks from the Zhang-Xuan and eastern Hebei areas (after Peccherillo et al., 1976)

银矿有关,但该岩体却具有类似埃达克质岩的地球化学特征。SiO₂含量为56.22～73.48%(平均66.17%),富Al₂O₃(14.18～17.72%,平均15.61%),钠Na₂O/Al₂O₃=3.88～6.61%,平均4.70%,Na₂O/K₂O=1.89～1.34。在Si-K图中,绝大部分样品落入高钾钙碱性区域,表明其相当于埃达克质岩(或C型类埃达克岩,图3)。

高Sr:335～1292.5μg/g,平均764.48μg/g,低Y(2.82～22.05μg/g,平均10.40μg/g)和Yb(0.26～1.97μg/g,平均1.03μg/g),在Sr-Sr/Yb图(图4A)绝大多数样品都落入埃达克质岩范围内。稀土分布为LREE富集型,无明显的铕异常或有弱的正铕异常(δEu=0.74～1.20(图4B,C,D)。

2.2.2 高Sr低Y型岩体

从表2看出,该类岩体富Si和K(SiO₂在73.63%～75.42%之间,K₂O=4.21%～4.62%),Na₂O/K₂O=0.8～0.9,在Si-K图中落入高钾钙碱性区(图3)。岩体铝Al₂O₃(12.81%～14.15%),Sr(13～344μg/g,15个样平均136μg/g),Y(7.3～26.9μg/g,平均12.87μg/g)和Yb(0.82～3.91μg/g,平均1.47μg/g,据苗来虎,2000),因而Sr/Yb比值低,在Sr-Sr/Yb图(图4A)落入埃达克质岩之下的范围。

稀土分布为LREE富集型,有明显或不明显的负铕异常(图4E,F)。上述特征与美国东部新英格兰Broonson山奥陶纪的低Sr长英质片麻岩(原岩主要为花岗闪长岩和英云闪长岩)

(1) 毕生威,1992. 河北省丰宁县北部A型花岗岩特征及其成矿意义. 基础地质新探索. 河北省第二次区域工作会议论文汇编.
表2 张宣和冀东地区与金矿有关的花岗岩化学成分

<table>
<thead>
<tr>
<th>岩性</th>
<th>大石锅</th>
<th>石灰岩</th>
<th>二长岩</th>
<th>花岗岩</th>
<th>小庙沟</th>
<th>黑家店</th>
</tr>
</thead>
<tbody>
<tr>
<td>样号</td>
<td>3695bl</td>
<td>3105bl</td>
<td>3309bl</td>
<td>525YQ4</td>
<td>525YQ0</td>
<td>525YQ13</td>
</tr>
<tr>
<td>SiO₂</td>
<td>66.37</td>
<td>58.82</td>
<td>59.25</td>
<td>56.22</td>
<td>70.38</td>
<td>67.14</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>15.18</td>
<td>17.11</td>
<td>16.23</td>
<td>16.28</td>
<td>15.08</td>
<td>15.60</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.62</td>
<td>0.82</td>
<td>1.18</td>
<td>1.10</td>
<td>0.22</td>
<td>0.36</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.83</td>
<td>2.9</td>
<td>2.84</td>
<td>4.08</td>
<td>1.40</td>
<td>1.44</td>
</tr>
<tr>
<td>FeO</td>
<td>1.95</td>
<td>2.81</td>
<td>3.49</td>
<td>3.83</td>
<td>1.12</td>
<td>2.16</td>
</tr>
<tr>
<td>MnO</td>
<td>0.05</td>
<td>0.09</td>
<td>0.08</td>
<td>0.14</td>
<td>0.11</td>
<td>0.10</td>
</tr>
<tr>
<td>CaO</td>
<td>2.72</td>
<td>4.41</td>
<td>4.86</td>
<td>5.65</td>
<td>2.52</td>
<td>3.39</td>
</tr>
<tr>
<td>MgO</td>
<td>1.91</td>
<td>2.71</td>
<td>3.14</td>
<td>3.57</td>
<td>0.75</td>
<td>1.55</td>
</tr>
<tr>
<td>K₂O</td>
<td>3.8</td>
<td>2.82</td>
<td>2.97</td>
<td>2.68</td>
<td>3.30</td>
<td>3.50</td>
</tr>
<tr>
<td>Na₂O</td>
<td>4.14</td>
<td>4.78</td>
<td>4.16</td>
<td>4.70</td>
<td>4.65</td>
<td>4.12</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.25</td>
<td>0.51</td>
<td>0.44</td>
<td>0.30</td>
<td>0.11</td>
<td>0.08</td>
</tr>
<tr>
<td>LOS</td>
<td>0.42</td>
<td>1.53</td>
<td>0.59</td>
<td>0.54</td>
<td>0.24</td>
<td>0.41</td>
</tr>
<tr>
<td>Total</td>
<td>99.25</td>
<td>99.31</td>
<td>99.23</td>
<td>99.52</td>
<td>100.04</td>
<td>100.09</td>
</tr>
</tbody>
</table>

La | 44.1 | 46.78 | 41 | 39.14 | 30.04 | 33.23 |
Ce | 93.5 | 97.2 | 85 | 73.32 | 50.84 | 57.43 |
Pr | 9.03 | 9.83 | 9.08 | 9.22 | 4.23 | 6.34 |
Nd | 34.9 | 37.3 | 35.6 | 32.40 | 19.01 | 19.12 |
Sm | 6.63 | 7.02 | 7.09 | 6.28 | 3.41 | 3.55 |
Eu | 1.54 | 1.63 | 1.7 | 1.61 | 0.73 | 0.84 |
Gd | 4.29 | 4.48 | 3.96 | 5.42 | 2.83 | 2.95 |
Tb | 0.599 | 0.547 | 0.55 | 0.76 | 0.42 | 0.41 |
Dy | 3.11 | 2.97 | 2.9 | 4.10 | 2.41 | 2.16 |
Ho | 0.504 | 0.509 | 0.576 | 0.60 | 0.43 | 0.33 |
Er | 1.21 | 1.4 | 1.44 | 1.60 | 1.40 | 1.01 |
Tm | 0.178 | 0.203 | 0.18 | 0.25 | 0.25 | 0.17 |
Yb | 1.07 | 1.18 | 1.05 | 1.74 | 1.68 | 1.24 |
Lu | 0.158 | 0.17 | 0.18 | 0.26 | 0.26 | 0.18 |
Ba | 1100 | 1400 | 1300 | 864.4 | 657.3 | 800.8 |
Sr | 619.8 | 1200 | 1100 | 855.2 | 448.3 | 466.7 |
Rb | 138.6 | 75.57 | 79.43 | 46.5 | 114.5 | 93.6 |
Th | 3.3 | 12.3 | 7.5 | 9.4 | 8.1 | 9.1 |
Nb | 28.1 | 31.2 | 25.5 | 3.25 | 0.34 | 0.454 |
Ta | 0.35 | 0.34 | 0.45 | 4.6 | 4.5 | 4.2 |
Zr | 308.2 | 300.1 | 290.2 | 132.3 | 60.5 | 84.3 |
Hf | 8.22 | 8.08 | 7.59 | 10.4 | 9.59 | 10.1 |
Y | 10.4 | 9.59 | 10.1 | 20.34 | 14.82 | 12.27 |
V | 54.63 | 70.82 | 101.9 | 115.9 | 13.6 | 50.3 |
Co | 28.2 | 34.4 | 38.4 | 15.1 | 2 | 4.6 |
Ni | 38.99 | 5.98 | 36.8 | 11.9 | 3.7 | 4.9 |
Cr | 27.35 | 24.25 | 22.78 | 22.1 | 5 | 13.5 |
Na₂O/K₂O | 1.1 | 1.7 | 1.4 | 1.8 | 1.4 | 1.2 |
La/Yb | 41 | 40 | 39 | 22 | 6 | 27 |
δEu | 0.84 | 0.84 | 0.89 | 0.9 | 0.76 | 0.84 |

