滇西北兰坪盆地金顶超大型矿床有机岩相学和地球化学

薛春纪1 高永宝2 曾荣2 CHI GuoXiang3 QING HaiRuo3
XUE ChunJi1, GAO YongBao2, ZENG Rong2, CHI GuoXiang3 and QING HaiRuo3

1. 中国地质大学 地质过程与矿产资源国家重点实验室，地球科学与资源学院，北京 100083
2. 长安大学 地球科学与国土资源学院，西安 710054
3. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
4. Faculty of Earth Sciences and Land Resource, Chang’an University, Xi’an 710054, China
5. Department of Geology, University of Regina, Saskatchewan S4S 0A2, Canada

2006-12-30 收稿，2007-10-20 改回。

Abstract The Jinding giant ore deposit, Lanping, Yunnan, is the youngest and the only continental sediment-hosted super-large Zn-Pb deposit in the world, and also the largest Zn-Pb deposit in China and followed with interests. Various kinds of organic matte, such as the kerogen, light oil, hydrocarbon gases, heavy oil, bitumen with different occurrences and maturation, and the oil-and methane-inclusions in calcites, and their petrographic have been revealed in this paper. The showing of oil-gas and old oil-pool traces are evident in the Jinding ore district. The organic matter may be the every stage’s products of heat-maturatin, splitting and disruption of the Jinding old oil-gas pool and play an important role on the mineralization. The chloroform bitumen “A” in the organic matter is variation (72 × 10^-6 ~ 395415. 42 × 10^-6). The total hydrocarbon (58.47%) is more than “non-hydrocarbon + asphaltic olein” (41.53%), the ratio of saturated/ aromatic-hydrocarbon is over 1, and the primary organic matter is I-type. The organic transformation ratio (A/C = 0.5% ~ 7.2%) is over of the rock’s in the field, and the organic matter had maturated. The saturated hydrocarbon of the organic matter in the ores and the ore-bearing rocks include normal paraffin hydrocarbon, Pr, Ph, iC18, and so on, the carbon number is C10 ~ C34, C21+22/ C28+29 = 0.78 ~ 3.582, Pr/C17 = 0.25 ~ 0.646, Ph/C18 = 0.39 ~ 1.57, and the primary organic matter is marine algae. The aromatic hydrocarbon in the organic matter include naphalin, phenanthrene, triaromatic steroid, biphenyl and fluoranthene, and the phenanthrene compounds the most evident, MP1 = 0.215 ~ 0.434, MP2 = 0.252 ~ 0.588. The oil algae developed in the reduced environment with high salinity, and the hydrocarbon source rock is the carbon-rich mudstone and marl. A oil pool might form in the Jinding dome during the doming and be the one of important reduction in the large-scale metal mineralization.

Key words Organic petrography, Organic geochemistry, Hydrocarcon accumulation and mineralization, The Jinding giant deposit, Lanping Basin, China

摘 要 云南兰坪金顶矿床是世界上形成时代最新且唯一陆相沉积岩矿床的超大型铅锌矿床，也是中国目前最大的铅锌矿床。有机物在金属矿床中可能发挥重要作用，受人关注。矿石及矿化岩石中产有包括千酸根、轻油、烃类气、重油、沥青及方解石石油、石油包体等多种形式、产状和成熟度的有机物，油气显示突出，油气藏遗迹明显，是金顶古油气藏在铅锌成矿过程中热成熟、裂解和被改造成破坏不同阶段的产物。有机物质的氯仿沥青“A”变化大(72 × 10^-6 ~ 395415. 42 × 10^-6)。“A”的族组成中，总烃(58.47%)大于“非烃+沥青烯”(41.53%),饱和烃/芳香烃比值大于1,具I型有机母质特征。有机转化率(A/C = 0.5% ~ 7.2%)较矿床外岩石低,有机热成熟度高。矿石及矿化岩石中有机质的饱和烃包括正构烷烃、
生物-有机质与金属成矿的关系是倍受关注的成矿学课题（Dianar and Sureau, 1990; Sieric and Barnes, 1996; Disnar, 1996; 谢树东等, 1997; Bartrick and Andrew, 1997; Panenberg and Macko, 1998; 殷鸿福等, 1999; Spangenber et al., 1999; Ulrich et al., 1999; Guskiewicz and Kwiecinska, 2001; Fallick et al., 2001; 薛春纪等, 2002a; 朱亚光等, 2003; Southam and Saunders, 2005）。滇西北兰坪盆地金顶矿床是目前中国最大铅锌矿床，也是世界上在形成时代最新且唯一陆相沉积岩容重大型铅锌矿床（Xue et al., 2003），代表了沉积岩容铅锌矿床的最新类型，即“金顶型”（Xue et al., 2004, 2007）；矿田内矿石、围岩及矿石中包裹体中发育多种不同产状和形式的有机物质（胡明安, 1989a; 薛春纪等, 2002a; 王大锐和张杭, 2003; 常象春和张金亮, 2003; 付修根, 2004），是揭示有机物质与金属成矿关系的重要地区。

1 金顶矿床地质背景和矿床地质

云南金顶铅锌矿床产于西南三江褶皱系中段兰坪-中新生代沉积盆地中部，这个盆地处于处在澜沧江与金沙江-哀牢山两个构造带之间的昌都-思茅微板块，东侧与扬子板块相接，西侧与保山地块毗邻。受中-新生代金沙江准洋和澜沧江相冲断冲入印度与欧亚板块持续作用影响，兰坪盆地在古特提斯基础上先后沉积了中-新生界海相、陆相碳酸盐岩、火山岩和碎屑岩建造，地层中多个陆相含膏盐层位，存在多个沉积间断。以盆地东、西边缘金沙江-哀牢山和澜沧江断裂带及盆地中央兰坪-思茅断裂为界限构成的盆地断裂系统深达下地壳或上地幔，同时存在南北走向隐伏构造，它们共同控制了盆地的构造演化。盆地印支期为残留海相，燕山期是拗陷盆地，喜马拉雅期属走滑拉分盆地。受印度板块与欧亚板块碰撞挤压作用，地幔拉张和地幔流体上涌，岩浆活动与地幔岩浆活动形成复杂多样的岩浆岩和变质岩。金顶矿床的成矿作用与东边的华力西运动和喜马拉雅运动密切相关。

