青海茶卡盐湖石盐中流体包裹体记录的古气候信息

葛晨东1 王天刚2 刘兴起3 孟凡巍2 刘吉强2
GE ChenDong1, WANG TianGang2, LIU XingQi3, MENG FanWei2 and LIU JiQiang2

1. 南京大学 海岸与海岛开发教育部重点实验室，南京 210093
2. 南京大学 成矿作用国家重点实验室，南京 210093
3. 中国科学院南京地理与湖泊研究所，南京 210008

1. MOE Key Laboratory for Coastal and Island Development, Nanjing University, Nanjing 210093, China
2. State Key Laboratory for Mineral Deposit Research, Nanjing University, Nanjing 210093, China
3. Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China

2007-04-12 收稿，2007-08-10 改回。

Abstract Salt lake from inland arid area is one of effective carriers for research of the ancient climate changes, and fluid inclusions in halite is a powerful mean to reveal the paleoclimatic. Chaka Salt Lake in Qinghai Province is a comprehensive salt mine formed in later Pleistocene, which is mainly composed of halite with coexisting solid and liquid. Study on the homogenization temperature of fluid inclusions in salt core samples from Chaka Salt Lake, indicates that the water temperature of salt lake is gradually elevated from 20°C ~ 30°C in early stage to about 40°C in late stage since 5ka. These results suggested gradually rising for ancient climatic temperature in Chaka area, which is consistent with general trend of the global warming. It is indicated that the homogenization temperatures obtained from primary single phase liquid fluid inclusions in halite (salt) by cooling-heating methods is an efficient new mean to acquire water temperature data of salt lake and thus to reconstruct the paleoclimatic changes. Fluid inclusion method will definitely have further wide applications in salt lake investigating field.

Key words Paleoclimatic information, Pure liquid phase inclusion, Homogenization temperature, Halite, Chaka Salt Lake, Qinghai Province

摘 要 内陆干旱区形成的盐湖是研究过去气候变化的有效载体之一，而石盐中包裹体是揭示古气候的一种有效手段。青海茶卡盐湖是晚更新世晚期，逐渐演变形成的以石盐为主，固液并存的综合性盐矿床。对茶卡盐湖钻孔样品中石盐的流体包裹体均－温度研究，揭示出从5ka以来，盐湖水温总体上逐渐升高，从20°C ~ 30°C升高到接近40°C，反映古气候的温度是逐渐升高的，与全球变暖的总体趋势是一致的。研究表明，对石盐中原生单液相流体包裹体，采用冷冻－加热的方法测定均－温度，是获得盐湖古水温资料，进而恢复古气候变化的一种十分可信新手段，它在盐湖的研究方面具有广阔的应用前景。

关键词 古气候信息；单液相流体包裹体；均－温度；石盐；茶卡盐湖；青海

图中分类号 P641.69

* 国家自然科学基金(批准号: 40373016)资助。
第一作者简介：葛晨东，女，1966年生，博士，副教授，沉积地球化学专业，E-mail: ged@nju.edu.cn
原生流体包裹体是在晶体形成过程中，捕获于晶体品格缺陷中的显微流体样品，它可以反映出晶体赖以生长的母溶液的PVTX性质（Roedder et al., 1963）。蒸发岩，如石盐、石膏、芒硝中的包裹体，是海洋的泻湖或者陆地盐湖的环境下，通过蒸发而结晶析出过程中所捕获的流体(液体和/或气体) (Roedder, 1984; Goldstein and Reynolds, 1994; Goldstein and Barken, 1990)。这些蒸发岩矿物中的流体包裹体，尤其是石盐中的流体包裹体，所捕获的液体和气体中的成分，由于可以保存地质时期古环境的水圈、大气圈甚至生物圈的信息 (Knauth and Beecumns, 1986; Petrichenko et al., 2005; Benison and Goldstein, 1999; Siemann and Ellendorff, 2001; Vreeland et al., 2000)，引起了人们的极大兴趣，而成为近年来国际地质界的一个研究热点 (Roberts and Spencer, 1995; Lowenstein et al., 1998; 2001; Benison and Goldstein, 1999; Siemann and Ellendorff, 2001; Vreeland et al., 2000; Goldstein, 2001; Satterfield et al., 2005; Timofeeff et al., 2006; Kovalyevich et al., 2006)。

在蒸发过程中析出的石盐矿物形成于气水界面附近，因此，石盐中捕获的流体包裹体的成分会随着捕获的位置而有所差异。在气水界面以下所捕获的包裹体为纯液相的包裹体，这些流体包裹体沿石盐解理分布，流体的成分随着蒸发过程中不同阶段的海水/湖水而在接近水面的时候，除了捕获海水/湖水之外，还常常捕获大气，形成气液两相包裹体。

