帕米尔构造结塔什库尔干碱性杂岩同位素年代学研究

柯珊1,2 罗照华1,2** 莫宣学2 张文会2 梁涛2 詹华明2
KE Shan1,2, LUO ZhaoHua1,2, MO XuanXue2, ZHANG WenHui2, LIANG Tao2 and ZHAN HuaMing2

1. 中国地质大学地质过程与矿产资源国家重点实验室，北京 100083
2. 中国地质大学地球科学与资源学院，北京 100083
3. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
4. School of Earth Science and Mineral Resources, China University of Geosciences, Beijing 100083, China

2007-11-20 收稿，2008-02-28 改回。

Abstract We obtain the precise ages, 11 Ma, of different rock types from the Taxkorgan alkaline complex, Middle East of Pamir syntax by using SHRIMP U-Pb zircon, which is consisted with the field evidence. 40Ar/39Ar dating of K-feldspar was also be used for this complex. Comparison between the two methods shows that the 40Ar/39Ar isochron ages (23Ma and 13Ma) are obviously older than these of zircons, suggesting that the K-feldspar may probably have excess argon. Thus the K-feldspar is not the favorable object for 40Ar/39Ar dating to this alkaline complex with the possible reasons for excess argon presence. Therefore, the time of emplacement of the Taxkorgan alkaline complex could be confirmed as 11Ma. To combine with its petrogenesis, the Pamir syntax was already characterized with a thickened lower crust at least before 11Ma.

Key words Pamir; Taxkorgan; Alkaline complex; SHRIMP U-Pb age; Excess argon

摘 要 利用高精度锆石 SHRIMP U-Pb 法测定了帕米尔构造结中东部塔什库尔干碱性杂岩的年龄, 岩体不同岩石类型的年龄均为 11 Ma, 与野外证据吻合。通过与该杂岩体钾长石 40Ar/39Ar 等时线年 (23 Ma, 13 Ma) 对比研究, 40Ar/39Ar 定年结果明显偏老, 认为是由于钾长石中含过多氯所引起的, 分析了过剩氯存在的可能原因。因此塔什库尔干碱性杂岩的活动时代可以确定为 11 Ma, 而且钾长石不宜作为该杂岩体测年的理想对象。结合岩体的成因及构造意义, 认为在 11 Ma 前, 帕米尔构造结地区已具有加厚下地壳的特征。

关键词 帕米尔; 塔什库尔干; 碱性杂岩; SHRIMP U-Pb 年龄; 过剩氯

中图法分类号 P597.3

众周知, 花岗岩是组成大陆地壳的主要岩石。所以研究大陆岩石圈的结构、组成和演化, 必须要涉及花岗岩类的形成和演化 (王德滋和周金城, 1999), 它在大陆生长和地球深部过程中扮演了极为重要的角色 (肖庆辉等, 2003), 是反映大陆构造环境不可或缺的一份子。若缺乏花岗岩类精准的年龄数据, 所有的这些讨论都将会变得没有意义。塔什库尔干碱性杂岩以钾质碱性—偏碱性花岗岩类为主, 分布在帕米尔构造结的中东部, 是区内出露面积最大的新生代花岗岩类。自新生代欧亚板块碰撞以来, 帕米尔构造结成为青藏高原构造挤压最强的地区之一, 是陆陆碰撞过程中地壳缩短增厚的典型地区 (肖庆辉等, 2002; Ducea et al., 2003), 至
今仍在挤压造山过程中。所以塔什库尔干杂岩的成因及其活动时代于帕米尔构造的地区的岩石圈缩短增厚，壳幔相互作用，乃至高原隆升过程等方面的研究都显得尤为重要。然而有关该区的年龄数据虽为数不少，但范围广，即使同一岩体的不同岩石类型差异也很大，如苦子干岩体的透辉石正长岩的年龄从 18Ma 到 52Ma，花岗岩从 17.5Ma 到33.6Ma，卡日巴生岩体的花岗岩从 9.79Ma 到 17.2Ma。（潘裕生，2000；姜春发，1992；新疆地质矿产局二大队，1985；罗照华等，2003；林清茶等，2006），而且测年方法多为 K-Ar 法及少量 Ar-Ar 法。近年的研究表明，K-Ar 法测年虽具有不可比拟的各种优点，但适合测年的含钾矿物普遍出现了过氧化或氢丢失的现象，对定年结果的准确性影响很大。因而，该杂岩体的精确年龄实际上尚未确定。为此，本文对于塔什库尔干杂岩体的岩石学及岩石的年龄，部分钾长石 40Ar/39Ar 法测年数据进行了对比研究。

1 地质概况及样品特征

塔什库尔干杂岩体位于中亚高原的西北部，由南向北依次为：科拉-博托克，苦子干和卡日巴生等岩体组成。苦子干岩体位于塔什库尔干县西约 7km，呈西北-东南向延伸，面积约 200km²。在岩体东北侧出露有第三纪地层，西南与一套混合岩接触，混合岩主要为片麻状花岗岩和斜长角闪岩，应该属于中-深变质的地域，年代不详。苦子干岩体由多种岩石组成，主要为正长岩和正长花岗岩两部分，岩石详细分类和描述见罗照华等（2003）和柯珊等（2006a）。野外可见正长花岗岩与正长岩为涌动接触关系，没有明显的接触界线，说明二者近期期侵位，据露头上两者的穿插关系，花岗岩形成略晚。卡日巴生黑云母二长花岗岩位于苦子干岩体的东部和西南部，呈不规则分布，呈片状延伸于苦子干岩体呈侵入接触，并有较小的岩枝及岩脉穿入苦子干岩体内（柯珊等，2006a）。