2 金顶矿床成矿机理

2.1 矿床成因类型

金顶矿床成因类型为“金顶型”（Xue et al., 2004, 2007）。该成矿类型具有新的特点：(1) 具有独特的金顶型成矿特征，如金顶型矿床的成矿作用与东边的华力西运动和喜马拉雅运动密切相关。(2) 具有独特的金顶型成矿特征，如金顶型矿床的成矿作用与东边的华力西运动和喜马拉雅运动密切相关。
(J1, J2) J1, h 和坝区路组 (J1, b) 构成，其中 J1, h 为含钙粉砂质泥岩，泥灰岩夹泥质层。白垩系 K1 j 浅灰色至灰黄色泥岩中有植物碎屑或夹层；南新组 (K2, n) 红色粉砂泥岩和 K1, h 厚层砂岩中均无明显有机物质。三叠系 E1 Y 红色蒸发岩沉积为主，果宗组 (E1, g) 是红色砂岩夹泥岩，它们都不含有机物质；宝相组 (E2, b) 粗碎屑沉积，含植物碎屑；E2, q 为巨砾岩和砂泥岩。新近系双河组 (N1, s) 为陆相砂岩沉积，剑川组 (N2, j) 为粗面质凝灰岩沉积，三营组 (N3, s) 为煤系沉积。

金顶矿区外围区域，三叠系相和海陆过渡相沉积地层中有机物质比较丰富，主体是 I 型和 II 型有机质，白垩系及以后的陆相地层中 III 型有机质为主。这些有机质在中-新生界中分布较广，但没有明显的集中区，未见天然气、轻油和重油等油气显示，热成熟程度低。

2.2 金顶矿区有机岩相

相对于金顶矿区外围区域中新世-新生代中的有机物质，在金顶矿区的岩石和矿石中有机物质更为常见，形式更加多样。矿区 T1 s 中沥青灰色岩多见，夹有炭质泥灰岩及炭质泥岩薄层，沥青含量在 1%～25% 不等，它们富高热值 (图 1-1)，有机质多为含泥沥青和干酪根，显微镜下集合成黑色条带和层状，样品无一定形态和内部构造 (图 1-2)，显微镜下有机质含量高。矿区 T1, m 中常见有氧化碳质泥岩和碳质泥灰岩，含碳化植物碎片。J1 h 中发育黑色碳质泥岩。矿区 K1 j 砂岩基本全层发育铁质硫化物矿化，砂岩型铁矿和矿石化砂岩中常会嗅到油脂味 (特别是汽油味)；打开标本时，常会观察到 (较轻) 石油从样品中呈混合状向四周扩散，并且有一股浓烈的汽油味；K1 j 砂岩型矿石或矿化砂岩中也常见到有机物质斑块 (黑色) 结晶状 (图 1-3)，被其内部演化显示为轻质石油的包裹体特性。K1 j 砂岩型矿石或矿化砂岩中还发现有沥青 (图 1-4)，并用氯仿脱沥青，在常温下有机质有不同形式和内部结构的分布。不同方向裂隙中常会嗅到石油味，黄铁矿和方解石均自形晶，具有石质和新鲜面，密度不等。

矿区 E1 y 与矿床外缘区域 E1 y 差别更大，矿床外缘区域 E1 y 中没有明显有机物质。矿区 E1 y 砂岩中含细砾岩层中磁铁矿为主的硫化物矿化，多黑色或深色，常嗅到的石油味道比 K1 j 砂岩型矿石或矿化砂岩中更加浓烈。野外开打井，矿石标本时，嗅到的石油气味让人感到刺激和难忍。在角砾岩型矿石的矿洞中常发现黑色碳质泥岩，具有石质和新鲜面，可见黑色油膏从空洞中慢慢渗出 (图 1-7，8)。角砾岩型矿石内空洞或晶洞及其附近常见黑色玻璃状 (脆) 沥青 (图 1-9)，晶洞中见玻璃状 (脆) 沥青与自形晶黄铁矿伴生 (图 1-10)。矿区 E1 y 岩石矿段中还发现有沥青体系，E1 y 砂岩中还常见到成岩阶段 (可能是金顶穹隆形成后) 不同方向裂隙中填填的“黄铁矿” + 天青石 + 沥青脉，黄铁矿和天青石均自形晶，沥青不定形产于脉体中央 (图 1-12)。 矿区 T1 s 和 T1 m 灰岩、泥灰岩及 E1 y 砂岩岩相学和地球化学

矿区 T1 s 中沥青灰色岩多见，夹有炭质泥灰岩及炭质泥岩薄层，沥青含量在 1%～25% 不等，它们富高热值 (图 1-1)，有机质多为含泥沥青和干酪根，显微镜下集合成黑色条带和层状，样品无一定形态和内部构造 (图 1-2)，显微镜下有机质含量高。矿区 T1, m 中常见有氧化碳质泥岩和碳质泥灰岩，含碳化植物碎片。J1 h 中发育黑色碳质泥岩。矿区 K1 j 砂岩基本全层发育铁质硫化物矿化，砂岩型铁矿和矿石化砂岩中常会嗅到油脂味 (特别是汽油味)；打开标本时，常会观察到 (较轻) 石油从样品中呈混合状向四周扩散，并且有一股浓烈的汽油味；K1 j 砂岩型矿石或矿化砂岩中也常见到有机物质斑块 (黑色) 结晶状 (图 1-3)，被其内部演化显示为轻质石油的包裹体特性。K1 j 砂岩型矿石或矿化砂岩中还发现有沥青 (图 1-4)，并用氯仿脱沥青，在常温下有机质有不同形式和内部结构的分布。不同方向裂隙中常会嗅到石油味，黄铁矿和方解石均自形晶，具有石质和新鲜面，密度不等。
图 1 滇西北兰坪盆地金顶超大型矿床矿区矿石和矿化岩石中有机物质宏观和显微岩相学照片

1-T.s．炭质泥灰岩及炭质泥岩夹层（地点：南、北峰子山之间地表）；2-T.s．炭质泥灰岩内的显微层次状泥质沥青和干酪根（黑色）（透射单偏光）；3-Kij 砂岩型矿石中团块状产出的干酪根和沥青（黑色）（地点：北厂矿段露天采场）；4-Kij 砂岩型矿石中浸染状产出的干酪根和沥青（黑色）（地点：北厂矿段露天采场）；5-显微镜下观察 Kij 砂岩钙质胶结物（透明浅色矿物为方解石）中浸染状、团块状分布的不定形干酪根及其与闪锌矿（棕色、半透明）的伴生物关系（透射单偏光，地点：北厂矿段露天采场）；6-Kij 砂岩钙质胶结物（透明浅色矿物为方解石）被闪锌矿（棕灰色）交代，并且伴生有沥青质（黑色）（透射单偏光，地点：北厂矿段露天采场）；7 和 8-Eiy 含砾细砂岩中角砾岩型矿石空洞中聚集的重油（地点：跑马坪矿段 2220 米中段地下采场）；9-Eiy 角砾岩型矿石空洞或晶洞中常见玻璃状（脆）沥青（地点：架崖山矿段露天采场）；10-Eiy 角砾岩型矿石晶洞中玻璃状（脆）沥青（黑色）与自形晶黄铁矿（已氧化成黄褐色）伴生（地点：架崖山矿段露天采场）；11-Eiy 含砾细砂岩中含沥青的囊状体，可能为古油气藏遗迹（地点：架崖山露天采场）；12-Eiy 含砾细砂岩中多方向裂隙充填的“黄铁矿 + 天青石 + 沥青”脉（脉体）中天青石与自形粗晶，沥青不定形产于脉体中央（地点：跑马坪矿段主斜井 2520 米中段）；13-Tys 灰岩中裂隙充填的“沥青 + 方解石”脉（地点：峰子山矿段地表）；14-Ty 灰岩中显微裂隙充填的“沥青 + 方解石”脉（透射单偏光，样品采自峰子山矿段地表）；15 和 16-Tys 灰岩中裂隙充填交代形成的含黄铁矿“沥青 + 方解石”脉（地点：南、北峰子山矿段之间地表）；17-照片 16“沥青 + 方解石”脉中方解石矿物晶体内石油包裹体（透射单偏光）；18-紫外光光源下照片 17 中石油包裹体的荧光性明显（透射单偏光）；19-照片 14“沥青 + 方解石”脉中方解石矿物晶体内甲烷次生包裹体（透射单偏光）；20-紫外光光源下照片 19 中甲烷包裹体荧光性（透射单偏光）