对于石盐中同时捕获了海水/湖水和大气成分的气液两相包裹体而言，由于包裹体的捕获方式为非均一体捕获，因此，其均一温度变化很大，往往给出过高的温度，不具有地质意义 (Roberts and Spencer, 1995)。但对于这些气液两相包裹体，可以应用激光拉曼探针来检测气相中捕获的古大气成分，国外学者通过该方式，已经成功的获得了二叠纪晚期的古大气成分 (Siemann and Ellendorff, 2001)。

对于纯液相的原生石盐流体包裹体，通过长时间的低温冷冻产生气泡，然后再均一的得到的温度，可以直接反映当时的泻湖或者陆地盐湖的水温，从而反映出古气候的温度 (Petrichenko, 1979; Roberts and Spencer, 1995)。该方法在对现代沉积的盐湖和实验室石盐的合成试验中，均得到了良好的印证 (Lowenstein et al., 1998；进而应用到地质历史时期的石盐沉积研究，并得到了很好的结果 (Benison and Goldstein, 1999; Satterfield et al., 2005)。

1 地质背景

茶卡盐湖位于东经99°18′，北纬36°41′（图1）。属青海省海西州乌兰县管辖。东距西宁市300km，西距都兰县所在地察汗乌苏142km，北距天峻县80km。为青藏、新两公路之交点。青藏铁路拟在西北33km设察汗诺站。

茶卡盆地为新生代封闭内流断陷盆地，南为鄂拉山，北为青海南山，与共和盆地的青海湖相隔，盆地东西长80km，宽30km，面积2400km²。茶卡盐湖处于盆地西部。盆地内为新生代第四系洪积—冲积砂砾、风积砂丘、湖积沙质粘土及石膏、石盐等化学沉积。

茶卡地区气候属于半沙漠干旱大陆性气候，少雨多风，相对湿度小，蒸发量大。茶卡盆地的盐水并不发育。年降雨量不多，水量不大，全部汇集于盐湖中，盐湖在北部有八条，南部有十条。其中较大的有西北的漠河，东南的黒河和东北的朵巴河。另外大大小小的泉水很多。每年流入水量不计漠河达106万立方米。每年补给的盐量达1万立方米。按现有5亿吨石盐储量，盐源的发育史不超过五万年。

茶卡盐湖是晚更新世晚期逐渐演变形成的以石盐为主、固液相并存的综合型盐矿床，主要盐类矿物为石盐、石膏、芒硝、白钠镁矾及泻利盐等。

Taka salt lake showing sample sites. Star is sampling sites, black points are springs.

2 样品采集及实验方法

2.1 石盐钻孔样品的采集

采集样品时，为了防止石盐重结晶或溶解，在钻取石盐岩芯时必须用饱和食盐卤水进行冷却，如果钻取的岩芯仍然可见一些原生的包裹体富集带，那么可以认为石盐没有发生重结晶或溶解。本次石盐钻孔样品具体的采样位置见图1。
色泥质粉砂为主。

A 层为中粒石盐，晶型较复，向下粗粒成分增多，泥的成分也增多。B 层为中粒石盐，粒径比 A 层石盐大一些，晶型较好，并含黑色泥泥，可见这种沉积相维持的时间较长，湖水深度也相应较大一些。而在 B2 层中为细粒石盐，石盐晶型较纯净，含泥很少，这证明这段时期为白垩纪时期，并且得到外界泥质输入较少。C 层为深黑色泥泥粉沙为主，并含有较多芒硝，石盐颗粒更大，并且含水较多；D 层则以深黑泥泥粉沙为主，含大量石膏，石膏晶型良好；在底部即为泥质粘粉岩。

茶卡盐湖的演化与美国的 Death Valley 的演化规律不完全相同，Death Valley 的演化与临时性湖泊的演化相一致（Roberts and Spencer, 1995; Lowenstein et al., 1998），而茶卡盐湖则是从一个湿润气候下的湖泊逐步演化而来的。但是石盐的几个沉积相表明在成为盐湖后，茶卡盐湖应该出现沉积间断，黑色淤泥一般就认为是沉积间断的标志。

2.2 石盐中流体包裹体的冷冻

因为石盐样品硬度较小，如果对石盐晶体进行磨片抛光，很容易使石盐晶体变形，因此，本次研究中，将石盐样品沿着解理面分成小的薄片制备好样品后，首先在室温下对包裹体进行观察，描述和拍照，观察包裹体时下面两点需要特别注意：（1）注意区分原生和次生包裹体；（2）应详细记录包裹体的位置、数量、分布的面积。

