Gangdise giant magma belt lays down in southern Tibet consisting mainly of granitoids with abundant mafic macrogranular enclaves. Gabbro as predominant mafic rock type concentrated along the southern magma belt and had transitional contact with the granitoid. Researches have found that some quartz crystals and andesine An > 45 occurred in the gabbro and mafic biotomite An > 80 in granodiorite bytownite-anorthite An = 72 ~ 90 associated with andesine An > 37 and dark minerals distributed along plagioclase grains. All the inconsistent mineral assemblages proved to be characteristics of magma mixing during magma evolution. The relative high content of K Al and Fe Mg a linear variation trend of lithological chemical composition among MME granitoid and gabbro and transitional variation between SiO$_2$ and K$_2$O Na$_2$O in MME are all likely respondent to magma mixing. The similar REE pattern and trace element spider distribution for MME granitoid and gabbro gave a image of magma mixing. The high 143Nd/144Nd ratio and low 87Sr/86Sr in gabbro and low 143Nd/144Nd ratio and high 87Sr/86Sr ratio fell in linear in mantle evolution range representing magma mixing happening. The SHRIMP zircon U-Pb ages were quite similar for the REE granitoid and gabbro indicating that they were the products of magma mixing in same geothermal event. Much evidence indicates that the various lithologies in Gangdise magma belt were mixed by different proportional mafic end-member and acid end-member. As a result the mafic end-member occupied 16% ~ 90% between acid to mafic end-member. It was estimated base on the intrusions that mafic magma from mantle sources contributed over 5% to the Gangdise crust. It deduced that the underplating of mantle-derived magma during India-Eurasia continental collision magma mixing from both mantle source and crust source took place during 50 ~ 45Ma. This magma mixing event post-dated the initiation of India-Eurasia continental collision by 15 million years. It is believed that magma mixing was one of the major mechanisms for mass and energy exchange between mantle-crust during the Indian-Eurasia collision and also for key approaches of study on crust accretion reconstruction crust texture and composition in north to the collision zone.

Key words Granitoid, Gabbro, Magma mixing, Magma belt, Gangdise, Tibet

* Corresponding author. E-mail: guochdong@263.net
** Corresponding author. E-mail: moxc@cugb.edu.cn

Abstract Gangdise giant magma belt lays down in southern Tibet consisting mainly of granitoids with abundant mafic macrogranular enclaves. Gabbro as predominant mafic rock type concentrated along the southern magma belt and had transitional contact with the granitoid. Researches have found that some quartz crystals and andesine An > 45 occurred in the gabbro and mafic biotomite An > 80 in granodiorite bytownite-anorthite An = 72 ~ 90 associated with andesine An > 37 and dark minerals distributed along plagioclase grains. All the inconsistent mineral assemblages proved to be characteristics of magma mixing during magma evolution. The relative high content of K Al and Fe Mg a linear variation trend of lithological chemical composition among MME granitoid and gabbro and transitional variation between SiO$_2$ and K$_2$O Na$_2$O in MME are all likely respondent to magma mixing. The similar REE pattern and trace element spider distribution for MME granitoid and gabbro gave a image of magma mixing. The high 143Nd/144Nd ratio and low 87Sr/86Sr in gabbro and low 143Nd/144Nd ratio and high 87Sr/86Sr ratio fell in linear in mantle evolution range representing magma mixing happening. The SHRIMP zircon U-Pb ages were quite similar for the REE granitoid and gabbro indicating that they were the products of magma mixing in same geothermal event. Much evidence indicates that the various lithologies in Gangdise magma belt were mixed by different proportional mafic end-member and acid end-member. As a result the mafic end-member occupied 16% ~ 90% between acid to mafic end-member. It was estimated base on the intrusions that mafic magma from mantle sources contributed over 5% to the Gangdise crust. It deduced that the underplating of mantle-derived magma during India-Eurasia continental collision magma mixing from both mantle source and crust source took place during 50 ~ 45Ma. This magma mixing event post-dated the initiation of India-Eurasia continental collision by 15 million years. It is believed that magma mixing was one of the major mechanisms for mass and energy exchange between mantle-crust during the Indian-Eurasia collision and also for key approaches of study on crust accretion reconstruction crust texture and composition in north to the collision zone.