类型 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3

资料来源 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3

高 Sr 低 Y
续表 2

<table>
<thead>
<tr>
<th>岩体</th>
<th>岩性</th>
<th>马道沟</th>
<th>贾家山</th>
<th>都山中心相</th>
<th>都山边缘相</th>
<th>柏仗子</th>
<th>大野岭</th>
</tr>
</thead>
<tbody>
<tr>
<td>样品号</td>
<td></td>
<td>728B4</td>
<td>96G9</td>
<td>525YQ001</td>
<td>203YQ12</td>
<td></td>
<td>BZHZ-4</td>
</tr>
<tr>
<td>SiO₂</td>
<td></td>
<td>63.97</td>
<td>72.15</td>
<td>70.02</td>
<td>70.78</td>
<td>71.78</td>
<td>58.64</td>
</tr>
<tr>
<td>Al₂O</td>
<td></td>
<td>17.72</td>
<td>14.2</td>
<td>15.38</td>
<td>15.48</td>
<td>14.95</td>
<td>16.72</td>
</tr>
<tr>
<td>TiO₂</td>
<td></td>
<td>0.36</td>
<td>0.14</td>
<td>0.22</td>
<td>0.24</td>
<td>0.18</td>
<td>1.03</td>
</tr>
<tr>
<td>FeO</td>
<td></td>
<td>1.99</td>
<td>1.42</td>
<td>0.47</td>
<td>0.92</td>
<td>0.7</td>
<td>1.88</td>
</tr>
<tr>
<td>FeO</td>
<td></td>
<td>2.14</td>
<td>0.95</td>
<td>1.77</td>
<td>1.37</td>
<td>1.1</td>
<td>3.95</td>
</tr>
<tr>
<td>MnO</td>
<td></td>
<td>0.07</td>
<td>0.04</td>
<td>0.02</td>
<td>0.05</td>
<td>0.02</td>
<td>0.10</td>
</tr>
<tr>
<td>CaO</td>
<td></td>
<td>3.08</td>
<td>1.22</td>
<td>2.08</td>
<td>1.73</td>
<td>1.59</td>
<td>4.51</td>
</tr>
<tr>
<td>MgO</td>
<td></td>
<td>0.83</td>
<td>0.36</td>
<td>0.73</td>
<td>0.68</td>
<td>0.36</td>
<td>2.57</td>
</tr>
<tr>
<td>K₂O</td>
<td></td>
<td>3.58</td>
<td>4.5</td>
<td>3.65</td>
<td>3.94</td>
<td>4.08</td>
<td>4.25</td>
</tr>
<tr>
<td>Na₂O</td>
<td></td>
<td>5.48</td>
<td>4.6</td>
<td>4.31</td>
<td>4.08</td>
<td>4.4</td>
<td>4.70</td>
</tr>
<tr>
<td>P₂O₅</td>
<td></td>
<td>0.10</td>
<td>0.06</td>
<td>0.09</td>
<td>0.1</td>
<td>0.1</td>
<td>0.35</td>
</tr>
<tr>
<td>LOS</td>
<td></td>
<td>0.46</td>
<td>1.10</td>
<td>0.21</td>
<td>0.54</td>
<td>0.46</td>
<td>0.40</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>99.78</td>
<td>100.75</td>
<td>98.95</td>
<td>99.91</td>
<td>99.72</td>
<td>99.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>元素</th>
<th>马道沟</th>
<th>贾家山</th>
<th>都山中心相</th>
<th>都山边缘相</th>
<th>柏仗子</th>
<th>大野岭</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>81.09</td>
<td>29.30</td>
<td>32.86</td>
<td>42.94</td>
<td>36.38</td>
<td>42.26</td>
</tr>
<tr>
<td>Ce</td>
<td>126.4</td>
<td>48.31</td>
<td>60.74</td>
<td>68.5</td>
<td>57.46</td>
<td>98.83</td>
</tr>
<tr>
<td>Pr</td>
<td>5.05</td>
<td>7.31</td>
<td>5.79</td>
<td>10.74</td>
<td>6.02</td>
<td>11.30</td>
</tr>
<tr>
<td>Nd</td>
<td>63.97</td>
<td>20.73</td>
<td>15.99</td>
<td>21.8</td>
<td>10.13</td>
<td>38.67</td>
</tr>
<tr>
<td>Sm</td>
<td>8.148</td>
<td>3.078</td>
<td>1.93</td>
<td>3.26</td>
<td>2.66</td>
<td>8.02</td>
</tr>
<tr>
<td>Eu</td>
<td>1.916</td>
<td>0.666</td>
<td>0.64</td>
<td>0.79</td>
<td>0.68</td>
<td>1.48</td>
</tr>
<tr>
<td>Gd</td>
<td>4.546</td>
<td>1.817</td>
<td>1.79</td>
<td>2.21</td>
<td>1.95</td>
<td>5.36</td>
</tr>
<tr>
<td>Tb</td>
<td>0.21</td>
<td>0.27</td>
<td>0.27</td>
<td>0.67</td>
<td>0.20</td>
<td>0.39</td>
</tr>
<tr>
<td>Dy</td>
<td>2.774</td>
<td>1.217</td>
<td>0.82</td>
<td>1.2</td>
<td>1.11</td>
<td>3.74</td>
</tr>
<tr>
<td>Ho</td>
<td>0.15</td>
<td>0.14</td>
<td>0.1</td>
<td>0.53</td>
<td>0.11</td>
<td>0.30</td>
</tr>
<tr>
<td>Er</td>
<td>1.572</td>
<td>0.61</td>
<td>0.31</td>
<td>0.42</td>
<td>0.33</td>
<td>1.50</td>
</tr>
<tr>
<td>Tm</td>
<td>0.06</td>
<td>0.07</td>
<td>0.04</td>
<td>0.23</td>
<td>0.04</td>
<td>0.13</td>
</tr>
<tr>
<td>Yb</td>
<td>1.863</td>
<td>0.555</td>
<td>0.33</td>
<td>0.46</td>
<td>0.3</td>
<td>1.48</td>
</tr>
<tr>
<td>Lu</td>
<td>0.246</td>
<td>0.086</td>
<td>0.06</td>
<td>0.07</td>
<td>0.04</td>
<td>0.24</td>
</tr>
<tr>
<td>Ba</td>
<td>2155.9</td>
<td>1773</td>
<td>3655.8</td>
<td>2149.3</td>
<td>2129.1</td>
<td>1663.9</td>
</tr>
<tr>
<td>Sr</td>
<td>858.9</td>
<td>595.0</td>
<td>1292.5</td>
<td>747.2</td>
<td>819.5</td>
<td>1197.5</td>
</tr>
<tr>
<td>Rb</td>
<td>45.8</td>
<td>88.6</td>
<td>59.2</td>
<td>61.8</td>
<td>59.3</td>
<td>102.4</td>
</tr>
<tr>
<td>Th</td>
<td>4.7</td>
<td>4.2</td>
<td>5.1</td>
<td>14.1</td>
<td>3.80</td>
<td>43.0</td>
</tr>
<tr>
<td>U</td>
<td>0.35</td>
<td>0.3</td>
<td>0.3</td>
<td>2.20</td>
<td>0.32</td>
<td>9.8</td>
</tr>
<tr>
<td>Nb</td>
<td>18.1</td>
<td>5.9</td>
<td>6.0</td>
<td>13.4</td>
<td>6.30</td>
<td>26.8</td>
</tr>
<tr>
<td>Ta</td>
<td>4.2</td>
<td>2.8</td>
<td>2.8</td>
<td>3.2</td>
<td>3.90</td>
<td>2.1</td>
</tr>
<tr>
<td>Zr</td>
<td>93</td>
<td>186.5</td>
<td>161.3</td>
<td>267.6</td>
<td>165.60</td>
<td>358.3</td>
</tr>
<tr>
<td>Hf</td>
<td>3.2</td>
<td>3.6</td>
<td>3.1</td>
<td>3.90</td>
<td>11.6</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>13.91</td>
<td>6.375</td>
<td>3.95</td>
<td>4.77</td>
<td>3.6</td>
<td>15.35</td>
</tr>
<tr>
<td>V</td>
<td>60</td>
<td>12</td>
<td>12</td>
<td>14.1</td>
<td>8</td>
<td>64.1</td>
</tr>
<tr>
<td>Co</td>
<td>4.6</td>
<td>5.3</td>
<td>1.4</td>
<td>5.3</td>
<td>4.2</td>
<td>11.6</td>
</tr>
<tr>
<td>Ni</td>
<td>5.607</td>
<td>5.77</td>
<td>9.8</td>
<td>6.3</td>
<td>5.6</td>
<td>14.5</td>
</tr>
<tr>
<td>Cr</td>
<td>56.88</td>
<td>58.86</td>
<td>13.1</td>
<td>11.5</td>
<td>10.2</td>
<td>38.2</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.53</td>
<td>1.28</td>
<td>1.2</td>
<td>1</td>
<td>1.1</td>
<td>1.72</td>
</tr>
<tr>
<td>K₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.27</td>
</tr>
<tr>
<td>La/Yb</td>
<td>44</td>
<td>53</td>
<td>100</td>
<td>93</td>
<td>121</td>
<td>29</td>
</tr>
<tr>
<td>&Eu</td>
<td>0.97</td>
<td>0.87</td>
<td>1.14</td>
<td>0.92</td>
<td>0.95</td>
<td>0.71</td>
</tr>
</tbody>
</table>