Fig. 1 The macro- and micro-petrography pictures of the organic matter in ores and the ore-bearing rocks in the Jinding giant deposit, Lamping, SW-China
<table>
<thead>
<tr>
<th>序号</th>
<th>样品号</th>
<th>位置</th>
<th>有机碳（C） (%)</th>
<th>氯仿沥青“A” (10^-6)</th>
<th>有机转化率 (%)</th>
<th>饱和烃 (10^-6)</th>
<th>芳香烃 (10^-6)</th>
<th>总烃 (10^-6)</th>
<th>非烃+沥青烯 (10^-6)</th>
<th>总烃/“A”</th>
<th>(非烃+沥青烯)/“A”</th>
<th>饱和烃/芳香烃</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>J05-01</td>
<td>峰子山</td>
<td>72.00</td>
<td>20.94</td>
<td>26.49</td>
<td>47.43</td>
<td>24.57</td>
<td>0.6588</td>
<td>0.3412</td>
<td>0.7907</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>FN20</td>
<td>峰子山</td>
<td>242.00</td>
<td>65.27</td>
<td>114.90</td>
<td>180.17</td>
<td>61.83</td>
<td>0.7445</td>
<td>0.2555</td>
<td>0.5680</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>FN22</td>
<td>峰子山</td>
<td>621.01</td>
<td>239.83</td>
<td>146.39</td>
<td>386.21</td>
<td>234.80</td>
<td>0.6219</td>
<td>0.3781</td>
<td>1.6485</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>J05-02</td>
<td>架壁山</td>
<td>433.00</td>
<td>137.87</td>
<td>114.14</td>
<td>252.01</td>
<td>180.99</td>
<td>0.5820</td>
<td>0.4180</td>
<td>1.2079</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>J05-04</td>
<td>架壁山</td>
<td>183425.00</td>
<td>47983.98</td>
<td>33676.83</td>
<td>81660.81</td>
<td>101764.19</td>
<td>0.4452</td>
<td>0.5548</td>
<td>1.4248</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2JY03</td>
<td>架壁山</td>
<td>148000.00</td>
<td>29259.60</td>
<td>34765.20</td>
<td>64024.80</td>
<td>83975.20</td>
<td>0.4326</td>
<td>0.5674</td>
<td>0.8164</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>JYS18</td>
<td>架壁山</td>
<td>20869.82</td>
<td>2277.35</td>
<td>6084.77</td>
<td>8362.12</td>
<td>12507.70</td>
<td>0.4006</td>
<td>0.5992</td>
<td>0.3742</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PMR02</td>
<td>跑马坪</td>
<td>727.99</td>
<td>225.38</td>
<td>200.05</td>
<td>425.43</td>
<td>302.56</td>
<td>0.5844</td>
<td>0.4156</td>
<td>1.1266</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>PMR06</td>
<td>跑马坪</td>
<td>558.00</td>
<td>256.46</td>
<td>193.51</td>
<td>449.97</td>
<td>108.03</td>
<td>0.8064</td>
<td>0.1936</td>
<td>1.3253</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>PMR07</td>
<td>跑马坪</td>
<td>978.00</td>
<td>413.40</td>
<td>348.85</td>
<td>762.25</td>
<td>215.75</td>
<td>0.7794</td>
<td>0.2206</td>
<td>1.1850</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>JP14</td>
<td>跑马坪</td>
<td>363.00</td>
<td>91.11</td>
<td>161.97</td>
<td>253.08</td>
<td>109.92</td>
<td>0.6972</td>
<td>0.3028</td>
<td>0.5625</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>NC08</td>
<td>南厂</td>
<td>46301.74</td>
<td>9609.53</td>
<td>15657.75</td>
<td>25267.28</td>
<td>21034.46</td>
<td>0.5456</td>
<td>0.4542</td>
<td>0.6137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>NC12</td>
<td>南厂</td>
<td>13330.33</td>
<td>2241.28</td>
<td>1993.28</td>
<td>4234.56</td>
<td>9095.77</td>
<td>0.3176</td>
<td>0.6822</td>
<td>1.1244</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>XP59</td>
<td>西坡</td>
<td>39545.42</td>
<td>30450.00</td>
<td>31280.49</td>
<td>61730.49</td>
<td>333684.93</td>
<td>0.1561</td>
<td>0.8438</td>
<td>0.9735</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>H8</td>
<td>矿区</td>
<td>1.12</td>
<td>808.50</td>
<td>7.2</td>
<td>487.99</td>
<td>164.38</td>
<td>652.37</td>
<td>156.13</td>
<td>0.8068</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>H15</td>
<td>矿区</td>
<td>2.17</td>
<td>187.00</td>
<td>0.7</td>
<td>61.99</td>
<td>55.00</td>
<td>116.99</td>
<td>70.01</td>
<td>0.6256</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>H16</td>
<td>矿区</td>
<td>1.26</td>
<td>110.00</td>
<td>0.9</td>
<td>32.95</td>
<td>25.01</td>
<td>57.96</td>
<td>52.04</td>
<td>0.5266</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>H17</td>
<td>矿区</td>
<td>1.40</td>
<td>796.50</td>
<td>5.7</td>
<td>323.06</td>
<td>188.45</td>
<td>511.51</td>
<td>284.99</td>
<td>0.6422</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>H23</td>
<td>矿区</td>
<td>2.22</td>
<td>670.50</td>
<td>3.0</td>
<td>341.75</td>
<td>177.15</td>
<td>518.90</td>
<td>151.60</td>
<td>0.7730</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>H28</td>
<td>矿区</td>
<td>1.57</td>
<td>266.00</td>
<td>1.7</td>
<td>83.04</td>
<td>35.72</td>
<td>118.76</td>
<td>147.23</td>
<td>0.4465</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>H38</td>
<td>矿区</td>
<td>0.82</td>
<td>266.00</td>
<td>3.2</td>
<td>110.79</td>
<td>65.30</td>
<td>176.09</td>
<td>89.91</td>
<td>0.6620</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>H39</td>
<td>矿区</td>
<td>1.06</td>
<td>488.80</td>
<td>4.5</td>
<td>207.65</td>
<td>69.48</td>
<td>277.11</td>
<td>211.69</td>
<td>0.5669</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>H44</td>
<td>矿区</td>
<td>2.66</td>
<td>143.00</td>
<td>0.5</td>
<td>44.37</td>
<td>44.94</td>
<td>98.05</td>
<td>83.95</td>
<td>0.6246</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>M1</td>
<td>矿床外围</td>
<td>3.40</td>
<td>6411.50</td>
<td>18.9</td>
<td>1162.40</td>
<td>2287.62</td>
<td>3450.02</td>