Key words Granitoid, Gabbro, Magma mixing, Magma belt, Gangdise, Tibet

* Corresponding author. E-mail: guochdong@263.net
** Corresponding author. E-mail: moxc@cugb.edu.cn

中倍长石钙长石（“”）和中长石（“”）共存，这些矿物组合的不协调现象是岩浆演化过程中混合作用的表现形式；

+++的化学成分相对高钾、铝和铁镁，**+++**、花岗岩类寄主岩及辉长岩类岩石化学成分呈直线变异趋势（相对****）。

+++的***/**和***/**、***/**成分的过渡性变化也都反映出混合作用特征；基性辉长岩类、酸性花岗质岩石和**+++**包体的稀土配分模式基本一致，其微量元素特征也具有明显的一致性，反映了岩浆混合作用的特征；辉长岩类的***/**比值较高，***/**比值较低，而偏酸性的花岗质岩石中***/**比值较低，***/**比值较高，构成直线性分布趋势，并位于地幔演化线的延伸方向上，显示区域岩浆混合作用特征；辉长岩、花岗岩类和**+++**的同位素年龄值十分接近，也表明三者属于岩浆混合作用产物。研究证明，冈底斯岩浆岩带中不同岩性均由不同比例的基性端元和酸性端元成分混合而成，其中基性端元成分所占的比例变化在**+++**不等，仅从侵入岩浆推算，幔源基性岩浆对冈底斯地壳垂向增厚的贡献率超过**+++**。

可以推断，随着俯冲碰撞过程中产生的基性岩浆底侵作用，冈底斯岩浆岩带发生壳幔岩浆混合作用，其时代为**+++**，属于印度欧亚大陆碰撞开始后的主碰撞期内，岩浆混合作用是碰撞过程中壳幔物质与成分交换的主要形式之一，是研究主碰撞带北部青藏高原的陆壳增生与改造、地壳结构及成分变化重要途径之一。

关键词= =花岗岩类;辉长岩类;岩浆混合作用;岩浆岩带;冈底斯;西藏

中图法分类号= =**<88?**

近年来许多研究揭示，印度欧亚大陆碰撞发生于**+++**，而后转入后碰撞阶段（**+++**），**+++**。印度欧亚大陆碰撞作为一个巨大的地质事件，直接引起了青藏高原的隆升和相应的生态、环境、气候变化，因而成为国内外学者关注的热点。而对应于这样一个的地质事件，在青藏高原之下进行着怎样的深部过程，这些过程发生的时间和构造阶段，有怎样的地球动力学意义，是地学家们所关注的重要科学问题。横亘于青藏高原南部巨大的冈底斯花岗岩带与印度欧亚板块碰撞带并行产出，其成因与两大板块碰撞密切相关（**+++**），其中蕴含着丰富的地球动力学信息，提供了观测板块碰撞有关的壳幔深部过程的"探针"和"窗口"（**+++**）。底侵作用及岩浆混合作用，是壳！幔间物质与能量交换的重要形式，对于陆壳生长与改造、岩石圈成分、结构与热状态的演化，都有重要的意义（**+++**）。本文在针对冈底斯中部拉萨至日喀则一带详细的野外地质调查的基础上，拟从岩石学及元素、同位素地球化学及年代学角度对这一科学问题进行探讨，提出点滴看法与同行进行交流。

地质背景

冈底斯花岗岩带平行于雅鲁藏布江缝合带呈近东西展布，长约**+++**、宽约**+++**，出露面积达**+++**万**+++**，构成一个巨大的构造岩浆岩带，其南部紧邻雅鲁藏布江缝合带，向东绕过雅鲁藏布江大拐弯与察隅花岗岩相连。本文选择拉萨—日喀则一带冈底斯岩浆岩带中段（图4），冈底斯花岗岩带中主要岩石类型包括闪长岩、石英闪长岩、花岗闪长岩、

图4=拉萨！日喀则一带冈底斯岩浆岩带地质简图

花岗岩；**”**辉长岩；**”**蛇绿岩套；**”**古近—新近系；**”**早中白垩统；**”**晚侏罗统；**”**早白垩统；**”**三叠系；**”**石炭二叠系；**”**第四系；**”**采样地点及编号