类型	资料来源
高 Sr 低 Y | 3 3 2 2 2 2 4 3
<table>
<thead>
<tr>
<th>岩体</th>
<th>红花梁</th>
<th>响水沟</th>
<th>谷咀子</th>
<th>上水泉</th>
<th>青山口</th>
<th>岚儿崖</th>
<th>牛心山</th>
</tr>
</thead>
<tbody>
<tr>
<td>岩性</td>
<td>二长花岗岩</td>
<td>巨斑状花岗岩</td>
<td>二长花岗岩</td>
<td>钾长花岗岩</td>
<td>熔云花岗岩</td>
<td>熔云花岗岩</td>
<td>熔云花岗岩</td>
</tr>
<tr>
<td>样号</td>
<td>Y861-196</td>
<td>A04</td>
<td>GZZ-1</td>
<td>SHSHQ-1</td>
<td>QSHK-1</td>
<td>QSHK-2</td>
<td>YEH-2</td>
</tr>
<tr>
<td>SiO₂</td>
<td>70.17</td>
<td>71.80</td>
<td>73.48</td>
<td>76.51</td>
<td>74.77</td>
<td>73.63</td>
<td>75.04</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.20</td>
<td>0.02</td>
<td>0.12</td>
<td>0.07</td>
<td>0.15</td>
<td>0.14</td>
<td>0.09</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.81</td>
<td>1.00</td>
<td>0.07</td>
<td>0.52</td>
<td>0.81</td>
<td>0.43</td>
<td>0.27</td>
</tr>
<tr>
<td>FeO</td>
<td>0.6</td>
<td>1.08</td>
<td>1.02</td>
<td>0.76</td>
<td>0.55</td>
<td>0.70</td>
<td>0.45</td>
</tr>
<tr>
<td>MnO</td>
<td>0.08</td>
<td>0.07</td>
<td>0.07</td>
<td>0.06</td>
<td>0.07</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>CaO</td>
<td>1.21</td>
<td>1.31</td>
<td>1.05</td>
<td>0.35</td>
<td>0.33</td>
<td>0.98</td>
<td>0.87</td>
</tr>
<tr>
<td>MgO</td>
<td>1.19</td>
<td>0.09</td>
<td>0.17</td>
<td>0.09</td>
<td>0.13</td>
<td>0.28</td>
<td>0.16</td>
</tr>
<tr>
<td>K₂O</td>
<td>4.81</td>
<td>3.51</td>
<td>4.16</td>
<td>4.60</td>
<td>4.62</td>
<td>4.21</td>
<td>4.53</td>
</tr>
<tr>
<td>Na₂O</td>
<td>4.84</td>
<td>4.76</td>
<td>4.11</td>
<td>3.49</td>
<td>3.85</td>
<td>3.78</td>
<td>3.69</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.10</td>
<td>0.04</td>
<td>0.04</td>
<td>0.01</td>
<td>0.03</td>
<td>0.06</td>
<td>0.02</td>
</tr>
<tr>
<td>LOS</td>
<td>0.56</td>
<td>0.04</td>
<td>0.50</td>
<td>0.62</td>
<td>0.65</td>
<td>0.91</td>
<td>1.02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>元素</th>
<th>La</th>
<th>Ce</th>
<th>Pr</th>
<th>Nd</th>
<th>Sm</th>
<th>Eu</th>
<th>Gd</th>
<th>Tb</th>
<th>Dy</th>
<th>Ho</th>
<th>Er</th>
<th>Tm</th>
<th>Yb</th>
<th>Lu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>23.73</td>
<td>50.53</td>
<td>4.91</td>
<td>19.07</td>
<td>3.01</td>
<td>0.70</td>
<td>1.73</td>
<td><0.3</td>
<td>1.01</td>
<td>0.16</td>
<td>0.39</td>
<td><0.1</td>
<td>0.28</td>
<td><0.1</td>
</tr>
<tr>
<td></td>
<td>16.07</td>
<td>27.66</td>
<td>2.02</td>
<td>10.36</td>
<td>1.62</td>
<td>0.44</td>
<td>1.13</td>
<td>0.120</td>
<td>0.59</td>
<td>0.090</td>
<td>0.27</td>
<td>0.040</td>
<td>0.27</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>10.390</td>
<td>19.660</td>
<td>7.290</td>
<td>6.450</td>
<td>0.980</td>
<td>0.560</td>
<td>0.880</td>
<td>0.780</td>
<td>0.460</td>
<td>0.090</td>
<td>0.290</td>
<td>0.340</td>
<td>0.350</td>
<td>0.040</td>
</tr>
<tr>
<td></td>
<td>24.710</td>
<td>70.380</td>
<td>6.98</td>
<td>24.750</td>
<td>5.300</td>
<td>0.110</td>
<td>3.910</td>
<td>0.610</td>
<td>4.000</td>
<td>0.790</td>
<td>2.140</td>
<td>0.330</td>
<td>2.320</td>
<td>0.360</td>
</tr>
<tr>
<td></td>
<td>38.00</td>
<td>73.31</td>
<td>6.10</td>
<td>21.48</td>
<td>5.26</td>
<td>0.67</td>
<td>3.78</td>
<td>0.44</td>
<td>2.65</td>
<td>0.61</td>
<td>1.87</td>
<td>0.24</td>
<td>1.76</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>32.10</td>
<td>60.13</td>
<td>3.54</td>
<td>18.94</td>
<td>3.67</td>
<td>0.53</td>
<td>2.66</td>
<td>0.44</td>
<td>2.62</td>
<td>0.48</td>
<td>1.45</td>
<td>0.24</td>
<td>1.38</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>14.08</td>
<td>30.99</td>
<td>3.40</td>
<td>12.25</td>
<td>2.54</td>
<td>0.46</td>
<td>1.75</td>
<td>0.28</td>
<td>1.92</td>
<td>0.33</td>
<td>0.90</td>
<td>0.15</td>
<td>1.57</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>15.260</td>
<td>31.940</td>
<td>3.560</td>
<td>12.370</td>
<td>3.250</td>
<td>0.440</td>
<td>3.080</td>
<td>0.520</td>
<td>2.940</td>
<td>0.510</td>
<td>1.480</td>
<td>0.250</td>
<td>1.610</td>
<td>0.280</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>元素</th>
<th>Ba</th>
<th>Sr</th>
<th>Rb</th>
<th>Th</th>
<th>U</th>
<th>Nb</th>
<th>Ta</th>
<th>Zr</th>
<th>Hf</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1920</td>
<td>1175</td>
<td>111</td>
<td>1.0</td>
<td>0.6</td>
<td>7.2</td>
<td>0.4</td>
<td>103.3</td>
<td>2.5</td>
<td>9.1</td>
</tr>
<tr>
<td></td>
<td>801</td>
<td>504</td>
<td>129</td>
<td>2.57</td>
<td>4.8</td>
<td>0.015</td>
<td>0.6</td>
<td>125</td>
<td>3.9</td>
<td>3.10</td>
</tr>
<tr>
<td></td>
<td>1219</td>
<td>620</td>
<td>270</td>
<td>2.4</td>
<td>38.8</td>
<td>6.3</td>
<td>118.7</td>
<td>3.9</td>
<td>17.4</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>46</td>
<td>270</td>
<td>30.8</td>
<td>2.8</td>
<td>38.8</td>
<td>3.4</td>
<td>177.1</td>
<td>7.3</td>
<td>17.4</td>
</tr>
<tr>
<td></td>
<td>562</td>
<td>155</td>
<td>149</td>
<td>5</td>
<td>0.7</td>
<td>24.1</td>
<td>2.2</td>
<td>240.4</td>
<td>10.7</td>
<td>18.3</td>
</tr>
<tr>
<td></td>
<td>488</td>
<td>148</td>
<td>123</td>
<td>7.6</td>
<td>1.2</td>
<td>18.4</td>
<td>1.6</td>
<td>212</td>
<td>5.8</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>368</td>
<td>96</td>
<td>132</td>
<td>14.7</td>
<td>4.4</td>
<td>19.2</td>
<td>2.2</td>
<td>64.6</td>
<td>2.4</td>
<td>11.4</td>
</tr>
<tr>
<td></td>
<td>199</td>
<td>67</td>
<td>135</td>
<td>16.1</td>
<td>5.2</td>
<td>20</td>
<td>2.5</td>
<td>85.6</td>
<td>3.4</td>
<td>9.6</td>
</tr>
<tr>
<td></td>
<td>242</td>
<td>86</td>
<td>204</td>
<td>19.1</td>
<td>4.9</td>
<td>41</td>
<td>4.9</td>
<td>87.2</td>
<td>4.7</td>
<td>16.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>元素</th>
<th>Co</th>
<th>Ni</th>
<th>Cr</th>
<th>Na₂O/K₂O</th>
<th>La/Yb</th>
<th>8Eu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.1</td>
<td>3.7</td>
<td>8.5</td>
<td>1.2</td>
<td>85</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td>1.14</td>
<td>0</td>
<td>4.0</td>
<td>1.2</td>
<td>60</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>4.0</td>
<td>1.85</td>
<td>1.08</td>
<td>30</td>
<td>1.85</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td>5.8</td>
<td>0.07</td>
<td>0.8</td>
<td>11</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>2.93</td>
<td>6.1</td>
<td>0.46</td>
<td>0.9</td>
<td>22</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>0.52</td>
<td>0.9</td>
<td>23</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>8</td>
<td>0.73</td>
<td>0.9</td>
<td>13</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>4</td>
<td>0.33</td>
<td>0.9</td>
<td>9</td>
<td>0.33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>类型</th>
<th>高Sr低Y</th>
<th>低Sr低Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>资料来源</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

