新疆东昆仑地区新元古代蛇绿岩 Sm-Nd 全岩 - 矿物等时线定年及其地质意义

胡鹏琴, 郝杰, 张国新, 张鸿斌

1. 中国科学院广州地球化学研究所，广州 510640
2. 中国科学院地质和地球物理研究所，北京 100029
3. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
4. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

2001-07-02 投稿，2004-04-26 改回

Abstract There are hundreds of ophiolites blocks nearby the Kunzhong fault in the eastern Kunlun area. Ages of Sm-Nd whole rocks isochron for some ophiolites published are uncertain and formation ages of ophiolites have been debated. In this study, using whole rock and minerals isochron of cumulate gabbro from the Apkhe ophiolites in the eastern Kunlun area in Xinjiang to determine the formation age of the ophiolites, the isochron of WR of gabbro, CPX and PLAG yields an age of 955±91 (2σ) Ma and εNd(t) = +0.4. It indicates that the Apkhe ophiolite emplaced during the early Neoproterozoic, showing formation age of the Kunlun oceanic crust. Since then, it is possible that the Kunlun Paleoproterozoic terrane could be accreted to the south side of Tarim terrane with the Kunlun Ocean closed, which makes implication for tectonic simultaneity with assembly of the Rodinia supercontinent during period from 1.0 to 0.9 Ga. The evidence of the isotopic geochronology in this study is significant to discuss tectonic relationship of the Kunlun terrane and northeastern continent of China with Rodinia supercontinent.

Key words Eastern Kunlun, Apkhe ophiolite, Sm-Nd age, Whole-rock and mineral isochron

摘 要 昆中断裂带附近出露着近几十个蛇绿岩块体，但是对其形成时代问题一直存在较大的争议。本研究用蛇绿岩中的辉长辉绿岩 Sm-Nd 全岩 - 矿物(单斜辉石和斜长石)等时线定年方法研究了新疆东昆仑地区阿其克蛇绿岩的形成时代，得到 t = 955±91 (2σ) Ma, εNd(t) = +0.4 结果，表示洋壳形成的时间，并限制了该蛇绿岩侵位时代为新元古代早期。由此推测，随着昆仑之侵的闭合，昆仑地区早古生代地体向塔里木古老地块南缘的推移事件与罗德尼亚超大陆形成 (1.0 - 0.9 Ga) 有同时性。因此，这一研究结果对进一步探讨昆仑地区以及我国西北大陆在新元古代早期与罗德尼亚超大陆的关系提供了同位素年代学证据。

关键词 东昆仑；阿其克蛇绿岩；Sm-Nd 年龄；全岩 - 矿物等时线

中国法分类号 P597.3；P588.125；P534.3

1 研究目的和方法

在昆仑造山带的东段出露着百余个蛇绿岩块体，对于沿

2 区域地质概况

定年样品为蛇绿岩中的辉长岩，采自新疆东昆仑地区阿其克库勒断西南侧(图1)，与辉长岩一起出露的还有含铁矿的超镁铁岩和绿片岩相变质的玄武岩等，有关蛇绿岩岩学和岩石地球化学研究结果详见另文(李峰等，1999)。辉长岩与含有钛铁矿的超镁铁岩以及变质玄武岩中等体整体是EW 向分布，出露长约7km, 宽约5km, 岩石普遍遭受了强烈的剥蚀剪切作用，发育者透人性构造带，(产状: 355°~ 430°，0°~ 305°，35°~ 40°)，显示着中构造层次变形和绿片岩相变质特征。其中岩石出露的层面中以斑状灰岩其灰度，主要是一套条带状沉积，(含石头的薄层状和生物碎屑，常见有生物硬岩，显示着浅海稳定型沉积特征。在该下部还发现有数层砾石夹层，其中的砾石主要由碳酸盐岩构成，但发现有少量碳酸岩和硅岩等组成的砾岩，表明岩石主体中地区的环境。其中层的上述变形、变质作用一般为重结晶作用和褶皱与脆性断裂构造，层体产状: 155°~ 30°，175°~ 40°。

根据上述区域地质特征可以初步判断，已经发生中构造层次变形和绿片岩相变质作用的蛇绿岩残块与其周围的没有发生变形、变质的中晚变质带之间无论是在形成构造带还是在变形作用上都存在着巨大的差异，因此区域性的出露的中晚变质带不可能是该蛇绿岩的基质围岩，所以不能用区域性出露的中晚变质带地层时代推断或限定该
蛇绿岩的形成时代。此外，由于蛇绿岩已经发生了绿片岩相变质作用，所以在伴生的大洋沉积岩中寻找古生物化石也将是十分困难的。因此，同位素定年对于确定该蛇绿岩的形成时代则显得尤为重要。

3 样品特征

分析样品为辉长岩，岩石的露头和标本面上均可以看到清楚的堆状构造，属于蛇绿岩中的堆状岩。岩石呈深灰－灰黑色，粗晶片状结构，结晶粒状构造。显微镜下可见辉长结构，但由于交代作用和斜长石结晶母化，使得辉长结构在有些地方不典型。普通辉石约45%左右，新鲜，无蚀变，解理和裂隙理发育。斜长石约55%左右，较粗粒较辉石小，有相当多斜长石发生细晶母化，多数斜长石为中长石。用手工方法从一块辉长岩标本中筛选出斜长石和辉石、单矿物的纯度均达到98%～99%。全岩样品选择该标本中比较均匀的部分制成，岩石的碎片和粉末的加工全是使用单独经过纯净水清洗的各种容器，为保障化学流程中样品的充分溶解，60～80目全岩和辉石、斜长石样品经过纯净水清洗并在低于100℃下烘干后，在纯净的玛瑙乳钵中分别研磨成200目以下的粉末，用于Sm-Nd同位素年龄测定。