通过物理分析，岩石学和地球化学研究，苦子干岩体的 SiO₂ 含量为 54.18%～74.81%，K₂O/Na₂O > 1，（K₂O + Na₂O）= 9.88% 和 A/CNK < 1，属于碱性钾质花岗岩类（柯珊等，2006b）；卡日巴生花岗岩体 SiO₂ 平均值为 71.43%，（K₂O + Na₂O）= 8.39%，K₂O/Na₂O = 1.32 和 A/CNK≈1.03③，弱过钾，属偏碱性一偏碱性钾质花岗岩类。两个岩石体的稀土元素总量均很高，强烈富含 high-LREE；岩石具有高 Ba/Sr，Sr/Y 比值的特征，同时富含大离子亲石元素（LILE），相对贫重稀土元素（HREE），高场强元素（HFSE），出现明显的 Nb，Ta，Ti 负异常，几乎无 Eu 负异常，结合 Sr，Nd 同位素示踪，二者均为加厚下地壳部分熔融的产物，演化过程中以部分熔融为主（柯珊等，2006b）。所测试的锆石分别选自样品 019H，019J，019J，019J，019J，019J，019M。样品 019H 为暗色绿色球颗辉长正岩，样品 019I 为石英黑辉石正长岩，样品 019J 为暗色黑辉石正长岩。石英黑辉石正长岩（样品 019J）中包裹有暗色黑辉石正长岩（样品 019J）和球粒黑辉石正长岩（样品 019H）大小不一的团块，根据这种包裹和其它的野外关系，样品 019H 和样品 019J 应为岩体中最老的岩石类型。样品 018U 为位于岩体中部的透辉石正长花岗岩，样品 019M 为侵入到苦子干岩体中的卡日巴生黑云母二长花岗岩岩枝。这些测年样品在野外露头上的早晚顺序为：暗色黑辉石正长岩和球粒状辉长正长岩（样品 019H，样品 019J）→石英黑辉石正长岩（样品 019J）→透辉石正长花岗岩样品 018U）→黑云母二长花岗岩（样品 019M）。

锆石按常规方法分选，最后在双目镜下挑拣。样品制样方法见宋彪等（2002）。测定前，对锆石进行了透射光、背散射电子（BSE）和阴极发光电子（CL）像照。BSE 图形图像可以揭示锆石的形状结构，还可以很好地显示锆石的表面特征，如包裹体的分布和裂隙的发育情况等。而 CL 图反映锆石的内部结构最清楚。在对这些照片的综合研究基础上查明了锆石的成因，寻找到成因最简单的锆石，设计最恰当的点测来避开包裹体、杂质和裂隙，以保证 SHRIMP 定年的质量。锆石 SHRIMP U-Pb 分析在北京离子探针中心的 SHRIMP II 上完成，锆石年龄测定原理和流程见 Compston et al. （1992）和 Williams et al. （1987）。测定前仪器质量分辨率约为 5000 （1% 峰高），一次离子流 O₂−强度为 5nA。一次离子束束斑直径为 25～30μm。标准为澳大利亚国立大学（ANU）的 SL13 和 TEM，普通铅校正使用直接测定 ²⁰⁶Pb 方法，数据处理采用 SQUID1.03d 和 ISO T O PE 程序。表和图中给出的单个数据的误差为 1σ，年龄平均值的误差为 2σ。钾长石矿物均选自苦子干岩体，实验由中国科学院地质与地球物理研究所 ^⁴⁰Ar/^³⁹Ar 法定年实验室完成，测定仪器为英国 RG D-10 气体质谱仪（VSS 公司）。

2 分析结果

2.1 锆石特征与 U-Pb 分析结果

样品 019H 的锆石晶形不太完整，粒度小，可分为两类。一类锆石晶形不完整且颗粒少，多为锆石碎片，可见平直的岩浆沿柱生长条纹，该类锆石的年龄集中在 11Ma（图 1A，图 2）。另一类为继承锆石，这些剩余锆石中，有明显的发育着岩浆腔底生长长带/条纹的岩浆成因锆石并有较窄的白色蜕变带（图 1B）；有些发育着较宽的白色蜕变带，变质锆石内部特征为无分带或弱分带（图 1C，D）。受热液作用影响明显的锆石，在锆石颗粒的边缘和/或不同生长阶段锆石的边缘部位还发现了暗色阈化、矛尖状结构的外形特征，且这些区域内裂纹发育较细，无明显分带，为高温热液蚀变作用形成的变质锆石。当热液蚀变作用进一步增强时，在锆石的周围会出现

(1) 柯珊. 2006. 塔什库尔干新生代碱性杂岩带的成因与构造意义. 博士学位论文. 中国地质大学（北京）
图1 塔什库尔干碱性杂岩体中部分锆石特征及SHRIMP测点位置