Fig. 1 The sketch map of Gangdese magmatic belt in Lhasa-Rigaze area Tibet
二长花岗岩、石英二长岩、花岗岩、正长花岗岩及二云母花岗岩等（金成伟和周云生，

在花岗岩带的南缘断续分布着一条铁镁质超铁镁质岩带，主要为辉长岩类，局部有辉石岩、橄榄辉石岩和伟晶辉石岩，与花岗岩带直接接触。在整个冈底斯带，花岗质岩石中存在大量的镁铁质微粒包体（金成伟，

镁铁质微粒包体具有岩浆岩结构、高温淬火矿物及流动构造，在其与寄主岩接触处具淬火边或物质交换造成的浅色晕圈（

岩浆活动时代从

同一露头中花岗闪长岩（寄主岩）、寄主岩中的镁铁质微粒包体和角闪辉长岩样品的

锆石年龄分别为

，年龄值十分接近，属于同一构造岩浆事件形成（

冈底斯岩浆带混合作用的证据

不同成分岩浆之间的混合现象早已被人们所认识（

把”一词用于正常的火成岩，包括两个端元液态岩浆的混合，或者液态的岩浆与固态岩石的同化混染。广义的岩浆混合作用包括岩浆化学混合（）和岩浆机械混和（）的全部混合作用；狭义的岩浆混合作用（）指两个端元岩浆的化学混合作用。混合岩浆作用既是再造新生岩浆又是开放体系下岩浆演化的重要岩浆作用（李昌年，

岩石学和矿物学标志

不同端元成分岩石接触关系的宏观证据：冈底斯岩浆岩带中辉长岩类集中分布在岩浆岩带南部，而花岗质岩石则向北部偏多，花岗岩类与辉长岩类直接接触，呈渐变过渡关系。在曲水至拉萨一带的曲水杂岩，花岗岩类表现出越向北侧花岗岩岩性越偏酸性的趋势，至北部的南木林一带花岗岩类岩石中出现钾长石斑晶，斑晶粗大，不均匀分布；杂岩中的镁铁质微粒包体（，简称（包体）也具有一定的变化规律（见后）；在花岗岩与（包体中

“直接”接触并没有表现出截然的界线，而是带状渐变接触，其间的岩石类型由辉长岩"角闪辉长岩"辉长闪长岩"石英闪长岩"花岗闪长岩（图");在日喀则地区谢通门一带，黑云母辉长岩与花岗岩接触带宽。

岩浆混合作用的岩浆组构证据：整个岩浆岩带岩石类型复杂，从辉长岩、辉长闪长岩、闪长岩、花岗闪长岩、二长花岗岩到花岗岩均有出露，但以花岗闪长岩、二长花岗岩为主。岩石粗粒结构，局部发育钾长石斑晶呈现似斑状结构。岩浆混合作用主要体现在下列组构特征：

岩石矿物不协调现象：花岗闪长岩（）中出现基性倍长石，其；辉长岩（）中出现中长石，；（包体（）中倍长石—钙长石（）和中长石（）共存。倍长石可能来源于参与混合的幔源基性岩浆，而中长石可能来源于参与混合的壳源酸性岩浆。

嵌晶结构的普遍出现：粗大的斜长石颗粒包裹角闪石、斜长石（）和（）构成嵌晶结构（图），这是由于偏基性岩浆或正在混合的岩浆体系骤冷，产生很多小颗粒角闪石和斜长石（肖庆辉等，

暗色边现象：辉长岩（）中出现有石英（图），以角闪石为主的暗色矿物沿着长石颗粒边部分布（图），这些矿物组合的不协调现象是岩浆演化过程中的混合作用的一种表现形式（周询若，

矿物快速冷却现象：斜长石（）中的针状磷灰石包裹体，也见有短柱状磷灰石（图）。

值得一提的是磷灰石在花岗岩及包体中的形态是完全不同的。在花岗岩中，磷灰石通常呈短柱状晶体，而在包体中则呈细针状，且常常空心（）。”

(图)

铁镁质微粒包体中的细针状磷灰石是在淬冷状态下结晶形成的。

(图)

((H包体提供的佐证，冈底斯花岗岩中含有大量((H包体，呈团块状、透镜状、条带状、火焰状和不规则状等形态产出（图），((H包体的成分及特征反映出岩浆混合作用特征（江万等，