<td>2961.48</td>
<td>0.5381</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>M2</td>
<td>矿床外围</td>
<td>3.04</td>
<td>1449.00</td>
<td>4.5</td>
<td>293.71</td>
<td>321.68</td>
<td>615.39</td>
<td>833.61</td>
<td>0.4247</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>M3</td>
<td>矿床外围</td>
<td>1.12</td>
<td>99.00</td>
<td>0.9</td>
<td>13.84</td>
<td>14.53</td>
<td>28.37</td>
<td>70.63</td>
<td>0.2866</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>M4</td>
<td>矿床外围</td>
<td>3.08</td>
<td>5474.50</td>
<td>17.8</td>
<td>766.28</td>
<td>1681.61</td>
<td>2447.89</td>
<td>3026.61</td>
<td>0.4473</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>M5</td>
<td>矿床外围</td>
<td>3.27</td>
<td>678.00</td>
<td>2.1</td>
<td>133.97</td>
<td>228.01</td>
<td>361.98</td>
<td>316.02</td>
<td>0.5339</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>M6</td>
<td>矿床外围</td>
<td>3.52</td>
<td>182.00</td>
<td>0.6</td>
<td>43.30</td>
<td>59.62</td>
<td>102.92</td>
<td>79.08</td>
<td>0.5655</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注：序号1~14为金顶矿区样品，本文在中国石油勘探开发研究院石油地质实验研究中心测试，序号15~29样品引自胡明安(1989a)；有机转化率等于氯仿沥青“A”占有机碳的百分率；一代表未测。
<table>
<thead>
<tr>
<th>序号</th>
<th>样品号</th>
<th>样品位置</th>
<th>峰型特征</th>
<th>碳数集中范围</th>
<th>主峰位置</th>
<th>(\Sigma 21 - / \Sigma 22 +)</th>
<th>(C_{21 - 22} / C_{28 + 29})</th>
<th>Pr/Ph</th>
<th>Pr/C₇</th>
<th>Ph/C₈</th>
<th>OEP</th>
<th>CPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NC08</td>
<td>南厂</td>
<td>单峰型</td>
<td>(C_{12 - 29})</td>
<td>(C_{27})</td>
<td>0.93</td>
<td>0.78</td>
<td>0.44</td>
<td>0.25</td>
<td>0.49</td>
<td>1.53</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>NC₁₂</td>
<td>南厂</td>
<td>单峰型</td>
<td>(C_{12 - 30})</td>
<td>(C_{27})</td>
<td>0.93</td>
<td>1.76</td>
<td>0.76</td>
<td>0.35</td>
<td>0.39</td>
<td>1.24</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>XP59</td>
<td>西坡</td>
<td>前单高峰</td>
<td>(C_{11 - 29})</td>
<td>(C_{16})</td>
<td>1.47</td>
<td>1.34</td>
<td>0.56</td>
<td>0.28</td>
<td>0.51</td>
<td>0.95</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>JYS18</td>
<td>架崖山</td>
<td>单峰型</td>
<td>(C_{12 - 31})</td>
<td>(C_{26})</td>
<td>0.47</td>
<td>0.78</td>
<td>0.41</td>
<td>0.64</td>
<td>1.57</td>
<td>1.01</td>
<td>1.12</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>矿区</td>
<td>单峰型</td>
<td>(C_{10 - 28})</td>
<td>(C_{16})</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.957</td>
<td>—</td>
<td>0.442</td>
<td>0.837</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>矿区</td>
<td>双峰型</td>
<td>(C_{10 - 33})</td>
<td>(C_{15, 29})</td>
<td>—</td>
<td>—</td>
<td>0.59</td>
<td>—</td>
<td>0.965</td>
<td>0.854</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>矿区</td>
<td>单峰型</td>
<td>(C_{12 - 32})</td>
<td>(C_{16})</td>
<td>—</td>
<td>—</td>
<td>1.01</td>
<td>—</td>
<td>0.56</td>
<td>0.911</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>XB01</td>
<td>西坡</td>
<td>单峰型</td>
<td>(C_{10 - 34})</td>
<td>(C_{22})</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.10</td>
<td>—</td>
<td>0.626</td>
<td>0.976</td>
</tr>
<tr>
<td>9</td>
<td>H15</td>
<td>矿区</td>
<td>前单高峰</td>
<td>(C_{14 - 33})</td>
<td>(C_{17})</td>
<td>—</td>
<td>2.523</td>
<td>1.047</td>
<td>0.54</td>
<td>0.559</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td>H16</td>
<td>矿区</td>
<td>前单高峰</td>
<td>(C_{14 - 33})</td>
<td>(C_{19})</td>
<td>—</td>
<td>3.072</td>
<td>1.032</td>
<td>0.492</td>
<td>0.471</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>11</td>
<td>H17</td>
<td>矿区</td>
<td>前单高峰</td>
<td>(C_{15 - 29})</td>
<td>(C_{16})</td>
<td>—</td>
<td>3.582</td>
<td>1.147</td>
<td>0.620</td>
<td>0.833</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>12</td>
<td>H38</td>
<td>矿区</td>
<td>前单高峰</td>
<td>(C_{18 - 33})</td>
<td>(C_{20})</td>
<td>—</td>
<td>1.041</td>
<td>1.054</td>
<td>0.046</td>
<td>0.556</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>13</td>
<td>M1</td>
<td>矿床外围</td>
<td>前单高峰</td>
<td>(C_{18 - 32})</td>
<td>(C_{28})</td>
<td>—</td>
<td>5.097</td>
<td>1.000</td>
<td>0.83</td>
<td>0.61</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>14</td>
<td>M2</td>
<td>矿床外围</td>
<td>前单双峰</td>
<td>(C_{14 - 33})</td>
<td>(C_{19, 28})</td>
<td>—</td>
<td>1.336</td>
<td>0.77</td>
<td>0.76</td>
<td>1.00</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>15</td>
<td>M3</td>
<td>矿床外围</td>
<td>前单高峰</td>
<td>(C_{18 - 34})</td>
<td>(C_{19})</td>
<td>—</td>
<td>1.611</td>
<td>0.73</td>
<td>0.93</td>
<td>1.37</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>16</td>
<td>M4</td>
<td>矿床外围</td>
<td>前单高峰</td>
<td>(C_{18 - 30})</td>
<td>(C_{19})</td>
<td>—</td>
<td>2.226</td>
<td>0.67</td>
<td>0.45</td>
<td>0.72</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>17</td>
<td>M5</td>
<td>矿床外围</td>
<td>前单双峰</td>
<td>(C_{15 - 32})</td>
<td>(C_{17, 28})</td>
<td>—</td>
<td>1.972</td>
<td>1.19</td>
<td>1.02</td>
<td>1.00</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>18</td>
<td>M6</td>
<td>矿床外围</td>
<td>前单双峰</td>
<td>(C_{16 - 33})</td>
<td>(C_{18, 28})</td>
<td>—</td>
<td>1.945</td>
<td>0.47</td>
<td>0.81</td>
<td>1.28</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