Fig.1 Cathodoluminescence images of selected zircons from the Taskorganalkaline complex, showing SHRIMP spots analysis number
现较宽的白色蚀变边（图 1C、D）。这类残余锆石的年龄可分为三组，第一组年龄集中在 111Ma（表 1），为热液蚀变增强导致锆石边缘出现较宽的蚀变边（图 1C、D、图 2），热液蚀变作用可能是由苦子干正长岩岩浆引起，所以该组年龄与第一类岩浆锆石的年龄一致；第二组两个年龄集中在 1.8Ga，有一分析点不在 U-Pb 谱和线上，可能有少量的 Pb 丢失造成；第三组测定年龄加权平均后为 2091 ± 43Ma（图 1B，图 2）。第二、三组的年龄暗示了苦子干岩体熔融的母岩有元古宙的地球物质，与同位素模式年龄 tPM (1.25 ~ 1.69Ga) 所反应出的信息吻合，但比模式年龄更老。

图 2 塔什库尔干碱性杂岩体中锆石 SHRIMP 年龄图谱
Fig. 2 U-Pb Concordia diagrams for zircons from the Taxkorgan alkalic complex
样品019J的锆石晶形也不太完整，多为具岩浆环带的锆石碎片，颗粒较大，晶面清洁，几乎未见包裹体和裂隙（图1）。11个分析点给出了基本一致的年龄，所有测点结果集中，并都在U-Pb谱线和线上，变化范围在10.84～11.53Ma之间，加权平均年龄为11.1±0.3Ma（2σ）（图2，表1）。与样品019H的岩浆锆石年龄和热液蚀变强烈变质锆石的变质年龄一致。样品019J大部分锆石晶形较为完整，也有部分的锆石颗粒，均具岩浆熔体环带，与样品019J相比具有较多的包裹体。十个点位的年龄变化范围为10.27～12.10Ma，加权平均年龄为11.0±0.3Ma（2σ）。与样品019J和019H的年龄一致，至此，11Ma完全可以代表苦丁干碱性正长岩的侵位年龄。

透辉石正长花岗岩样品018U，位于岩体的中部，其锆石晶形完整，典型的岩浆韵律环带非常清晰，锆石颗粒较大，部分含包裹体（图1）。12个分析点年龄较为一致，变化范围为9.42～12.72Ma，加权平均年龄为11.3±0.6Ma（2σ），代表正长花岗岩的侵位年龄。与正长岩类的测年结果一致，苦丁干碱性正长岩的侵位年龄与野外所观察到的涌动接触关系完全吻合。

黑云母二长花岗岩样品019M的锆石晶体和晶形均为典型岩浆锆石（图1）。分析点8.1和16.1的U含量过高，点13.1未测出普通Pb的含量（表1），谱中其余14个有效点的年龄范围为10.65～13.95Ma，加权平均年龄为11.9±0.4Ma（2σ）（图2）。与钾长石Ar-Ar测出的13Ma相近，可以认为该锆石年龄代表日卡巴生黑云母二长花岗岩体的侵位年龄。