确定需要冷冻的单相原生流体包裹体的位置并进行拍照之后，将石盐样品放在低温冰箱中进行冷冻，使得原本呈单一液相的包裹体长出气泡（图 3A，图 3B）。由于包裹体较小，液体常处于亚稳态不太容易产生气泡，所以要在较低的温度下进行冷冻，以加速气泡产生。一般将石盐放在零下 20℃～30℃冷冻大约两周，一部分包裹体中开始出现气泡。

流体包裹体中气泡的出现，受多种因素控制，其中包裹体体积可能是最为重要的一个因素（Goldstein, 2001）。同时包裹体中需要特别注意冷冻温度不能过低，否则包裹体中将结冰使体积增大，包裹体可能因此被涨裂（Roberts and Spencer, 1995; Lowenstein et al., 1998; Benison and Goldstein, 1999）。

所有样品均在 HAER BD16-LTA 型低温冰箱中进行冷冻，冰箱的温度范围介于室温至-60℃，精度±2℃。

2.3 石盐中流体包裹体的均一温度测定

当有足够数量的包裹体出现气泡后，我们将开始测温工作。测温时应将冷热台温度设定为零下 10℃左右，这样可以使样品更易于观察，在加温过程中要注意加热速率不要过快，温度在 0.5℃～1℃/min 左右为宜，在接近均一温度时，速度应调节到 0.1℃/min，这样才可以使测得的数据更为准确。

为了确实流体包裹体中气泡是否已经达到均一状态，可以把样品快速降温 10℃左右，此时如果气泡仍未出现，可以认为是达到了均一。如果气泡出现，则说明流体包裹体尚未达到均一，这时需要再次加热，直到均一。通过上述反复操作过程，可以得到非常准确的石盐的流体包裹体温度数据。

温度测定使用英国产 LINKAM THMS600 型冷热台，采用液氮进行冷冻。冷热台的温度范围：-196℃～600℃，精度：<0℃范围内，误差 ±0.2℃；0℃～50℃区问，误差 ±0.5℃。利用美国人工合成包裹体做为标样。

3 实验结果

本次研究中，对采自青海茶卡盐湖钻孔盐芯中的石盐，按不同产油段进行了详细的流体包裹体冷冻及显微测温，这些样品代表了从 5ka 以来茶卡盐湖中连续沉积的盐层，从下至上为粗粒石盐（C 阶段）→中粒石盐（B3 阶段）→细粒石盐（B2 阶段）→中粒石盐（B1 阶段）。对这四个阶段的石盐中单液相流体包裹体冷冻后产生的气液两相包裹体的均一温度测定结果见图 4。

4 讨论与结论

4.1 均一温度所指示的地质意义

与形成于较深地质环境中的流体包裹体不同，盐湖中石盐晶格缺陷中捕获的流体包裹体，由于形成于气水界面之处，
因此所测定出的均一温度不需要经过压力校正，可以代表盐湖水体的温度。但是大量的国际研究也表明，即使是来自同一层位的流体包裹体，其实际测出的均一温度也会有一些差异，那么究竟什么样的均一温度值才具有地质意义的，可以代表捕获时的盐湖水温度？

Lowenstein et al. (1998) 通过对 Death Valley 盐湖（湿润时代表层沉积及钻孔中自生石盐单-液相流体包裹体的均一温度研究）揭示出同一层位天然石盐样品中所测均一温度的最大值（最大均一温度 Thmax）可以作为捕获时的湖水温度。例如，1993 年 4 月期间采集的钻孔所代表层石盐单-液相流体包裹体的均一温度变化范围为 4°C ~ 34°C，最大均一温度（Thmax 为 34°C）与同期实际观测到的湖水水温和气温的最大值（分别为 34.4°C 和 31.3°C）相吻合。

4.2 湖水温度和气温之间的关系

水温等对反映气温的的高低呢？在经过对现代临时性湖泊的演化的研究后发现，水温与气温有着良好的相关性，Roberts and Spencer (1995) 在 Death Valley 的研究中表明，气温与水温一般相差在 5°C 左右，即气温低于水温 5°C 左右。因此，我们可以把水温作为气温的表征。毫无疑问，水温能像纬度、海拔等因素一样直接反映气温的高低。在青海茶卡地区，Liu et al. (2007) 所做的有关茶卡盐湖现代形成过程水温、气温测定实验也显示，气温低于水温，两者具有良好的正相关性。因此，盐湖形成时流体包裹体最大温度所指示的湖水水温可以很好地反映出当地的气温。