野外填图表明，其分布自南向北具有明显的规律，表现出((H包体个体由大变小，数量增多，形态由团块状“似层状”透镜状，包体含量变少。

((H包体具有塑性流动特征（图），经历了与其寄主岩花岗质岩石共同的液态共存阶段，从而发生液态物质交换（）和混合作用（），前者改变了((H的成分，使得其成分相对高钾、铝和铁镁含量，后者造成((H呈不同的大小和形态散布到寄主岩体中。这一点符合((H的空间分布规律。

相对共存的寄主花岗岩而言，((H包体的成分呈现（)所进行的实验结果，铁镁质微粒包体中的细针状磷灰石是在淬冷状态下结晶形成的。
高铁镁特征,相对辉长岩,呈现高钾、铝特征,整体成分则类
似于玄武岩或安山岩(江万等,2005)。

这正是从深部来源的基性岩浆成分与浅部岩浆成分混合的
evidence。

图2 昭通带辉长岩、花岗岩及其中镁铁质包体关系图，
2-钾长石斑晶;3-辉长岩与花岗闪长岩接触关系;3-
斜长石的包裹晶体现象;2-辉长岩中的石英;5-斜长
石中针状磷灰石晶体;7-花岗闪长岩中不规则的
2-塑性流动特征;8-流动构造;9-斜长石、
角闪石、辉石、锆石。

Fig. 2 Picture showing relationship among gabbro, MME and the host rock granitoid in Gangdese
岩石化学和地球化学特征证据

包体、花岗岩类寄主岩及辉长岩类岩石常量元素、微量元素和稀土元素成分(表1)显示包体具有亲辉长岩类,而又向花岗质岩石过渡的特征,也是深部基性辉长岩浆与浅部酸性花岗质岩浆混合作用的结果(江万等,2000)。包体和花岗质成分的变化以及诸如辉石闪长岩和角闪闪长岩等过渡性岩石成分的出现也都反映出混合作用特征。

在稀土元素配分模式图中(图2)辉长岩类、花岗岩类和包体的稀土配分模式基本一致,为右倾的轻稀土富集型,总体上表现出由偏酸性岩—偏基性岩稀土总量逐渐减小的特征;微量元素特征(图3)三者也具有一定的相似性,可能反映了岩浆混合作用的特征。

表1 甘孜-雅江带辉长岩、花岗岩及其花岗岩类寄主岩石的常量和微量元素分析数据

<table>
<thead>
<tr>
<th>样品号</th>
<th>SiO₂</th>
<th>K₂O</th>
<th>Na₂O</th>
<th>CaO</th>
<th>MgO</th>
<th>Rb</th>
<th>Cs</th>
<th>Ba</th>
<th>Th</th>
<th>U</th>
<th>Ta</th>
<th>Nb</th>
<th>Cs</th>
<th>Sr</th>
<th>Nd</th>
<th>Pr</th>
<th>Eu</th>
<th>Gd</th>
<th>Tb</th>
<th>Y</th>
<th>La</th>
<th>Ce</th>
<th>Pr</th>
<th>Nd</th>
<th>Sm</th>
<th>Eu</th>
<th>Tb</th>
<th>Yb</th>
<th>Lu</th>
<th>ΣREE</th>
</tr>
</thead>
<tbody>
<tr>
<td>H3/I/J</td>
<td>54.49</td>
<td>52.42</td>
<td>57.07</td>
<td>60.77</td>
<td>46.66</td>
<td>52.04</td>
<td>49.37</td>
<td>0.59</td>
<td>1.27</td>
<td>1.51</td>
<td>0.74</td>
<td>0.85</td>
<td>0.69</td>
<td>0.63</td>
<td>0.14</td>
<td>0.64</td>
<td>1.41</td>
<td>0.70</td>
<td>3.76</td>
<td>6.68</td>
<td>6.30</td>
<td>7.3</td>
<td>15.97</td>
<td>15.98</td>
<td>17.78</td>
<td>0.22</td>
<td>0.14</td>
<td>0.12</td>
<td>0.11</td>
<td>0.18</td>
</tr>
<tr>
<td>H3/I/K</td>
<td>54.49</td>
<td>52.42</td>
<td>57.07</td>
<td>60.77</td>
<td>46.66</td>
<td>52.04</td>
<td>49.37</td>
<td>0.61</td>
<td>1.56</td>
<td>0.62</td>
<td>0.74</td>
<td>0.85</td>
<td>0.69</td>
<td>0.63</td>
<td>0.14</td>
<td>0.64</td>
<td>1.41</td>
<td>0.70</td>
<td>3.76</td>
<td>6.68</td>
<td>6.30</td>
<td>7.3</td>
<td>15.97</td>
<td>15.98</td>
<td>17.78</td>
<td>0.22</td>
<td>0.14</td>
<td>0.12</td>
<td>0.11</td>
<td>0.18</td>
</tr>
<tr>
<td>H3/I/L</td>
<td>54.49</td>
<td>52.42</td>
<td>57.07</td>
<td>60.77</td>
<td>46.66</td>
<td>52.04</td>
<td>49.37</td>
<td>0.59</td>
<td>1.27</td>
<td>1.51</td>
<td>0.74</td>
<td>0.85</td>
<td>0.69</td>
<td>0.63</td>
<td>0.14</td>
<td>0.64</td>
<td>1.41</td>
<td>0.70</td>
<td>3.76</td>
<td>6.68</td>
<td>6.30</td>
<td>7.3</td>
<td>15.97</td>
<td>15.98</td>
<td>17.78</td>
<td>0.22</td>
<td>0.14</td>
<td>0.12</td>
<td>0.11</td>
<td>0.18</td>
</tr>
</tbody>
</table>