表1 塔什库尔干碱性杂岩体锆石 SHRIMP U-Pb同位素分析结果

<table>
<thead>
<tr>
<th>分析点</th>
<th>206Pb%</th>
<th>U（×10^-6）</th>
<th>Th（×10^-6）</th>
<th>232Th</th>
<th>206Pb*</th>
<th>206Pb/238U年（Ma）</th>
<th>±%</th>
<th>238U</th>
<th>207Pb</th>
<th>±%</th>
<th>207Pb</th>
<th>±%</th>
</tr>
</thead>
<tbody>
<tr>
<td>A019H.1</td>
<td>0.19</td>
<td>40</td>
<td>41</td>
<td>1.06</td>
<td>12.7</td>
<td>2,020</td>
<td>82</td>
<td>2.73</td>
<td>4.1</td>
<td>0.133</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>A019H.2</td>
<td>0.28</td>
<td>58</td>
<td>66</td>
<td>1.18</td>
<td>17.7</td>
<td>1,969</td>
<td>54</td>
<td>2.805</td>
<td>2.7</td>
<td>0.134</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>A019H.3</td>
<td>0.00</td>
<td>51</td>
<td>49</td>
<td>1.00</td>
<td>17.0</td>
<td>2,139</td>
<td>77</td>
<td>2.546</td>
<td>3.7</td>
<td>0.127</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>A019H.4</td>
<td>3.66</td>
<td>1721</td>
<td>668</td>
<td>0.40</td>
<td>2.74</td>
<td>11.92</td>
<td>0.36</td>
<td>539</td>
<td>2.8</td>
<td>0.060</td>
<td>5.7</td>
<td></td>
</tr>
<tr>
<td>A019H.5</td>
<td>0.73</td>
<td>4630</td>
<td>836</td>
<td>0.19</td>
<td>6.88</td>
<td>11.1</td>
<td>1.2</td>
<td>578</td>
<td>10</td>
<td>0.050</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>A019H.6</td>
<td>0.00</td>
<td>23</td>
<td>23</td>
<td>1.01</td>
<td>7.84</td>
<td>2,139</td>
<td>64</td>
<td>2.537</td>
<td>3.1</td>
<td>0.134</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>A019H.7</td>
<td>0.12</td>
<td>129</td>
<td>88</td>
<td>0.71</td>
<td>40.2</td>
<td>2,010</td>
<td>71</td>
<td>2.76</td>
<td>3.8</td>
<td>0.131</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>A019H.8</td>
<td>3.97</td>
<td>554</td>
<td>64</td>
<td>0.12</td>
<td>0.841</td>
<td>10.60</td>
<td>0.43</td>
<td>566</td>
<td>3.6</td>
<td>0.108</td>
<td>7.8</td>
<td></td>
</tr>
<tr>
<td>A019H.9</td>
<td>0.02</td>
<td>251</td>
<td>279</td>
<td>1.15</td>
<td>80.3</td>
<td>2,090</td>
<td>48</td>
<td>2.682</td>
<td>2.4</td>
<td>0.129</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>A019H.10</td>
<td>0.11</td>
<td>60</td>
<td>75</td>
<td>1.28</td>
<td>18.0</td>
<td>2,031</td>
<td>53</td>
<td>2.889</td>
<td>2.7</td>
<td>0.130</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>A019H.11</td>
<td>1.88</td>
<td>40</td>
<td>16</td>
<td>0.42</td>
<td>11.2</td>
<td>1,806</td>
<td>48</td>
<td>3.038</td>
<td>2.8</td>
<td>0.129</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>A019H.12</td>
<td>0.54</td>
<td>22</td>
<td>19</td>
<td>0.87</td>
<td>7.89</td>
<td>2,209</td>
<td>66</td>
<td>2.439</td>
<td>3.1</td>
<td>0.132</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>A019H.13</td>
<td>1.24</td>
<td>1208</td>
<td>268</td>
<td>0.23</td>
<td>1.82</td>
<td>11.24</td>
<td>0.34</td>
<td>569</td>
<td>2.9</td>
<td>0.059</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>A019H.14</td>
<td>0.48</td>
<td>29</td>
<td>23</td>
<td>0.82</td>
<td>9.60</td>
<td>2,117</td>
<td>60</td>
<td>2.566</td>
<td>3.0</td>
<td>0.127</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>A019H.15</td>
<td>0.00</td>
<td>2358</td>
<td>438</td>
<td>0.19</td>
<td>3.25</td>
<td>10.23</td>
<td>0.29</td>
<td>623</td>
<td>2.7</td>
<td>0.049</td>
<td>4.9</td>
<td></td>
</tr>
<tr>
<td>A019H.16</td>
<td>2.46</td>
<td>317</td>
<td>342</td>
<td>1.11</td>
<td>84.8</td>
<td>1,724</td>
<td>42</td>
<td>3.214</td>
<td>2.4</td>
<td>0.143</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>A019H.17</td>
<td>3.77</td>
<td>1442</td>
<td>946</td>
<td>0.68</td>
<td>1.74</td>
<td>8.8</td>
<td>1.2</td>
<td>712</td>
<td>12</td>
<td>0.074</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>A019H.18</td>
<td>5.46</td>
<td>965</td>
<td>817</td>
<td>0.87</td>
<td>1.58</td>
<td>11.67</td>
<td>0.48</td>
<td>524</td>
<td>3.1</td>
<td>0.096</td>
<td>9.1</td>
<td></td>
</tr>
<tr>
<td>A019J-1.1</td>
<td>4.56</td>
<td>2200</td>
<td>2217</td>
<td>1.04</td>
<td>3.35</td>
<td>10.88</td>
<td>0.35</td>
<td>564.77</td>
<td>2.4</td>
<td>0.093</td>
<td>5.7</td>
<td></td>
</tr>
<tr>
<td>A019J-2.1</td>
<td>2.78</td>
<td>2420</td>
<td>6892</td>
<td>2.94</td>
<td>3.67</td>
<td>11.06</td>
<td>0.55</td>
<td>566.36</td>
<td>2.2</td>
<td>0.078</td>
<td>6.7</td>
<td></td>
</tr>
<tr>
<td>A019J-3.1</td>
<td>7.89</td>
<td>1359</td>
<td>2581</td>
<td>1.96</td>
<td>2.13</td>
<td>10.84</td>
<td>0.50</td>
<td>547.24</td>
<td>2.5</td>
<td>0.096</td>
<td>11.9</td>
<td></td>
</tr>
<tr>
<td>A019J-4.1</td>
<td>4.20</td>
<td>2046</td>
<td>3446</td>
<td>1.74</td>
<td>3.13</td>
<td>10.99</td>
<td>0.44</td>
<td>561.66</td>
<td>2.3</td>
<td>0.093</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>A019J-5.1</td>
<td>4.83</td>
<td>2461</td>
<td>7854</td>
<td>3.30</td>
<td>3.78</td>
<td>10.95</td>
<td>0.65</td>
<td>559.94</td>
<td>2.2</td>
<td>0.072</td>
<td>7.2</td>
<td></td>
</tr>
<tr>
<td>A019J-7.1</td>
<td>4.65</td>
<td>1754</td>
<td>1797</td>
<td>1.06</td>
<td>2.71</td>
<td>11.05</td>
<td>0.34</td>
<td>555.87</td>
<td>2.3</td>
<td>0.084</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>A019J-8.1</td>
<td>5.22</td>
<td>1176</td>
<td>1985</td>
<td>1.74</td>
<td>1.91</td>
<td>11.53</td>
<td>0.54</td>
<td>529.24</td>
<td>2.9</td>
<td>0.089</td>
<td>12.3</td>
<td></td>
</tr>
<tr>
<td>A019J-9.1</td>
<td>3.47</td>
<td>1612</td>
<td>3452</td>
<td>2.21</td>
<td>2.46</td>
<td>11.03</td>
<td>0.49</td>
<td>563.66</td>
<td>2.4</td>
<td>0.077</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>A019J-10.1</td>
<td>3.97</td>
<td>2119</td>
<td>6249</td>
<td>3.05</td>
<td>3.31</td>
<td>11.24</td>
<td>0.62</td>
<td>550.19</td>
<td>2.3</td>
<td>0.078</td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td>A019J-11.1</td>
<td>5.95</td>
<td>2301</td>
<td>3320</td>
<td>1.49</td>
<td>3.66</td>
<td>11.20</td>
<td>0.62</td>
<td>540.74</td>
<td>3.6</td>
<td>0.092</td>
<td>9.5</td>
<td></td>
</tr>
<tr>
<td>A019J-12.1</td>
<td>3.59</td>
<td>1634</td>
<td>981</td>
<td>0.62</td>
<td>2.56</td>
<td>11.34</td>
<td>0.34</td>
<td>547.50</td>
<td>2.4</td>
<td>0.081</td>
<td>12.0</td>
<td></td>
</tr>
</tbody>
</table>
表 1