注: 序号 1～4 为矿区样品, 本文在中国石油勘探开发研究院石油地质实验研究中心测试; 序号 5～7 样品引自常向春等(2003); 序号 8 为矿区样品, 引自付修根(2004); 序号 9～12 样品引自胡明安(1989a)。——代表未测。\(\Sigma 21 - / \Sigma 22 + \) 代表碳数小于 21 与碳数大于 22 的所有饱和烃数之比, \(C_{21 + 22} / C_{28 + 29} \) 代表碳数为 21 与碳数为 28 之比, Pr 为植烷烃, Ph 为烷烃。
表3 金顶超大型矿床矿区矿石及矿化岩石中有机质内核和甾体内涵联测结果

<table>
<thead>
<tr>
<th>序号</th>
<th>样号</th>
<th>矿段</th>
<th>有机质产状和性质</th>
<th>Ts/Tm</th>
<th>C_{29}Ts/ (C_{28}Ts + C_{29}H)</th>
<th>C_{31}22S/ (S + R 萃烃)</th>
<th>C_{31}22S/ C_{31}22R</th>
<th>伽马峰岩/ αβC_{30} 萃烃</th>
<th>重排峰岩/ 变规甾岩</th>
<th>稠油 5α-C_{29},20R/ (20R + 20S) + C_{29}αβ</th>
<th>C_{29}αβ/ (C_{29}αβ + C_{29}α)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>J05-01</td>
<td>峰子山</td>
<td>T_{12} 沥青灰岩中沥青</td>
<td>1.22</td>
<td>0.221</td>
<td>0.556</td>
<td>0.4108</td>
<td>0.7498</td>
<td>0.3862</td>
<td>0.5820</td>
<td>0.4279</td>
</tr>
<tr>
<td>2</td>
<td>FN20</td>
<td>峰子山</td>
<td>T_{13} 沥青灰岩中沥青</td>
<td>2.31</td>
<td>0.255</td>
<td>0.526</td>
<td>0.3450</td>
<td>0.9480</td>
<td>0.3760</td>
<td>0.5570</td>
<td>0.4470</td>
</tr>
<tr>
<td>3</td>
<td>FN22</td>
<td>峰子山</td>
<td>天青石晶洞中沥青</td>
<td>1.63</td>
<td>0.262</td>
<td>0.548</td>
<td>0.3260</td>
<td>1.1390</td>
<td>0.4915</td>
<td>0.5487</td>
<td>0.5416</td>
</tr>
<tr>
<td>4</td>
<td>J05-02</td>
<td>架崖岩</td>
<td>天青石脉中沥青</td>
<td>1.11</td>
<td>0.202</td>
<td>0.554</td>
<td>0.3951</td>
<td>1.0151</td>
<td>0.4182</td>
<td>0.5494</td>
<td>0.5023</td>
</tr>
<tr>
<td>5</td>
<td>J05-04</td>
<td>架崖岩</td>
<td>E_{11}Y 含砾细砂岩中重油</td>
<td>1.16</td>
<td>0.214</td>
<td>0.560</td>
<td>0.3370</td>
<td>1.1500</td>
<td>0.4224</td>
<td>0.5504</td>
<td>0.4485</td>
</tr>
<tr>
<td>6</td>
<td>2JY03</td>
<td>架崖岩</td>
<td>E_{11}Y 含砾细砂岩沥青</td>
<td>2.45</td>
<td>0.220</td>
<td>0.561</td>
<td>0.3630</td>
<td>1.1810</td>
<td>0.8100</td>
<td>0.5200</td>
<td>0.5900</td>
</tr>
<tr>
<td>7</td>
<td>PMH02</td>
<td>跑马坪</td>
<td>天青石脉中沥青</td>
<td>0.91</td>
<td>0.186</td>
<td>0.553</td>
<td>0.5566</td>
<td>0.6027</td>
<td>0.4480</td>
<td>0.4950</td>
<td>0.4560</td>
</tr>
<tr>
<td>8</td>
<td>PMH06</td>
<td>跑马坪</td>
<td>天青石脉中沥青</td>
<td>0.83</td>
<td>0.341</td>
<td>0.541</td>
<td>0.2762</td>
<td>1.2646</td>
<td>0.3550</td>
<td>0.5430</td>
<td>0.4560</td>
</tr>
<tr>
<td>9</td>
<td>PMH07</td>
<td>跑马坪</td>
<td>E_{11}Y 含砾细砂岩中重油</td>
<td>2.76</td>
<td>0.357</td>
<td>0.537</td>
<td>0.3177</td>
<td>1.0748</td>
<td>0.9573</td>
<td>0.5096</td>
<td>0.6906</td>
</tr>
<tr>
<td>10</td>
<td>JP14</td>
<td>跑马坪</td>
<td>天青石脉中沥青</td>
<td>1.25</td>
<td>0.194</td>
<td>0.513</td>
<td>0.4960</td>
<td>0.9450</td>
<td>0.4200</td>
<td>0.5600</td>
<td>0.4510</td>
</tr>
</tbody>
</table>

注：本文在中国石油勘探开发研究院石油地质实验研究中心测试；Ts 为 18α(H) 三降藿烷，Tm 为 17α(H) 三降藿烷，C_{29}Ts 为 18α(H)17α(H) 甲基 30 降新藿烷，C_{29}H 为 17α(H) 30 降藿烷，C_{31}22S 为 C_{31} 霍烷 C-22S 构型，C_{29}22R 为 C_{31} 霍烷 C-22R 构型，αβC_{30} 为 C_{30} 霍烷 αβ 构型，甾岩 5α-C_{29},20R/ (20R + 20S) + C_{29}αβ 为 C_{29} αβ 构型，C_{29}αβ 为 C_{29} αβ 构型，C_{29}αα 为 C_{29} αα 构型。