注:样品分析由西北大学实验室完成。
Fig. 3 REE pattern [a] trace element spidergram [b] for representative magmatic rocks samples in Gangdese

Fig. 4 MgO vs. Na_2O [a] and CaO/Na_2O vs. MgO [b] diagrams for representative magmatic rocks samples in Gangdese

Fig. 5 ^143Nd/^144Nd vs. ^87Sr/^86Sr diagram for representative magmatic rocks samples in Gangdese

Ni-MgO-41. Ni-Mg-O-CaO/Na_2O-44b

^143Nd/^144Nd vs. ^87Sr/^86Sr diagram for representative magmatic rocks samples in Gangdese.
岩浆混合过程中能量交换过程

岩浆混合作用中能量的交换主要表现为热量的传递。物质混合前的能量交换发生于壳幔之间,通过提供热源把铁镁质岩浆与花岗质岩浆的成生联系起来。这里的花岗质岩浆是炽热的镁铁质岩浆作用于地壳,而使地壳部分熔融的产物;混合后的能量交换使岩浆房中的花岗质岩浆被加热,导致岩浆密度不稳定,促使岩浆流动,同时原有的平衡状态和结晶顺序被打乱,发生晶体、熔体的混合作用(周珣若,2005)。

在印度欧亚大陆碰撞作用过程中,俯冲至上地幔的特提斯洋壳发生脱水,导致上覆地幔楔发生部分熔融,形成玄武质岩浆。辉长岩类作为一种镁铁质岩浆岩,其液相岩浆温度一般为1200°C,而花岗质岩浆温度只需778°C。上涌的玄武质岩浆底侵于壳幔边界,岩浆聚集的同时,带来高温热能(约6778°C温差),通过能量交换使下地壳部分熔融,形成长英质岩浆。当两者直接接触时,如此高温差必然会使得两种物质产生强烈的热交换,温度高的辉长岩岩浆出现急剧冷却,甚至淬火现象,形成未完全混合的镁铁质微粒包体群;温度低的花岗岩出现升温,原有的冷却结晶过程会因为温度的升高而中止,代之以熔融已结晶部分,待达到结晶温度时,继续结晶过程。

岩浆混合过程中物质交换过程

深部高温的铁镁质岩浆也可能沿着某种薄弱带上侵,进入上部的长英质岩浆房,与之发生直接的物质交换混合作用,作为混合作用的结果,形成一系列介于基性和酸性两个端元之间的过渡性岩石类型。