1. 白志达等(1996); 2. 张秋生等(1991); 3. 麦来成(2000); 4. 胡小松等(1990)
的地球化学特征（Holocher et al.，2002）类似。Bronson 山发育 2 套岩石：一类为高 Sr 花岗岩，类似埃达克岩的特征；另一类为低 Sr 花岗岩。前者富 Al2O3（15～18%）和 Sr（300～600μg/g），贫 Y（1～13μg/g），强烈亏损 HREE（1～9μg/g），Eu 和 Sr 具正常，类似 adakite 的地球化学特征；而后者相对富 Al2O3（13～16%）和 Sr（50～200μg/g），Y（10～50μg/g）含量较高，MREE-HREE 为平坦型的分布，有明显的负 Eu 和 Sr 异常（Holocher et al.，2002）。

在REE图中，峨眉山和青口岩体大多有较明显的负铕异常（δEu = 0.43 - 0.73），但是，也有部分无明显的负铕异常（图4E,F）。不论是无明显的负铕异常，它们的 Sr 含量都比较低（峨眉山 67～239μg/g, 青口 13～344μg/g, 部分 2000）。而所选的样品较新鲜，并非蚀变作用所为。看来，Sr 低可能是岩石自身的特征，推测负铕异常的大小除了受斜长石含量和牌号控制外，还可能与副矿物（如磷灰石）的含量多少有关。
3 讨论