<table>
<thead>
<tr>
<th>分析点</th>
<th>^{206}Pb (％)</th>
<th>U (×10^{-6})</th>
<th>^{232}Th (×10^{-6})</th>
<th>^{206}Pb (％)</th>
<th>$^{206}\text{Pb}/^{238}\text{U}$ 年龄 (Ma)</th>
<th>^{238}U (％)</th>
<th>^{207}Pb (％)</th>
<th>^{206}Pb (％)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A019I-1.1C</td>
<td>8.95</td>
<td>810</td>
<td>691</td>
<td>0.88</td>
<td>1.24</td>
<td>10.48</td>
<td>0.51</td>
<td>559.45</td>
</tr>
<tr>
<td>A019I-2.1C</td>
<td>5.35</td>
<td>1077</td>
<td>620</td>
<td>0.59</td>
<td>1.63</td>
<td>10.71</td>
<td>0.50</td>
<td>569.41</td>
</tr>
<tr>
<td>A019I-3.1C</td>
<td>12.25</td>
<td>578</td>
<td>408</td>
<td>0.73</td>
<td>0.91</td>
<td>10.35</td>
<td>0.70</td>
<td>545.97</td>
</tr>
<tr>
<td>A019I-4.1C</td>
<td>17.19</td>
<td>575</td>
<td>407</td>
<td>0.73</td>
<td>0.97</td>
<td>10.44</td>
<td>0.55</td>
<td>510.96</td>
</tr>
<tr>
<td>A019I-5.1C</td>
<td>9.91</td>
<td>688</td>
<td>901</td>
<td>1.35</td>
<td>1.14</td>
<td>11.24</td>
<td>0.93</td>
<td>516.39</td>
</tr>
<tr>
<td>A019I-6.1C</td>
<td>4.87</td>
<td>865</td>
<td>556</td>
<td>0.66</td>
<td>1.47</td>
<td>12.10</td>
<td>0.49</td>
<td>506.19</td>
</tr>
<tr>
<td>A019I-7.1C</td>
<td>2.95</td>
<td>1282</td>
<td>1404</td>
<td>1.13</td>
<td>2.06</td>
<td>11.66</td>
<td>0.40</td>
<td>535.85</td>
</tr>
<tr>
<td>A019I-8.1C</td>
<td>6.22</td>
<td>773</td>
<td>1083</td>
<td>1.45</td>
<td>1.13</td>
<td>10.27</td>
<td>0.48</td>
<td>588.20</td>
</tr>
<tr>
<td>A019I-9.1C</td>
<td>2.69</td>
<td>1477</td>
<td>1343</td>
<td>0.94</td>
<td>2.25</td>
<td>11.09</td>
<td>0.32</td>
<td>564.96</td>
</tr>
<tr>
<td>A019I-10.1C</td>
<td>7.21</td>
<td>819</td>
<td>402</td>
<td>0.51</td>
<td>1.32</td>
<td>11.23</td>
<td>0.40</td>
<td>532.18</td>
</tr>
<tr>
<td>A018U-1.1C</td>
<td>3.39</td>
<td>753</td>
<td>568</td>
<td>0.78</td>
<td>0.979</td>
<td>9.42</td>
<td>0.36</td>
<td>661.03</td>
</tr>
<tr>
<td>A018U-2.1C</td>
<td>12.12</td>
<td>793</td>
<td>748</td>
<td>0.97</td>
<td>1.17</td>
<td>9.76</td>
<td>0.79</td>
<td>580.57</td>
</tr>
<tr>
<td>A018U-3.1C</td>
<td>12.27</td>
<td>642</td>
<td>542</td>
<td>0.87</td>
<td>1.11</td>
<td>11.40</td>
<td>0.69</td>
<td>496.34</td>
</tr>
<tr>
<td>A018U-4.1C</td>
<td>9.40</td>
<td>1255</td>
<td>2508</td>
<td>2.07</td>
<td>2.00</td>
<td>10.85</td>
<td>0.58</td>
<td>538.26</td>
</tr>
<tr>
<td>A018U-5.1C</td>
<td>7.66</td>
<td>810</td>
<td>824</td>
<td>1.05</td>
<td>1.36</td>
<td>11.66</td>
<td>0.50</td>
<td>510.30</td>
</tr>
<tr>
<td>A018U-6.1C</td>
<td>10.59</td>
<td>672</td>
<td>165</td>
<td>0.25</td>
<td>1.28</td>
<td>12.72</td>
<td>0.53</td>
<td>453.29</td>
</tr>
<tr>
<td>A018U-7.1C</td>
<td>4.96</td>
<td>1170</td>
<td>174</td>
<td>0.15</td>
<td>1.88</td>