表4 金顶超大型矿床矿区矿石及矿化岩石中有机质内核和甾体内涵分析结果

<table>
<thead>
<tr>
<th>序号</th>
<th>样号</th>
<th>矿段</th>
<th>有机质产状和性质</th>
<th>MPI</th>
<th>DPI</th>
<th>MPI_{1}</th>
<th>MPI_{2}</th>
<th>MPR_{1}</th>
<th>MPR_{2}</th>
<th>MPR_{3}</th>
<th>MPR_{4}</th>
<th>R_{0}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>J05-01</td>
<td>峰子山</td>
<td>T_{12} 沥青灰岩中沥青</td>
<td>0.826</td>
<td>1.089</td>
<td>0.276</td>
<td>0.311</td>
<td>0.222</td>
<td>0.16</td>
<td>0.124</td>
<td>0.321</td>
<td>0.5656</td>
</tr>
<tr>
<td>2</td>
<td>FN20</td>
<td>峰子山</td>
<td>T_{13} 沥青灰岩中沥青</td>
<td>2.068</td>
<td>2.754</td>
<td>0.438</td>
<td>0.517</td>
<td>0.478</td>
<td>0.409</td>
<td>0.284</td>
<td>0.896</td>
<td>0.6628</td>
</tr>
<tr>
<td>3</td>
<td>FN22</td>
<td>峰子山</td>
<td>天青石晶洞中沥青</td>
<td>1.152</td>
<td>0.988</td>
<td>0.339</td>
<td>0.387</td>
<td>0.264</td>
<td>0.226</td>
<td>0.170</td>
<td>0.491</td>
<td>0.6034</td>
</tr>
<tr>
<td>4</td>
<td>J05-02</td>
<td>架崖岩</td>
<td>天青石脉中沥青</td>
<td>0.578</td>
<td>0.433</td>
<td>0.216</td>
<td>0.252</td>
<td>0.148</td>
<td>0.116</td>
<td>0.082</td>
<td>0.233</td>
<td>0.5290</td>
</tr>
<tr>
<td>5</td>
<td>J05-04</td>
<td>架崖岩</td>
<td>E_{11}Y 含砾细砂岩中重油</td>
<td>1.686</td>
<td>1.219</td>
<td>0.294</td>
<td>0.323</td>
<td>0.086</td>
<td>0.141</td>
<td>0.112</td>
<td>0.208</td>
<td>0.5764</td>
</tr>
<tr>
<td>6</td>
<td>2JY03</td>
<td>架崖岩</td>
<td>E_{11}Y 含砾细砂岩沥青</td>
<td>0.547</td>
<td>0.308</td>
<td>0.383</td>
<td>0.422</td>
<td>0.125</td>
<td>0.190</td>
<td>0.155</td>
<td>2.913</td>
<td>0.6298</td>
</tr>
<tr>
<td>7</td>
<td>PMH02</td>
<td>跑马坪</td>
<td>天青石脉中沥青</td>
<td>1.982</td>
<td>2.111</td>
<td>0.390</td>
<td>0.466</td>
<td>0.473</td>
<td>0.367</td>
<td>0.248</td>
<td>1.178</td>
<td>0.6340</td>
</tr>
<tr>
<td>8</td>
<td>PMH06</td>
<td>跑马坪</td>
<td>E_{11}Y 沥青灰岩角砾中沥青</td>
<td>3.605</td>
<td>5.279</td>
<td>0.434</td>
<td>0.558</td>
<td>0.913</td>
<td>0.664</td>
<td>0.369</td>
<td>1.345</td>
<td>0.6604</td>
</tr>
<tr>
<td>9</td>
<td>PMH07</td>
<td>跑马坪</td>
<td>E_{11}Y 含砾细砂岩中重油</td>
<td>2.590</td>
<td>3.079</td>
<td>0.410</td>
<td>0.514</td>
<td>0.669</td>
<td>0.483</td>
<td>0.289</td>
<td>1.114</td>
<td>0.6460</td>
</tr>
<tr>
<td>10</td>
<td>JP14</td>
<td>跑马坪</td>
<td>E_{11}Y 沥青灰岩角砾中沥青</td>
<td>0.693</td>
<td>0.376</td>
<td>0.252</td>
<td>0.312</td>
<td>0.488</td>
<td>0.239</td>
<td>0.148</td>
<td>0.060</td>
<td>0.5512</td>
</tr>
</tbody>
</table>

注：本文在中国石油勘探开发研究院石油地质实验研究中心测试；MPI 为甲基菲/非；DPI 为二甲基菲/非；MPI_{1} 为 1.5 × (二甲基菲 + 甲基菲) / (非 + 二甲基菲 + 甲基菲)；MPI_{2} 为 3 × 二甲基菲/(非 + 二甲基菲 + 甲基菲)；MP_{R_{1}} 为一甲基菲/非；MP_{R_{2}} 为二甲基菲/非；MP_{R_{3}} 为三甲基菲/非；R_{0} 为九甲基菲/非；R_{0} = 0.6 × MPI_{1} + 0.4
有机物质内氯仿沥青到热影响而成熟。矿床外围岩石具有更大的变幅，沥青烯减小，峰碳数为平均。氯仿沥青平均为样品中泥质岩族组分中等含量较高，平均 Pr/Ph = 0.805，Pr/C_{17} = 0.8，Ph/C_{18} = 0.997，不具明显的奇偶优势，C_{21}+22 / C_{28}+29 = 1.336 ~ 5.097，反映原始有机质来自海相生物。金顶矿床外围区域岩石中有机质主要来源于海相生物。

在金顶矿区矿石及矿化岩石中，有机质的饱和烃气相色谱也检测出丰度较高的正构烷烃，Pr，Ph 和 iC_{18} 等生物标志化合物 (图 3)，但 Pr，Ph，iC_{18} 等含量低于正构烷烃。饱和烃分子碳数分布介于 C_{10} ~ C_{34} 之间，形式有单峰、双峰和和双峰型等，C_{21}+22 / C_{28}+29 = 0.78 ~ 3.582，与矿床外围岩石中有机质相似；Pr/C_{17} 介于 0.25 ~ 0.646，Ph/C_{18} 介于 0.39 ~ 1.57，指示烃源母质形成于一种较强的还原环境 (Peters and Moldowan, 1993；Tissot and Weite, 1989)，或与高成熟度有关 (Blumer et al., 1971)。单峰高峰型有机质样品主峰碳主要为 C_{16}，C_{17}，C_{18}，C_{19}，后峰基本消失，饱和烷烃主要分布区段和主峰位置均有前移的趋势，不具明显的奇偶优势，烃源母质可能为低等水生藻类 (Caldicott and Englinton, 1973)；正构烷烃轻烃/重烃大于 1，OEP 接近于 1，反映热演化程度较高。后单高峰型样品相对较少，正构烷烃轻烃/重烃