4 分析结果和有关问题的讨论

辉长岩全岩和单矿物的Sm-Nd分析在中国科学院地质和地球物理研究所同位素实验室完成，样品和Sm、Nd化学分离实验流程，以及应用质谱同位素稀释法对Sm、Nd定量分析和Nd同位素比值的测定等均使用常规方法（张宗浩和叶笑江，1987；Qiao，1988；Huang and Wu，1992）。辉长岩全岩和辉石、斜长石单矿物的Sm-Nd同位素分析结果列于表1，等时线图见图2。
表 1 新疆东昆仑地区阿其克蛇绿岩中辉长岩和单矿物 Sm-Nd 同位素分析结果

<table>
<thead>
<tr>
<th>样品号</th>
<th>样品名称</th>
<th>Sm (μg/g)</th>
<th>Nd (μg/g)</th>
<th>147Sm/144Nd</th>
<th>144Nd/144Nd</th>
<th>εNd (t)</th>
<th>εNd (t)</th>
<th>δSm (‰)</th>
<th>δNd (‰)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK-1</td>
<td>辉长岩全岩</td>
<td>1.843</td>
<td>5.932</td>
<td>0.1878</td>
<td>0.512613</td>
<td>-0.49</td>
<td>-0.05</td>
<td>0.43</td>
<td>0.6</td>
</tr>
<tr>
<td>EK-2</td>
<td>斜长石</td>
<td>0.1180</td>
<td>0.4620</td>
<td>0.1544</td>
<td>0.512838</td>
<td>-4.97</td>
<td>-0.28</td>
<td>0.92</td>
<td>0.2</td>
</tr>
<tr>
<td>EK-3</td>
<td>角砾</td>
<td>5.983</td>
<td>16.81</td>
<td>0.2152</td>
<td>0.512762</td>
<td>2.42</td>
<td>0.09</td>
<td>1.02</td>
<td>0.2</td>
</tr>
</tbody>
</table>

分析者：中国科学院地球物理研究所同位素实验室乔广生、张华等；表中 Nd 同位素比值均以 146Nd/144Nd = 0.7219 进行标准化；

εNd (t) = 1/λ × ln(1 + [144Nd/144Nd]实测 - 0.512638) / [144Nd/144Nd]CHUR - 0.1997，其中 λ = 6.54 × 10⁻¹² a⁻¹

图 2 新疆东昆仑地区阿其克蛇绿岩中辉长岩矿物 - 全岩 Sm-Nd 等时线图

![图2](image)

Fig. 2 Sm-Nd isochron for gabbro and minerals from the Aqike ophiolite in eastern Kunlun area, Xinjiang

由数据表（表 1）和等时线图均可看出，从辉长岩中选出的 2 种单矿物的 Sm/Nd 比值测定结果表明，符合平衡分馏规律，即 (Sm/Nd)E < (Sm/Nd)F，应用 ISOPLOT 程序 (Ludwig, 1996) 计算等时线年龄的 147Sm/144Nd 和 144Nd/144Nd 比值分别用 0.5% 和 0.005% 的误差，得到辉长岩的矿物内部等时线年龄为 953 ± 91 (2σ) Ma, εNd (t) = +0.4 (MSWD = 1.82)。年龄误差的置信度为 95%，等时线年龄可以代表阿其克蛇绿岩形成年龄，即洋壳形成年龄。由该等时线给出的 εNd (t) 值为正值的正态，可能的解释是，表明辉长岩是来自稍有亏损的幔源物质，或为大体相当于地球幔源物质。(CHUR) 的地幔源区。

5 地质意义

全球的构造格局演化历史中罗布迪亚超大陆的聚合 - 裂解是新元古代早期全球范围内的重大地质演化阶段。过去多主张罗布迪亚超大陆的聚合期大约为 1.3 - 1.0 Ga (D'Agrella-Filho et al., 1998；Condé K C, 2001；Li et al., 2002)，根据最新研究成果，李正祥 (2004) 提出罗布迪亚超大陆的形成时期为 1.0 - 0.9 Ga。

据同位素年代学和 Nd 模式年龄统计数据，昆仑山具有 1.8 - 2.1 Ga 的古元古代大陆地壳基底（胡再忠等，2001；胡再忠等，2004）。东昆仑阿其克蛇绿岩带矿物内部等时线年龄 (955 ± 91 Ma) 代表昆仑洋完成形成的时间，可以推断随着昆仑洋的闭合，昆仑地区的古元古代地体向东里木古老地层基底的拼接事件与罗布迪亚超大陆形成有同时性。
References

Chen Jiangfeng, Foland K A, Xing Fenming, Xu Xiang, Zhou Xia. 1991. Magnetism along the southeast margin of the Yangtze and Cathaysia. Geology, 815 – 818

附中文参考文献

董云瀚, 周照武, 刘英, 张福, 赵耀清. 1997. 东昆仑南缘蛇绿岩 Sm-Nd同位素年龄的地层意义, 中国地质, 16(2): 217 – 221

胡儒章, 张国新, 陈义兵, 张凭锋. 2001. 新疆大陆基底区构造模式和主