<td>11.46</td>
<td>0.35</td>
<td>534.25</td>
</tr>
<tr>
<td>A018U-8.1C</td>
<td>8.13</td>
<td>457</td>
<td>233</td>
<td>0.53</td>
<td>0.713</td>
<td>10.75</td>
<td>0.81</td>
<td>550.60</td>
</tr>
<tr>
<td>A018U-9.1C</td>
<td>11.77</td>
<td>466</td>
<td>452</td>
<td>1.00</td>
<td>0.786</td>
<td>11.15</td>
<td>0.59</td>
<td>509.33</td>
</tr>
<tr>
<td>A018U-10.1</td>
<td>16.98</td>
<td>332</td>
<td>444</td>
<td>1.38</td>
<td>0.585</td>
<td>10.98</td>
<td>0.84</td>
<td>487.36</td>
</tr>
<tr>
<td>A018U-11.1</td>
<td>5.14</td>
<td>1868</td>
<td>430</td>
<td>0.24</td>
<td>3.03</td>
<td>11.55</td>
<td>0.38</td>
<td>529.28</td>
</tr>
<tr>
<td>A018U-12.1C</td>
<td>1.83</td>
<td>3168</td>
<td>2651</td>
<td>0.86</td>
<td>5.27</td>
<td>12.25</td>
<td>0.30</td>
<td>516.21</td>
</tr>
<tr>
<td>A019M-1.1C</td>
<td>4.60</td>
<td>681</td>
<td>350</td>
<td>0.53</td>
<td>1.12</td>
<td>11.77</td>
<td>0.37</td>
<td>522.04</td>
</tr>
<tr>
<td>A019M-2.1C</td>
<td>6.13</td>
<td>1437</td>
<td>727</td>
<td>0.52</td>
<td>2.39</td>
<td>11.70</td>
<td>0.33</td>
<td>516.86</td>
</tr>
<tr>
<td>A019M-3.1C</td>
<td>14.97</td>
<td>470</td>
<td>180</td>
<td>0.40</td>
<td>0.91</td>
<td>12.36</td>
<td>0.72</td>
<td>443.01</td>
</tr>
<tr>
<td>A019M-4.1C</td>
<td>4.52</td>
<td>1037</td>
<td>362</td>
<td>0.36</td>
<td>1.67</td>
<td>11.52</td>
<td>0.27</td>
<td>534.02</td>
</tr>
<tr>
<td>A019M-5.1C</td>
<td>14.48</td>
<td>786</td>
<td>359</td>
<td>0.47</td>
<td>1.33</td>
<td>10.87</td>
<td>0.54</td>
<td>506.84</td>
</tr>
<tr>
<td>A019M-6.1C</td>
<td>5.31</td>
<td>1417</td>
<td>1606</td>
<td>1.17</td>
<td>2.37</td>
<td>11.88</td>
<td>0.41</td>
<td>513.18</td>
</tr>
<tr>
<td>A019M-7.1C</td>
<td>6.36</td>
<td>1284</td>
<td>870</td>
<td>0.70</td>
<td>2.16</td>
<td>11.80</td>
<td>0.35</td>
<td>510.94</td>
</tr>
<tr>
<td>A019M-8.1C</td>
<td>4.15</td>
<td>1614</td>
<td>83</td>
<td>0.05</td>
<td>13.53</td>
<td>60.03</td>
<td>1.56</td>
<td>102.45</td>
</tr>
<tr>
<td>A019M-9.1C</td>
<td>6.71</td>
<td>825</td>
<td>775</td>
<td>0.97</td>
<td>1.57</td>
<td>13.27</td>
<td>0.47</td>
<td>452.83</td>
</tr>
<tr>
<td>A019M-10.1</td>
<td>23.27</td>
<td>323</td>
<td>211</td>
<td>0.68</td>
<td>0.63</td>
<td>11.15</td>
<td>0.94</td>
<td>443.15</td>
</tr>
<tr>
<td>A019M-11.1</td>
<td>6.67</td>
<td>956</td>
<td>149</td>
<td>0.16</td>
<td>1.82</td>
<td>13.30</td>
<td>0.41</td>
<td>451.74</td>
</tr>
<tr>
<td>A019M-12.1</td>
<td>11.18</td>
<td>740</td>
<td>327</td>
<td>0.46</td>
<td>1.28</td>
<td>11.55</td>
<td>0.49</td>
<td>495.50</td>
</tr>
<tr>
<td>A019M-13.1</td>
<td>48.44</td>
<td>114</td>
<td>137</td>
<td>1.24</td>
<td>0.38</td>
<td>12.81</td>
<td>3.87</td>
<td>259.11</td>
</tr>
</tbody>
</table>