4.3 茶卡盐湖中流体包裹体记录的古气候信息

利用本次研究中所得到的每个层位中的均一温度的最高的值作为当时湖水温度的代表，将盐湖不同的沉积层位和实际上测得的均一温度最高值做图，得到样品深度与湖水温度对应图（图 5）。从图中可以看出，在距今约 5ka 左右，茶卡盐湖演化初期，即茶卡盐湖盐层沉积柱状图的 C 阶段，温度普遍
较低，一般都低于30°C，该阶段为较深的湖水重沉积；当盐湖演化到B沉积相阶段，水温有所升高，该阶段的湖水温度最高可以达到35°C左右，同时可以看出，温度仍然处于一种变化过程。在早期的B3沉积阶段，温度先是升高至35°C左右，然后降低至20°C左右；在后期的阶段，经历了一段低温时期，之后温度逐渐升高，演化至B2阶段，盐湖水温再次升高至35°C左右，该阶段为强烈蒸发阶段，但外界补给较少；次后的B1阶段，盐湖一直在较高的温度下演化，最高的湖水温度可以达到39°C。

茶卡盐湖的流体包裹体均一温度变化的总体趋势表明，盐湖的水温是不断升高的，也指示了当时的气温是逐渐升高的，与全球变暖的趋势一致。但是湖水温度演变呈现出了阶段式的变，对应不同的沉积相，但是相比较而言，沉积相上的变化略滞后，例如在B2阶段出现了一段强烈蒸发期，其中石盐颗粒较细，应为迅速沉积导致，而其中少泥质可能该段时间内湖水迅速蒸发，但是外界补给较少。因此该阶段湖水温度较高一些，但是水温升高的时间范围却大于该段沉积的时间范围，显然沉积相上的变化此时显得滞后了，这可能是由于原来的湖水较浅，所以经历一段时间蒸发后，湖水变浅，此时形成的石盐颗粒多迅速生长于湖水表面，而在底部形成的较少，所以晶粒变小。

4.4 石盐中流体包裹体研究的应用前景展望

内陆干旱区形成的盐湖是研究过去气候变化的有效载体之一（郑绵平，1998），中国是一个盐湖分布众多的国家，之一（郑绵平，2001），这些盐湖为利用石盐流体包裹体均一温度来恢复古气候的研究提供了很好的场所和材料。一直以来，由于石盐本身的特殊性，令人们对石盐研究所得数据的可靠性表示怀疑。但是自20世纪90年代中期以来的国际研究表明，石盐中的原生单液相流体包裹体是揭示古气候变化的一种十分有效的手段。本次对青海茶卡盐湖盐湖中的流体包裹体研究再次证实，只要研究方法正确，那么获得的均一温度数据是可靠的，可以真实反映当时包裹体捕获时湖水的温度，并进而可以揭示出当时的古气候温度。它为我们研究古气候提供了一个新的手段，利用石盐中流体包裹体来恢复古气候，将为越来越多的学者所重视，从而成为常规的研究手段之一，在盐湖的研究方面具有广阔的应用前景。

References

Goldstein RH and Barker CE. 1990. Fluid inclusion technique for determining maximum temperature in calcite and its comparison to the vitrinite reflectance geothermometer. Geology, 18 (10): 1003 – 1006
Knauth LP and Beenus MA. 1986. Isotope geochemistry of fluid inclusions in Permain halite with implications for the isotope history of ocean water and the origin of saline formation water. Geochemica et Cosmochimica Acta, 50; 419 – 443
Kovalevych VM, Marshall T, Peryt TM et al. 2006. Chemical composition of seawater in Neoproterozoic; Results of fluid inclusion study of halite from Salt Range (Pakistan) and Amadeus Basin (Australia). Precambrian Research, 144 (1-2): 39 – 51
Lowenstein TK, Li JR and Brown CB. 1998. Paleotemperatures from fluid inclusions in halite; Method verification and a 100, 000 year paleotemperature record, Death Valley, CA. Chemical Geology, 150: 223 – 245

附中文参考文献
袁见齐, 蔡克勤, 肖荣等. 1991. 云南勐野井钾盐矿床石盐中包裹体特征及其成因的讨论. 地球科学—中国地质大学学报, 2: 140 – 142
郑绵平, 赵元艺, 刘俊英. 1998. 第四纪盐湖沉积与古气候. 第四纪研究, 4: 297 – 307