3.1 高Sr低Y型和低Sr低Y型花岗岩的成因

鄂北区高Sr低Y型岩体的地球化学特征类似于C型埃达克岩。C型埃达克岩的主要特点与典型的adakite一致，区别是后者富Na而前者富K（Na2O/K2O大于1.5，硫酸小于1），按张旗等（2001）；葛展月等（2002）；吴福元等（2002）；Rapp et al. （2002）。本区高Sr低Y型岩体的Na2O/K2O约为1.4。低Y和Yb表明花岗岩熔体的源区主要由石榴石残留，富Al、Sr和无氧异常或无序异常不明显，说明斜长石在残留相中不稳定而进入熔体中（Defant et al., 1990）。推测中酸性岩浆熔出后的残留相由辉石+石榴石+角闪石组成（张旗等，2001）。此外，都山、肖营子等地具有较低的Sr/Pb初始比值0.70648和0.70574，显示岩浆来自幔源的（王季亮等，1994）。多数学者认为，埃达克质岩不可能直接来自地幔或由基性岩浆的分离结晶或AFC或岩浆混合作用形成（Defant et al., 1990；Atherton et al., 1993）。但是，也有一些学者认为岩浆混合、分离结晶或AFC过程可以形成具有埃达克岩特征的岩石（Ma et al., 1998；Castillo et al., 2002）。张旗等（2001）认为，中国东部中生代埃达克质岩可能是加厚的下地幔中基性岩部分熔融形成的。Atherton等（2001）指出，下地壳熔融的埃达克岩决定于两个因素：地壳的热状态和地壳厚度。认为来自地幔的玄武质岩浆的侵位作用同样可使地壳发生垂直增生，导致地壳厚度加大，而且可以使地壳保持高温流状态，这就为埃达克质岩的熔融创造了条件。Cockram（1994）指出，地壳的玄武质下地壳熔融可以产生埃达克质岩，在不饱和及加厚地壳（厚度至少大于40 km）的条件下发生部分熔融时，斜长石将变得极不稳定，残留物由石榴石+辉石+角闪石+斜长石组成，熔融的岩浆具埃达克质岩的特征（Atherton et al., 1993；Peacock et al., 1994；Muir et al., 1995；Petford et al., 1996）。

图6 张宜和鄂东花岗岩的La8/Yb8-Yb8图（据Drummond et al., 1990）

![图6](image_url)

Fig. 6 La8/Yb8-Yb8 diagram for granitoid rocks in the Zhang-Xuan area and the eastern Hebei area (after Drummond et al., 1990).

图7 张宜和鄂东花岗岩的Sr-Y-Y图（据Defant et al., 1990）

![图7](image_url)

Fig. 7 Sr-Y-Y diagram for the granitoid rocks from the Zhang -Xuan area and the eastern Hebei area (after Defant et al., 1990).

质下地壳部分熔融形成的，留下的残余相由斜长石 - 萤石 - 角闪石组成，无橄榄石，推算的压力 (10 kbar) (Hollocher et al., 2002)。而本区的低 Sr 低 Y 型岩体的 Y 大多小于 20 μg/g) 低于 Bronson 河的低 Sr 花岗岩 (多大于 20 μg/g) (图 5)。在 La/ Nb - Yb/ Nb 图中 (图 6)，本区低 Sr 低 Y 型岩体的投点比较集中，大体位于 10% 石榴石角闪岩部分熔融演化线附近，仍然处于典型埃达克岩区分布区内。在 Sr/ Y-Y 的图中 (图 7) 该类样品的投点大多落在榴辉岩和角闪石榴辉石岩的演化线上。相比之下，本区高 Sr 低 Y 型岩体的成分变化较大，在图 6 中落在斜长角闪岩和榴辉岩演化线之间，在图 7 中落在榴辉岩和角闪石榴辉岩之间。说明低 Sr 低 Y 型花岗岩仍然与石榴石处于平衡，具有深源的特点，形成于加厚地壳的底部。推测其残留相可能由斜长石 + 辉石 + 角闪石 + 石榴石组成，相当于麻粒岩相或石榴石麻粒岩相的温压条件。

对于高 Sr 低 Y 型 (埃达克岩质) 岩体的成因已经有不少讨论 (Defant et al., 1990, 2002; Atherton et al., 1993; Rapp et al., 1995, 1999, 2000; Martin, 1999, 2003)，而对低 Sr 低 Y 型花岗岩的成因还是一个新问题，有关的论述较少 (Hullocher et al., 2002)。作者认为有两种可能性：

（1）与本区高 Sr 低 Y 型花岗岩有成因联系。仔细对比低 Sr 低 Y 和高 Sr 低 Y 型花岗岩的地球化学特征 (表 2)，发现前者除了 Sr 明显偏低而 Y 略偏高外，二者相似之处在于不同之处，重要的标志是它们的 Yb 都 < 1.9 μg/g。低 Sr 低 Y 岩体的 Si 含量普遍较高，而 Al 较低，是否有可能是高 Sr 低 Y 型的花岗岩演化形成的？因为，对于大多数花岗岩来说，随着 SiO₂ 含量的增高，Al₂O₃ 有降低的趋势。而且，随着岩浆的演化，斜长石的牌号降低，Sr 减少也是正常的现象。如青口古花岗岩，Sr 大多在 148 ~ 344 μg/g 之间。但是，对于峨眉山岩体来说，Sr 的含量太低，大多在 67 ~ 115 μg/g 之间，似乎难以用岩浆分异演化来解释。

（2）与本区低 Sr 低 Y 型岩体无关。如前所述，高 Sr 低 Y 型岩体的残留相可能为榴辉岩或角闪榴辉岩，斜长石无或极少。而低 Sr 低 Y 型岩体作为最明显的负偏异常，说明花岗岩形成的残留物中可能有斜长石存在，而低 Y 和 HREE 表明残留物可能有石榴石存在，HREE 平坦型分布则暗示可能还有角闪石存在。由此推测，该类花岗岩的残留相由石榴石 + 辉石 + 角闪石 + 斜长石组成，源岩可能为石榴石麻粒岩或角闪石榴辉岩，大体相当于高压麻粒岩相的温压条件。
图9 高Sr低Y和低Sr低Y型岩体的形成模式

模式1: 在地壳厚度较薄的阶段,低Sr低Y型岩体形成于地壳的底部(麻粒岩相),如图9D的例子(本文);模式2: 在地壳较厚的阶段,低Sr低Y型岩体形成于地壳的中下部(麻粒岩相)。40Ar/39Ar数据表明,高Sr低Y型岩体(假达克岩)形成于地壳的中上部(超辉岩相)。在这种情况下,高Sr低Y和低Sr低Y型岩体可以共存于一个岩体中,如Monson岩(40Ar/39Ar: 0, 2000)