注: 误差为 1σ; Pb 和 Pb* 分别为普通铅和放射成因铅; $^{206}\text{Pb}/^{238}\text{U}$ 年龄为铅校正年代; $^{206}\text{Pb}/^{238}\text{U}$ 与 $^{207}\text{Pb}/^{206}\text{Pb}$ 年龄和。
2.2 钾长石39Ar/40Ar分析结果

所选择的样品为苦子干岩体不同岩石类型中的钾长石，其中样品 Zb29-1, Zb29-10, Zb29-12 分别为细粒碱性正长花岗岩、中粒斑状霓辉正长岩和中粒等粒霓辉正长岩。样品 Zb29-1 为边缘相，其它两个样品较其更接近中心。测试结果见表 2，共出现了三个中高温阶段的坪年龄，分别为 23Ma、13Ma 和 8Ma（罗照华等，2003）。样品 Zb29-1 在 900℃～1340℃高温阶段出现了较完好的脱气坪，39Ar 的释气量占整个释气量的 70％以上，年龄值加权平均为 23.34 ± 0.14Ma，反等时线年龄 23 ± 2Ma，MSWD = 1.9。反等时线截距为 319 ± 36Ma，高于大气的尼尔值（295.5），39Ar 略过剩。Zb29-10, Zb29-12 两样品的测试结果相近，中高温阶段39Ar

析出量占总析出量的 60％以上，对应的主坪年龄分别为 13.26 ± 0.02Ma 和 13.24 ± 0.06Ma，拟和的39Ar/40Ar 等时年

龄分别为 13.89 ± 0.57Ma 和 13.97 ± 0.87Ma，反等时线截距

分别为 293 ± 11 和 291 ± 7，坪年龄同位素（罗照华等，2003）及坪年龄与反等时线年龄值之间具有良好的一致性（排

除了该样品在高温阶段有过剩 Ar 的可能性），且与样品 Zb29-1 的低温阶段的年龄坪（13.20 ± 0.12Ma）接近。Zb29-10, Zb29-12 中低温阶段39Ar 析出量分别占 20％以上，并呈现出一个较好的年龄坪，对应的坪年龄为 8.21 ± 0.10Ma 和 8.22 ± 0.13Ma，可能记录了后期构造热事件叠加的影响，且 8Ma 后没有再经历高于封闭温度的热扰动。

3 讨论

根据40Ar/39Ar定年原理，在高温阶段所获得的坪年龄代表了样品早期结晶时代，而样品 Zb29-1 是岩体边缘相的代表，冷却快，所以以往在讨论塔什库尔干碱性杂岩的形成时代时，把 23Ma 作为苦子干岩体的侵位年龄（罗照华等，2003）。钾长石 K-Ar 卡时的启动取决于其 Ar 的封闭温度，高于此温度，K-Ar 体系为开发状态；当温度下降到封闭温度时，钾长石矿物中放射成因的40Ar 才能保存下来，此时的 K-Ar 体系为封闭状态，计时时钟开始启动。由此认为 13Ma 为相邻卡日巴生花岗岩体侵位时对苦子干岩体的热扰动所致，即 13Ma 代表卡日巴生岩体的侵位时间，详细分析见罗照华等（2003）。

根据40Ar/39Ar 法测年结果，苦子干岩体的钾长石年龄均符合以下特征：（1）具有 3 个以上相连的一致年龄，并具有超过 50％的39Ar 释放量；（2）39Ar 析出量超过 50％时，能获得好的高温坪；（3）与坪年龄对应的氢同位素可以构成良好的等时线，其等时线年龄与坪年龄基本一致，其截距值与大气氢比值相差不大。满足所有这些条件的样品，一般可以认为它所代表的岩体具有始建于地质历史，40Ar/39Ar 保持者一个非扰动的封闭体系（赵玉灵等，2002）。所以，钾长石40Ar/39Ar 的测年结果应该是合理的，而且反等时线的截距除样品 Zb29-1 略微有过剩氢（ArR），其余两个样品不支持有 ArR 的存在。然而，苦子干岩体钾长石的年龄明显高于其锆石 U-Pb 的一致年龄（11Ma），在正常的情况下，锆石 U-Pb 年龄应大于钾长石的 Ar-Ar 年龄，因为 K-Ar 在钾长石中的封闭温度仅有 150℃左右（Dodson and Nectalland，1985；高品晶等，2006），远远小于 U-Pb 在锆石中的封闭温度（＞800℃，Miyazaki and Santos，2005），年间的矛盾暗示了钾长石可能有过剩 Ar。