图 2 金顶超大型矿床矿石及岩石中有机物质的氯仿沥青“A”的族组成

Fig. 2 The family compositions of chloroform bitumen “A” of the organic matter in ores and rocks of the giant Jinding deposit

图 3 金顶矿区矿石及矿化岩石中饱和烃气相色谱

Fig. 3 The gas chromatograms of saturated hydrocarbons in ores and ore-bearing rocks in the Jinding deposit
检出说明了菌藻类对有机质贡献断裂烷成岩作用初期细菌藿烷在微生物参与下四环萜烷含量甚少其中以薛春纪等图金顶矿区矿石和矿化岩石中有机质的饱和烃质谱以藿烷结构为骨架的五环三萜烷在矿区有机质被升补身烷为主接近于补身烷较丰富较多检测,主要包括三降藿烷,降藿烷,降新藿烷,重排藿烷,藿烷,升藿烷,二升藿烷,三升藿烷,四升藿烷及五升藿烷, C_{11}, 藿烷(升藿烷系列)丰度相对较高;升藿烷被认为是来自细菌藿烷四醇和一般存在于原核微生物中的其它多官能团 C_{29}藿烷类化合物,高含量的升藿烷可能与沉积环境中较强烈的细菌活动有关,代表一种较强还原环境(Peters and Moldowan, 1993)。成熟度参数 Ts/Tm = 0.834 ~ 2.763(表3),表明有机质已处在成熟演化阶段; C_{29}Ts/(C_{30}Ts + C_{29}H)0.194~0.3565,表明已达到热平衡状态; C_{29}22S/(S + R)藿烷参数(0.513 ~ 0.561)相对较高,反映热演化程度已很高; C_{29}22S/C_{11}22R = 0.2762 ~ 0.5566,同样说明这些样品中有机质演化程度很高(王大锐和张抗,2003)。

图4 金顶矿区矿石和矿化岩石中有机质饱和烃质谱Fig. 4 The mass chromatogram of saturated hydrocarbons in ores and ore-bearing rocks in the Jinding deposit

图5 金顶矿区矿石及矿化岩石中有机质饱和烃质谱Fig. 5 The mass chromatogram of saturated hydrocarbons in ores and rocks in the Jinding deposit

1. 升藿烷 2. 升补身烷 3. 较占藿烷 4. 重排藿烷 5. 升藿烷 6. 伽玛蜡烷
非系列化合物是金顶矿区有机质样品中芳香烃含量最多的化合物，主要有菲、甲基菲、乙基菲以及二甲基菲。芳香烃的 $\text{MPI}_1 = 0.215 \sim 0.434$，$\text{MPI}_2 = 0.252 \sim 0.588$，计算的 $R_0 = 0.529 \sim 0.66$ (表4)。表明有机质已达到成熟阶段（胡明安，1989a）。芳香烃的 MPR_1，MPR_2 值较大，MPR_1，MPR_2 值大，这说明处于 β 位较稳定的甲基菲比处于活跃的 α 位上的甲基菲少，另外，黄英盛和李彦超（1984）认为，非系列化合物的主要是由海松烷烃芳构化作用形成海松烷烃，经重排作用形成二甲基菲，进一步经脱甲基作用形成甲基菲和菲；并在高成熟阶段，二甲基菲大量减少，菲含量成为高值。金顶矿区有机质样品中菲系含量略高于二甲基菲，进一步说明经重排作用形成的二甲基菲，在热力作用下的脱甲基作用还没达到极值，热演化程度已很高。

三芳甾烷一般认为是由甾类结构化合物的芳构化作用所形成，可能来源于类似浮游植物的活有机体中甾醇前身物（黄男绿等，1998）。金顶矿区有机质样品中检测出较丰富的三芳甾烷，包括 C_{20} ~ C_{22} 以及高碳数的 C_{28} ~ C_{30} 三芳甾烷等，其丰度平均为 9.31%，反映有机质还处于较强烈的芳构化过程中，去甲基化作用较弱，同样说明有机质演化程度很高，但还没有达到极值。

金顶矿区有机质中多苯并噻吩（硫芴）及三种衍生物（四甲基多苯并噻吩、三甲基多苯并噻吩和二甲基二苯并噻吩）丰度都较高，硫芴平均为 8.47%。所有矿段样品中多苯并噻吩（氧芴）及衍生物中多苯并噻吩的丰度较低（平均0.13%）。三芳（氧芴、芴、硫芴）系列化合物被认为是烃源岩沉积环境的良好指标，陆相淡水烃源岩及原油的氧芴含量高，沼泽相煤及煤成油的氧芴含量高，但还没有达到极值。

金顶矿区有机质中硫芴类化合物含量明显高于氧芴（图6），可能反映烃源岩主要为三叠系海相或泻湖相碳质泥岩和富

图6 金顶矿区矿石及矿化岩石中有机质饱和烃质谱
Fig. 6 The mass chromatogram of saturated hydrocarbons in ores rocks in the Jinding deposit
沉积环境具有高盐度特征。

矿区有机质中含丰富甾烷系列化合物（图6，表3），包括低分子量部分的甾烷，及甾烷、重排甾烷以及规则甾烷，其含量规则甾烷 > 重排甾烷 > 甾烷 > 升甾烷，重排甾烷/规则甾烷值介于 0.355 ~ 0.957 之间，规则甾烷中的 C_{27}，C_{28}，C_{29} 呈不对称的“V”字型分布，C_{27} 甾烷/C_{28} 甾烷值介于 0.861 ~ 1.19，体现了藻类和高等植物的混合有机质输入特征。成熟度参数（表3）甾烷 5α-C_{29} 20R/(20R + 20S) 比值为 0.495 ~ 0.582，C_{29}αβ/(C_{29}βα + C_{29}αα) 比值为 0.4279 ~ 0.6096，体现了成熟度相对较高的特征。

4.3 芳烃烃分子

芳香烃化合物种类繁多，成分复杂，信息丰富。金顶矿区矿石和矿化岩石中有机质内检测出菲、苯并菲、联苯、芘等芳香烃系列生物标志化合物。

矿区有机质中含一定量的萘系列化合物，包括萘、乙基萘、二甲基萘、三甲基萘和优达啉，它们的丰度三甲基萘 > 乙基萘 > 二甲基萘 > 萘，其中二甲基萘和三甲基萘丰度最高，表明萘系列化合物去甲基化作用较弱的特征。优达啉含量为 0.14% ~ 2.99%。