Fig.9 Forming model of high-Sr-low-Y and low-Sr-low-Y granites

(1) 产于基底-太古宙变质岩中的金厂峪型金矿
(2) 产于中生代花岗岩及其接触带中的朱河岩型金矿
(3) 产于蓝层-元古宙长城系和蓟县系花岗岩中的冷口式(或中州式)金矿。根据上述3种金矿的寄主岩石虽然不同,但却有许多相似之处,如:3个区内均产有金矿化带,金矿石化特征也十分相似,矿床的硫同位素和铜同位素成分显示,金来自地幔和下地壳,与中生代的岩浆作用密切相关的(赵海玲等,2001)。还有人认为古老的片麻岩基底为金的源岩层(许桂玲等,1995)。但无论存在多少分歧,有一个人认识似乎是大家的共识,即冀北金矿与中生代岩浆作用有关。

3.2.2 时间关系

上述资料表明,冀北金矿成矿时代主要有三个时期:印支期、燕山早期和燕山晚期,这三个期均发育高Sr低Y型岩体,与其有关的金矿有:张庄地区的印支期中下盘、水泉沟金矿(谷咀子岩体)、燕山早期的东英、中英、后沟等金矿(响水沟、红花梁岩体);冀东地区的印支晚期-燕山早期的三家、柏仗子、贾家山金矿等(都山岩体、柏仗子、三家、贾家山等岩体)以及燕山晚期的高家店金矿(高家店岩体等)等。而冀东地区的低Sr低Y型岩体及有关的金矿(牛心山、峪耳崖、金厂峪金矿等)均为燕山早期的(表1,3)。

3.2.3 成因关系

(1) 硫同位素特征

由表4看出,冀东地区各金矿δ34S变化范围较窄,极大值,变化量<8.5‰,平均值为2.12‰,与陨硫石<1‰变化范围接近,表明来源于深源。张庄地区的平均值为6.2‰。但与单独金矿及整个矿区来看,硫同位素值变化比较大,如东英、中英、后沟、小营盘等金矿。这种变化可能反映硫同位素的多源性,也可能反映硫化物物理化学条件的改变。如:1996年中国人民武装警察指挥部(1996)和王正坤等(1992)根据岩矿形成的物理化学条件,根据上述模式对地表硫同位素进行了计算,结果表明:硫同位素值为δ34S = 1.85 ± 3‰,δ34S = 3.8%,与陨硫硫同位素组成很接近,说明金矿形成过程中硫同位素组成具深源硫的特征。

(2) 铅同位素特征

将冀东地区13个矿区50件样品和张庄地区8个矿区34件样品进行铅同位素组成投入图10可以看,虽然冀东和张庄地区的铅同位素组成具有明显的差异,但铅同位素组成具有某些相似性,低铅点大部分都落到地幔演化线及地壳演化线附近,少数点靠近造山带演化线。反映铅同位素的来源,可能来源于地幔和下地壳,为二者的混合来源,即主要来源于深源。此外,冀东和张庄地区金矿的铅同位素组成与相应的老变质岩围岩的铅同位素组成是相似的,而与花岗岩的铅同位素组成相近(图10),表明矿床的铅同位素来源与围岩关系不大,与花岗岩具有密切的成因联系。
表3 张宣和冀东矿区主要金矿同位素资料

<table>
<thead>
<tr>
<th>矿区</th>
<th>测试对象</th>
<th>测试方法</th>
<th>年龄 (Ma)</th>
<th>资料来源</th>
</tr>
</thead>
<tbody>
<tr>
<td>金厂峪</td>
<td>铅云母</td>
<td>K-Ar</td>
<td>170</td>
<td>余昌涛等 (1989)</td>
</tr>
<tr>
<td></td>
<td>铅云母</td>
<td>Ar-Ar</td>
<td>155 ±3</td>
<td>余昌涛等 (1989)</td>
</tr>
<tr>
<td></td>
<td>铅云母</td>
<td>K-Ar</td>
<td>196</td>
<td>Hart et al. (2002)</td>
</tr>
<tr>
<td>岳</td>
<td>白云母</td>
<td>K-Ar</td>
<td>200</td>
<td>余昌涛等 (1989)</td>
</tr>
<tr>
<td>牛心山</td>
<td>白云母</td>
<td>K-Ar</td>
<td>188</td>
<td>余昌涛等 (1989)</td>
</tr>
<tr>
<td></td>
<td>白云母</td>
<td>Ar-Ar</td>
<td>176 ±3</td>
<td>胡桂明等 (1998)</td>
</tr>
<tr>
<td>三家子</td>
<td>石英</td>
<td>Ar-Ar</td>
<td>168 ±5</td>
<td>胡桂明等 (1998)</td>
</tr>
<tr>
<td></td>
<td>硫铝矿</td>
<td>Os-Re</td>
<td>251</td>
<td>苗来明 (2000)</td>
</tr>
<tr>
<td>茅山</td>
<td>铅云母</td>
<td>K-Ar</td>
<td>136</td>
<td>余昌涛等 (1989)</td>
</tr>
</tbody>
</table>