包体是岩浆混合作用过程中的产物,同其寄主岩石和辉长岩类在同一时空条件下形成。这就说明,寄主岩石确实作为靠近酸性混合端元成分和作为基性混合单元的辉长岩类发生了液态混合作用,寄主岩中的包体正是混合作用过程中辉长岩类岩浆在酸性岩浆中冷却的产物,是注入到酸性岩浆中未完全混合的基性岩浆团块。包体及其寄主岩均具有岩浆岩成分,通过双扩散作用发生不同程度的物质交换,作为混合作用的产物,二者成分图解(图E>岩石成分图解:铁镁质微粒包体;二长花岗岩;二长闪长岩;辉长闪长岩;辉长岩;角闪闪长岩;石英闪长岩)具有趋势性变化,并显示出区内侵入岩主要是一次岩浆混合作用的结果。

混合作用过程中物质交换量的估算

根据混合原理(董国臣等,1994),对于基性岩浆与酸性岩浆两个端元混合成因的混合岩中,任何一种氧化物或者微量元素在混合岩浆中的含量,以及基性端元在混合岩中所占的比例,可以通过下列混合方程予以定量计算:

$$ C_{v}^{\text{m}} = K C_{v}^{\text{a}} + (1-K) C_{v}^{\text{b}} $$

$$ C_{v}^{\text{m}} = C_{v}^{\text{a}} + 10^{-4} K C_{v}^{\text{b}} $$

其中:
- $$ C_{v}^{\text{m}} $$ 某元素在混合岩中的百分含量或丰度;
- $$ C_{v}^{\text{a}} $$ 混合岩浆中的基性端元的百分比例;
- $$ C_{v}^{\text{b}} $$ 基性端元岩浆中某元素的含量或丰度;
- $$ C_{v}^{\text{c}} $$ 酸性端元岩浆中某元素的含量或丰度。

两个单元岩浆混合作用模拟过程中,确定参与岩浆混合作用的端元岩浆成分十分关键。鉴于冈底斯带中段广泛发育岩浆混合作用,目前所见到的岩石类型均存在不同程度的混合作用,故此确切寻找基性和酸性端元成分十分困难。鉴此,本文从近年所采集的辉长岩类样品中,考虑因素包括U+REE分异程度较小,无亏损,同位素更接近原始地幔特征,含量和C:含量均最低,最后确定两个样品,取其平均值,作为基性端元成分;从所采集到的二长花岗岩样品中,选择因素包括其REE为正值,表明其成生受地幔影响,分异明显,含量和C:含量均等,最后确定两个样品,取其平均值,作为酸性端元成分,进行模拟计算。端元岩浆的化学成分均为分析值折算成#7后的结果。所选择的两个基性辉长岩类成分和两个酸性样品见表。

由此得出结论:区内的不同岩性的混合比如下:二长花岗岩为基性端元#ES,酸性端元#6S;花岗闪长岩为基性端元!6S,酸性端元E6S;二长闪长岩为基性端元37S,酸性端元E7S;石英闪长岩为基性端元67S,酸性端元67S;角闪闪长岩为基性端元E3S,酸性端元!ES;辉长闪长岩为基性端元EES,酸性端元!3S;辉长岩为基性端元17S,酸性端元#7S;??包体为基性端元26S,酸性端元#6S。
表 2 基性及酸性端元成分及平均值

<table>
<thead>
<tr>
<th>编号</th>
<th>岩性</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>FeO</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>P₂O₅</th>
<th>LOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>0109-1</td>
<td></td>
<td>70.5</td>
<td>0.28</td>
<td>13.84</td>
<td>1.2</td>
<td>0.96</td>
<td>0.05</td>
<td>8.1</td>
<td>1.1</td>
<td>2.14</td>
<td>3.81</td>
<td>5.29</td>
<td>0.81</td>
</tr>
<tr>
<td>4083-1</td>
<td></td>
<td>75.96</td>
<td>0.24</td>
<td>12.44</td>
<td>1.02</td>
<td>0.28</td>
<td>0.02</td>
<td>4.44</td>
<td>0.44</td>
<td>4</td>
<td>4.82</td>
<td>0.02</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>73.23</td>
<td>0.26</td>
<td>13.14</td>
<td>1.11</td>
<td>0.62</td>
<td>0.04</td>
<td>1.29</td>
<td>3.91</td>
<td>5.06</td>
<td>7.80</td>
<td>0.05</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>73.34</td>
<td>0.26</td>
<td>13.16</td>
<td>1.11</td>
<td>0.62</td>
<td>0.04</td>
<td>1.29</td>
<td>3.91</td>
<td>5.06</td>
<td>7.80</td>
<td>0.05</td>
<td>0.40</td>
</tr>
</tbody>
</table>