图7 金顶矿区岩石及矿石中有机质的三芳香烃系列化合物组成
Fig.7 The triangular diagram of three series of fluorene in ores and rocks in the Jinding deposit
碳泥灰岩。

联苯、甲基联苯、乙基联苯和二甲基联苯等联苯系列化合物在矿区有机质中明显可检，其中二甲基联苯含量高（J05-01除外），平均占到联苯系列化合物含量的64%，次为乙基联苯。烷烃和芳烃系列化合物典型的高等植物投入的烃类生物标志化合物，可能是某些三萜类降解和芳构化作用的产物，金顶矿区有机质中烷烃、芳烃系列化合物含量极低。

烷基苯系列化合物是β-胡萝卜素经氧化还原反应，进而芳构化后的降解产物（孟祥等，1998）。金顶矿区有机质中聚烯烃合解较多长链烷基苯，碳数分布介于C_{18}～C_{20}，主峰碳为C_{19}，其OEP为0.894，具有较强的偶碳优势，表明有机质中富集着具有β-胡萝卜素骨架的前身物，如真菌、细菌的色素等。

5 结论

金顶矿区石油及矿物岩石中产有多种有机物质，主要包括泥岩和泥灰岩中的干酪根、砂岩和含碳细砂岩中的轻油、天然气、浓沥青和沥青、灰岩和裂隙充填（方解石、基质）中的沥青（达1%～25%）以及矿体中捕获的石油、氨烃包裹体等，表现出干酪根、天然气和轻油、重油沥青等不同形式和成熟状态，油气显示突出，古油藏油气遗迹明显，它们是金顶古油藏在金属成矿过程中被改造、破坏及热成熟到裂解不同阶段的产物。

矿区石油及矿物岩石中有机物质的氢等值为“A”变化大（72×10^{-6}～935415.42×10^{-6}）。“A”属族分中，总烃（平均58.47%）大于非烃+沥青质（平均41.53%），饱和烃/芳香烃比值普遍大于1，反应有机质母岩的类型和有机质特征。有机质转化率（A/C_{0}＝0.5%～7.2%，平均为3.05%）较矿床外围岩石低，反映了钾热液热改造对矿体的热成熟。

金顶矿区石油及矿物岩石中有机质的饱和烃分子包括正构烷烃、Pr、Ph和iC_{18}等生物标志化合物，碳数分布介于C_{10}～C_{28}之间，C_{21}～C_{22} / C_{28}～C_{29} = 0.78～3.582，Pr/C_{17} = 0.25～0.646，Ph/C_{18} = 0.39～1.57。饱和烃中还含有C_{15}及C_{16}补生烃为主的二环倍半萜类和三环萜类、四环萜类、五环三萜类、伽玛蜡烷和甾烷系列等。有机质母质为海相藻类生物，发育的不同时代的成熟过程。

矿区有机质中检测出紫、三芳甾烷、氧化芳、芳、硫芳、联苯、吲哚及屈等芳香烃系列生物标志化合物。非系列化合物最为明显，包括菲、甲基菲、乙基菲以及二甲基菲。芳香烃的MPI_{1} = 0.215～0.434，MPI_{2} = 0.252～0.588。芳香烃中硫芳化合物含量明显高于氧化芳。甾萜等有机质母质发育在高盐度还原沉积环境，烃源岩主要为三叠系残留海相碳质泥岩和混源泥灰岩。

伴随兰坪盆地新生代推覆构造，尤其是金顶局部穹隆过程，很可能在金顶穹隆中形成油气藏，它是矿区铅锌快速大规模沉淀成矿的重要还原剂之一。
other polyterpenoid sterol surrogates. Annual Review of Microbiology, 41; 301 – 333
Xue CJ, Chen YC, Wang DH, Yang JG, Wang WG and Zeng R. 2003. Geology and isotopic composition of helium, neon, xenon and metallogenic age of the Jinding and Baiyangping ore deposits, northwest Yunnan, China. Science in China (Series D), 46 (8); 789 – 800
Xue CJ, Li SW, Chen YC, Zeng R and Zhao SH. 2004. Giant mineral deposits and their geodynamic setting in the Lamplung basin, Yunnan, China. Acta Geologica Sinica, 78 (2); 368 – 374
Xue CJ, Zeng R, Li SW, Chi GX and Qing HR. 2007. Geology, fluid inclusion and isotopic characteristics of the Jinding Zn-Pb deposit, western Yunnan, China, a review. Ore Geology Review, 31; 337 – 359

附中文参考文献

常爱明, 张金亮. 2003. 金顶铅锌矿床中原油地化特征及其意义。*特种油气藏*, 10 (5); 15 – 19
付修根. 2004. 金顶铅锌矿床生物成矿成矿探讨。*资源调查与环境*, 25 (3); 184 – 189
高广立. 1989. 论金顶铅锌矿床的地质问题。*地球科学*, 14 (5); 468 – 475
胡明安. 1989a. 有机热质的热液积累作用在云南金顶铅锌矿床形成过程中的意义。*地球科学*, 14 (5); 503 – 512
胡明安. 1989b. 试论岩溶型铅锌矿床的成矿作用及其特点—以云南金顶矿床为例。*地球科学*, 14 (5); 531 – 537
黄月萍, 李鲁超. 1984. 陆相有机质演化与成烃机制。*北京: 石油工业出版社*, 22 – 47
钱志太, 张松林, 崔明中, 李振西, 王有孝, 范璐. 1998. 不同沉积环境湖相低变原油的芳香烃分布特征。*沉积学报*, 17 (1); 112 – 120
王京彬, 李朝阳. 1991. 金顶超大型铅锌矿床 REE 地球化学研究。*地球化学*, 19 (4); 359 – 365
吴绪国, 吴世东. 1989. 云南金顶铅锌矿床构造演化及矿化富集规律。*地球科学*, 14 (5); 477 – 486
夏爱祥, 王春江, 陈仁祥, 王红武, 杜丽. 1999. 联苯系列化合物与苯并芪类化合物的形成机制。*中国科学*, 29 (3); 257 – 262
薛春纪, 陈毓川, 杨建民, 王登红, 徐压. 2002a. *滇西兰坪铅锌铜镍金矿床含贫 CO2 成矿物质及其地质意义*. *地质学报*, 76 (2); 244 – 253
薛春纪, 陈毓川, 杨建民. 2002b. 金顶铅锌矿床地质-地球化学特征。*矿床地质*, 21 (3); 270 – 277
赵兴元. 1989. 云南金顶铅锌矿床成因研究。*地球科学*, 14 (5); 522 – 530
朱方成, 朱利民, 林丽, 熊永桂, 伍艳春. 2003. *西成矿田泥盆系铅锌矿床的有机化成矿作用*. *地球科学*, 28 (2); 201 – 208