表4 张宣和冀东地区金矿床硫同位素组成

<table>
<thead>
<tr>
<th>矿区</th>
<th>样数</th>
<th>δ34S(‰)</th>
<th>变化范围</th>
<th>平均值</th>
<th>极差</th>
</tr>
</thead>
<tbody>
<tr>
<td>金厂峪</td>
<td>26</td>
<td>-4.9 ~ -2.5</td>
<td>-3.33</td>
<td>7.4</td>
<td></td>
</tr>
<tr>
<td>茅山</td>
<td>3</td>
<td>+1.9 ~ +4.6</td>
<td>+2.93</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>三家子</td>
<td>25</td>
<td>+1.3 ~ +2.6</td>
<td>+1.81</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>岳耳崖</td>
<td>46</td>
<td>+1.6 ~ +4.5</td>
<td>+2.70</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>白庙子</td>
<td>7</td>
<td>-2.39 ~ -0.69</td>
<td>-1.15</td>
<td>1.30</td>
<td></td>
</tr>
<tr>
<td>船尖</td>
<td>39</td>
<td>+1.6 ~ +6.41</td>
<td>+4.68</td>
<td>4.73</td>
<td></td>
</tr>
<tr>
<td>牛心山</td>
<td>12</td>
<td>+4.3 ~ +6.3</td>
<td>+5.40</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>船沟</td>
<td>19</td>
<td>+0.4 ~ +8.72</td>
<td>+4.44</td>
<td>8.31</td>
<td></td>
</tr>
<tr>
<td>唐杖子</td>
<td>4</td>
<td>+2.3 ~ +3.83</td>
<td>+3.13</td>
<td>1.47</td>
<td></td>
</tr>
<tr>
<td>洞子沟</td>
<td>6</td>
<td>-0.49 ~ +4.9</td>
<td>-0.7</td>
<td>5.30</td>
<td></td>
</tr>
<tr>
<td>唐杖子</td>
<td>30</td>
<td>+0.6 ~ +5.7</td>
<td>+2.89</td>
<td>5.01</td>
<td></td>
</tr>
<tr>
<td>沙坡子</td>
<td>3</td>
<td>+2.0 ~ +3.0</td>
<td>+2.63</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>平均值</td>
<td>3</td>
<td>+2.12</td>
<td>3.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>变质岩</td>
<td>3</td>
<td>+0.8 ~ +1.8</td>
<td>+1.33</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>矿区</th>
<th>样数</th>
<th>δ34S(‰)</th>
<th>变化范围</th>
<th>平均值</th>
<th>极差</th>
</tr>
</thead>
<tbody>
<tr>
<td>东坪</td>
<td>45</td>
<td>-13.03 ~ -0.8</td>
<td>-8.76</td>
<td>12.23</td>
<td></td>
</tr>
<tr>
<td>小营盘</td>
<td>37</td>
<td>-14.8 ~ -6.90</td>
<td>-11.11</td>
<td>7.90</td>
<td></td>
</tr>
<tr>
<td>韩家沟</td>
<td>26</td>
<td>-14.4 ~ -0.65</td>
<td>-10.12</td>
<td>13.75</td>
<td></td>
</tr>
<tr>
<td>水晶沟</td>
<td>13</td>
<td>-13.1 ~ -5.40</td>
<td>-10.37</td>
<td>7.70</td>
<td></td>
</tr>
<tr>
<td>张全庄</td>
<td>53</td>
<td>-2.20 ~ +5.60</td>
<td>+1.88</td>
<td>5.80</td>
<td></td>
</tr>
<tr>
<td>宁海</td>
<td>20</td>
<td>-0.90 ~ +4.70</td>
<td>+2.10</td>
<td>5.60</td>
<td></td>
</tr>
<tr>
<td>响水沟</td>
<td>10</td>
<td>-8.80 ~ -1.30</td>
<td>-3.96</td>
<td>6.50</td>
<td></td>
</tr>
<tr>
<td>大营盘</td>
<td>4</td>
<td>+0.60 ~ +3.8</td>
<td>+2.35</td>
<td>3.20</td>
<td></td>
</tr>
<tr>
<td>后沟</td>
<td>15</td>
<td>-15.9 ~ -3.50</td>
<td>-9.44</td>
<td>12.48</td>
<td></td>
</tr>
<tr>
<td>中山沟</td>
<td>7</td>
<td>-11 ~ -23.83</td>
<td>-16.15</td>
<td>12.70</td>
<td></td>
</tr>
<tr>
<td>赵家沟</td>
<td>7</td>
<td>-16.8 ~ -6.32</td>
<td>-9.90</td>
<td>10.50</td>
<td></td>
</tr>
<tr>
<td>黄土梁</td>
<td>8</td>
<td>-7.40 ~ -1.6</td>
<td>-5.20</td>
<td>5.80</td>
<td></td>
</tr>
<tr>
<td>下双台</td>
<td>3</td>
<td>-2.4 ~ -1.6</td>
<td>-2.0</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>平均值</td>
<td>9</td>
<td>-0.40 ~ +4.40</td>
<td>+1.88</td>
<td>3.44</td>
<td></td>
</tr>
</tbody>
</table>

（3）氢氧同位素特征

将区内代表性性13个矿区51件样品氢氧同位素组成投影于图11中，可见冀东和张宣地区金矿床的氢氧同位素同位素点少部分样品投入岩浆水及变质区水范围之内，多数落在靠近岩浆水范围内的左下角。一般认为这是混合了大气水的结果，反映氢氧同位素来源具有多源性，但其主要成份可能来自岩浆水。

（4）碳同位素特征

综合上述的分析可以看到，张宣和冀东地区金矿床的成矿热液来自深源，与岩浆活动有关。
图10 张宣冀东地区金矿床Pb同位素图解（据Doe & Zartman，1979）
Fig.10 Diagram showing Pb isotopic composition of the gold deposits in the Zhang-Xuan and eastern Hebei areas (after Doe & Zartman, 1979)

图11 张宣冀东地区金矿床氧同位素图解
Fig.11 Diagram showing the H-O isotopic compositions of the gold deposits in the Zhang-Xuan and eastern Hebei areas

3.3 岩浆作用与金矿形成的机制
一般认为Au等贵金属元素主要赋存在地核。它们通过核幔之间，由于膨胀而局部或暂时形成的大分子间隙向上运移，金蒸气到达地幔的冷流层后，一部分将变成液态在岩石圈下以气液相的形态存在，在遇到深断裂与深融的岩浆上涌时，一部分气液相金将随其运移到地壳中形成(涂光炽等，1991)。而埃达克质岩的形成条件给Au等多金属成矿床的形成提供了有利的成矿动力学背景。

埃达克质岩可以由俯冲的洋壳或下地壳熔融形成(Defant et al., 1990; Atherton and Petford, 1993; Rapp, 2001)，还可以由下地壳拆沉作用(Peacock et al., 1994; Petford et al., 1996)和玄武岩底侵形成(Atherton & Petford, 1993; Petford et al., 1996; Rapp, 2001)。但无论哪种方式，埃达克质岩均形成于高温(850～1150℃)，高压(1.2～4.0 GPa)和含水的条件下(Defant et al., 1990; Rapp et al., 1995, 1999)。而上述条件也有利于在地幔和基性岩中富集的Ca、Cu、Mo、Ag等元素的萃取。最近的研究表明，与正常的长英质岩浆不同，埃达克质岩浆以富水、富硫和高氧逸度(fO2)为特征(Öyarzun et al., 2001)。Mungall(2002)则强调成矿与板片熔体的高氧逸度(fO2)有关。总之，埃达克质岩的形成条件有利于成矿物质交换的实现，这是其有利于Au、Ag、Mo、Cu等多金属成矿的根本所在。

对本区而言，不论高Sr低Y型还是低Sr低Y型岩体，可能都来自加厚的下地壳底部，可能都是高温、高压和有水条件下部分熔融形成的，且可能与地幔发生过物质交换作用。从其形成的条件和区内金矿床的S、Pb、C和H2O同位素特征看，区内两类中酸性岩浆岩与金多金属的成矿在成因上具有密切的关系，它可能既提供了热能又提供了成矿物质(流体和元素)，至于低Sr低Y型岩体与高Sr低Y型(埃达克质岩)型岩体在成矿作用方面究竟有多少差异，我们还不十分清楚，有待今后进一步研究。

4 结论
(1)冀北是我国重要的金矿成矿区，冀北金矿有不同的类型，但大多与中生代中酸性侵入岩有关。
(2)冀北与金矿有关的中酸性侵入岩大体可划分为两类：一类为高Sr低Y型岩体，其埃达克质岩的地球化学特征可能是加厚的下地壳部分熔融形成的，其残留相为橄榄岩和角闪岩浆岩；另一类为低Sr低Y型岩体，以较低的Sr、Al和具明显的负偏异常而区别于埃达克质岩，又因其低Y和HREE而推测源岩残留相中可能有石榴石存在，可能相当于高压角闪岩相的环境，也形成于下地壳底部。
(3)冀北金矿的S、Pb、H2O和C同位素显示深源的优点，且在时空分布上与上述两类中酸性侵入岩存在密切的关系，表明冀北金的来源是深源的，可能与中生代高Sr低Y和低Sr低Y型岩浆的成因有关。

致谢 本文在写作过程中得到了张福勤研究员指导及李铁枝博士的帮助，在此表示衷心的感谢。

References
143 – 151.