表 3 计算的化学组成基于两端元成分

<table>
<thead>
<tr>
<th>K</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>FeO</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>P₂O₅</th>
<th>LOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>70.82</td>
<td>0.38</td>
<td>13.41</td>
<td>1.41</td>
<td>1.34</td>
<td>0.05</td>
<td>1.53</td>
<td>2.05</td>
<td>3.76</td>
<td>4.71</td>
<td>0.06</td>
<td>0.50</td>
</tr>
<tr>
<td>20</td>
<td>68.30</td>
<td>0.49</td>
<td>13.66</td>
<td>1.72</td>
<td>2.05</td>
<td>0.06</td>
<td>2.30</td>
<td>2.81</td>
<td>3.60</td>
<td>4.35</td>
<td>0.07</td>
<td>0.60</td>
</tr>
<tr>
<td>30</td>
<td>65.77</td>
<td>0.60</td>
<td>13.91</td>
<td>2.02</td>
<td>2.76</td>
<td>0.07</td>
<td>3.08</td>
<td>3.56</td>
<td>3.45</td>
<td>3.99</td>
<td>0.08</td>
<td>0.70</td>
</tr>
<tr>
<td>40</td>
<td>63.25</td>
<td>0.72</td>
<td>14.16</td>
<td>2.32</td>
<td>3.48</td>
<td>0.09</td>
<td>3.85</td>
<td>4.32</td>
<td>3.29</td>
<td>3.64</td>
<td>0.09</td>
<td>0.80</td>
</tr>
<tr>
<td>50</td>
<td>60.72</td>
<td>0.83</td>
<td>14.41</td>
<td>2.62</td>
<td>4.19</td>
<td>0.10</td>
<td>4.63</td>
<td>5.08</td>
<td>3.14</td>
<td>3.28</td>
<td>0.10</td>
<td>0.91</td>
</tr>
<tr>
<td>60</td>
<td>58.20</td>
<td>0.95</td>
<td>14.66</td>
<td>2.92</td>
<td>4.91</td>
<td>0.11</td>
<td>5.40</td>
<td>5.83</td>
<td>2.98</td>
<td>2.92</td>
<td>0.10</td>
<td>1.01</td>
</tr>
<tr>
<td>70</td>
<td>55.67</td>
<td>1.06</td>
<td>14.91</td>
<td>3.23</td>
<td>5.62</td>
<td>0.12</td>
<td>6.18</td>
<td>6.59</td>
<td>2.82</td>
<td>2.57</td>
<td>0.11</td>
<td>1.11</td>
</tr>
<tr>
<td>80</td>
<td>53.15</td>
<td>1.18</td>
<td>15.16</td>
<td>3.53</td>
<td>6.34</td>
<td>0.13</td>
<td>6.95</td>
<td>7.35</td>
<td>2.67</td>
<td>2.21</td>
<td>0.12</td>
<td>1.21</td>
</tr>
<tr>
<td>90</td>
<td>50.63</td>
<td>1.29</td>
<td>15.41</td>
<td>3.83</td>
<td>7.05</td>
<td>0.14</td>
<td>7.73</td>
<td>8.10</td>
<td>2.51</td>
<td>1.85</td>
<td>0.13</td>
<td>1.32</td>
</tr>
</tbody>
</table>

注: 据南木林幅万区调报告;基性端元样品为本课题组资料,由西北大学实验室完成分析结果。
4.2

dimensions: 502.4x723.2

Table 4 Statistical ground covering for magmatic rocks in Quxu-
Xietongmen area Tibet

<table>
<thead>
<tr>
<th></th>
<th>km²</th>
<th></th>
<th>km²</th>
<th></th>
<th>km²</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3421</td>
<td>324</td>
<td>166</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2245</td>
<td>602</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>818</td>
<td>179.5</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5

References

4.3

<table>
<thead>
<tr>
<th>1</th>
<th>40%</th>
<th>40%</th>
<th>32.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>16%</td>
<td>16%</td>
<td>10%</td>
</tr>
<tr>
<td>3</td>
<td>5%</td>
<td>5%</td>
<td></td>
</tr>
</tbody>
</table>