Morris P A. 1995. Slab melting as an expalnation of Quaternary volcanism and aeismicity in southwest Japan. Geology, 23; 395 – 398

Pecceirro R., Taylor S R. 1976. Geochemistry of Eocene calc- alkaline volcanic rocks from the Kastamouni area, northern Turkey. Contributions to Mineralogy and Petrology, 58; 63 – 81

孙大中，王耀元，王俊连，杨春生，赵福明。1989. 东南太平洋含金岩石系列研究。中国金矿主要类型区域成矿条件文集（东南地区）。北京：地质出版社。55

王宝德，牛树林，孙爱群，李红阳。2002. 东南金矿成矿物质深部来源及找矿方向。地质地球化学。30(3)：7-12

王秀萍，李丙辉，周德星，姚卫臣，李枝萌。1994. 河北省中酸性岩体地质特征及其与成矿的关系。北京：地质出版社。1-74

王强，赵振华，许维锋，李献华，熊小林，包志伟，贾义茂。2002. 扬子地块东部燕山期埃达克岩（adakite-like）岩与成矿。中国科学院。32(增刊)：127-136

王雷峰。1992. 河北金家庄地区黄英碱性岩特征及其成因。桂林地质学院院刊。1:12-20

王时麟，穆名清，陈成业。1985. 张家口金矿氢氧化物组合。矿床地质。4(1):84-89

王管家。2001. 八达岭花岗岩群组合，地球化学特征及其意义。岩石学报。17(4)：533-540

王瑜，蒋心明，贺本木。1994. 演南北偏北向成因的金矿地质特征及成因。地质论评。4(4)：376-387

王瑜，杨文思，程国鸿。1997. 东南长兴式金矿地质地球化学特征。地质找矿论丛。12(3)：24-32

王正坤，蒋心明，王瑜，贺本木。1992. 张家区金矿床，东坪金矿的地质地球化学特征及成矿因素。地质与勘探。7:19-20

吴福元，葛文才，孙德有。2002. 埃达克岩类的概念，识别标志及其地质意义。见：肖庆辉，郑有泉，马文华等。花岗岩研究新进展与方法。北京：地质出版社。172-191

向文，叶俊林，李民。1992. 后寒水-火山浅变质型成因的成因及其与金成矿的联系。地球科学。6(1)：55-62

徐光成，霍明远等。1991. 金的经济地质学。北京：科学技术出版社。1-7

许明良，郎国均，徐振华，何中甫，赵军，1995. 南北燕山期三个系列花岗岩质系的地球化学特征及其成因研究。岩石学报。15(2)：208-216

许桂玲，许泽忠，张玉华。1995. 南北金矿的地质特征及找矿方向。地质学报。13(4)：217-221

银剑钊，史红云。1995. 张家口-宣化地区金矿地质。北京：地质出版社。1-108

于海林，李文来，谷学忠，李国庆，王福昌，赵文浩，刘生，张海洋。1989. 金东主要类型金矿成矿条件及找矿方向。中国金矿主要类型区域成矿条件文集(北京)。北京：地质出版社。134

余昌涛，贾明。1989. 金东主要类型金矿的成因及形成机理研究。中国金矿主要类型区域成矿条件文集(北京)。北京：地质出版社。1-42

张原，王福，杨森，徐进辉，王元龙，赵太平，郭志军。2001. 东中部中生代埃达克岩质的特征及其成矿—成矿意义。岩石学报。17(2)：236-244

张原，王福，赵丽萍，杨志。2003. 中国埃达克岩的时空分布及其形成背景。地学前沿。10：385-400

张秋生，杨振生，高德玉，任洪茂等。1991. 金东峡谷金矿区高级变质区成矿条件。北京：地质出版社。220-240

章明辉，赵国良，马国成，毕伏科。1996. 河北省主要成矿带金矿床成矿条件及成矿模式。北京：冶金工业出版社。39-273

赵海林，钟福军，许立权，李凯明，刘永军，杨秋利。2001. 金东地区中生代花岗岩深部过程与金矿。桂林工学院学报。21(1)：20-26

中国人民武装警察部队。1996。河北省东南部碱性杂岩金矿地质。北京：地震出版社。110-164

钟健，赵国良，顾松等。1996. 东南金东地区金矿。冶金工业出版社。45-177

附中文参考文献

常明，孔凡芝。1999. 东南地区生金矿床成矿特征及找矿方向。地质找矿论丛。14(1)：13-21

葛小月，李献华，陈志刚，李伍平。2002. 东南部燕山期Sr-Y型中酸性岩成矿的地球化学特征及成因。对中国东部地壳厚度的制约。科学通报。47(2)：476-480

胡桂明，王守伦，谢坤一，张瑞华，李生元，胡达雕，张祥，吴惠康，王西华，张国新。1998. 华北陆台北缘地体构造与金铁矿床矿。北京：地质出版社。230-233

胡小槌，陈志红，赵陈明。1997. 南北小盘营金矿成矿时代：单颗粒锆石U-Pb同位素年新数据。寒武地质研究进展。20(2)：22-28

胡小术，赵家编，李双保。1990. 张家口地区太古宙花岗岩成矿作用。中国地质科学院天津地质研究所。22：1-97

康显桂，陈克荣，陈小明。1996. 河北峨山花岗岩地球化学特征及成因。中山西大学学报(自然科学版)。36(增刊2)：137-141

李纪良，王建龙。1993. 河北西太行花岗岩的同位素地地质研究。桂林冶金地质学院学报。13(1)：60-67

李伍平，李献华，路凤香。2001. 中国东部燕山造山带侏罗纪Sr- Nd-Y型火山岩与岩石体演化。埃达克岩系及其地球动力学意义学术讨论会论文摘要。24-26

林尔为，郭宗锦。1985. 埃达克金矿集中区的锆石同位素研究。长白地质学院学报。15(4)：1-8

林敬涛，孙世华，刘建明，翟明国。2002. 华北克拉通边缘中生代高锶花岗岩类；地球化学与源区性质。岩石学报。18(3)：257-274

卢德林，罗修良，汪建军。1993. 东风金矿成矿时代的研究。矿床地质。12(2)：182-188

罗镇武，苗立成，关康。2000. 华北北太行缘地体研究时代问题。地质学报。6(2)：70-76

毛德宝，陈志宏，钟长汀，左义成，石森，胡小槌。2003. 东南部泻湖地区中生代侵入岩地质年代学和地球化学特征研究。岩石学报。19(4)：14-14

苗雁成。2000. 华北克拉通边缘花岗岩时空演化及其与金矿关系。博士学位论文。29-122

秦大生，蔡新平，王杰，高洁，张宝林，周少平。1997. 东南金矿床的地球化学特征及成矿成因。地质与勘探。35(3)：4-9

曲以秀，刘志东。1995. 燕山期花岗岩成因及其与成矿的关系。长白地质学院学报。25(4)：394-398

宋家祥。1991. 一个与碱性岩体有关的金矿床-苏北东坡金。地质与勘探。8:1-8

宋瑞全，王有志。1994. 河北金矿地质。北京：地质出版社。1-406