其实过剩 Ar 的存在是一普遍的现象（Simion，2002）。近年来，有关白云母、辉石、角闪石等适用于 K-Ar 法测年矿物均发现有过剩 Ar 的现象（Li et al., 1994；刘红英等，2004；陈能松，2000）。过剩 Ar 可以分为外来 Ar（extraneous argon）和继承 Ar（inherited argon）两种，但在大多数文献讨论

图 3 塔什库尔干碱性杂岩体钾长石40Ar/39Ar 法反等时线年龄图

Fig. 3 Inverse isochrones obtained from the step-heating experiment on the K-feldspars of the Taxkorgan alkaline complex
表 2 塔什库尔干碱性杂岩体中钾长石$^{40}\text{Ar}/^{39}\text{Ar}$测定结果

<table>
<thead>
<tr>
<th>温度 (°C)</th>
<th>$^{40}\text{Ar}/^{39}\text{Ar}$</th>
<th>$^{36}\text{Ar}/^{39}\text{Ar}$</th>
<th>$^{37}\text{Ar}/^{39}\text{Ar}$</th>
<th>$^{38}\text{Ar}/^{38}\text{Ar}$</th>
<th>^{39}Ar</th>
<th>$^{40}\text{Ar} /^{39}\text{Ar}$</th>
<th>^{39}Ar</th>
<th>照射参数：J = 0.008394</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>样品编号</th>
<th>Zb29-1</th>
<th>样品编号</th>
<th>Zb29-10</th>
<th>样品编号</th>
<th>Zb29-12</th>
</tr>
</thead>
</table>

测试单位：中国科学院地质与地球物理研究所 Ar-Ar 法定年实验室；测定仪器：英国 RGD-10 气体质谱仪；
中一般不把二者分开，本文统称为过剩 Ar。苦子干岩体中钾长石未呈现出过剩 Ar 典型的"马鞍型"谱图（即在释气的低温和高温阶段均出现较老的表面年龄），而是较好的坪年龄。这是因为\(^{36}Ar\) 和放射成因的\(^{40}Ar\) 在钾长石中活动方式和扩散速率相近，不受它们初始位置影响（Wartho et al., 1999），两种 Ar 在钾长石矿物中混合均匀，所以无法分辨。这一现象不但出现在钾长石中，白云母、辉石和角闪石也有类似的情况。导致钾长石含有\(^{36}Ar\) 的原因可能有：（1）源区可能有\(^{36}Ar\) 的存在；（2）原岩形成和演化过程经历富含 Ar 流体的作用。苦子干岩体的岩石化学特征表明在演化过程中曾经历过富 K 流体的作用（柯珊等，2006b），如果这种流体同时富含 Ar，则非常有可能导致该岩体的钾长石含有过剩 Ar。尽管 Ar 作为微量元素在钾长石中的溶解度非常低，仅有 0.7 ppb，远低于白云母的（1.8 ppb）(Wartho et al., 1999)，也就是说在条件钾长石出现过剩 Ar 的可能性大大小于白云母，但如果粒间流体含有足够多的元素 Ar，仍然可以使过剩 Ar 存留在钾长石中 (Simon, 2002)；（3）与变质围岩相互作用的结果。当岩体侵入古老的变质岩区，围岩中的 Ar 受热逸出，通过混染或交代作用进入正在结晶的岩浆和钾长石中（陈保松等，2000；高增伟和韩玉林，2006），导致钾长石含有过剩 Ar。样品 Z12-1 采自岩体边缘，其年龄比岩体内样品 Z12-10, Z12-12 明显偏老，应是与变质围岩相互作用所致。因此，对于塔什库尔干碱性杂岩体来说，钾长石不是\(^{36}Ar/^{40}Ar\) 测年的理想对象。通过以上讨论，可以确定苦子干和卡日巴生岩体均为新生代岩浆岩，系同期的岩浆活动，侵位年龄应为 11 Ma。该区域除塔什库尔干杂岩外，其西北部帕米尔地区塔吉克斯坦境内的 Dukeldik 山谷发育有一系列 1Ma 的碱性钾质喷出—浅成岩体，岩石类型包括超镁铁质火山岩和浅成岩体，成分从碱性玄武岩到超基性—正长岩和碳酸岩。其中粗面岩的黑云母、钾长石和基质 Ar-Ar 年龄为 10.8 – 11.1 ± 0.15 Ma，长英质橄榄辉石包体中黑云母的年龄为 11.2 和 11.5 ± 0.2 Ma (Ducea et al., 2003)。表明在中新世中期（11 Ma），帕米尔构造带地区有广泛和强烈的岩浆活动，既有岩浆源区又有幔源岩浆活动。通过对塔什库尔干碱性杂岩矿物学、岩石学和地球化学的综合研究，苦子干和卡日巴生两个岩体均为加厚下地壳镁铁质岩石部分熔融的产物，斜长石、金红石和石榴石矿物相互平衡的约束，岩浆来源的深度至少大于 50 km（柯珊等，2006b），说明帕米尔构造带在 11 Ma 下地壳已加厚，厚度大于 50 km。对于 8 Ma 的低温段钾长石，至今区内尚未发现具有相近侵位年龄的岩浆岩体。但周勇等 (2000) 研究喀喇昆仑走滑断裂带磁力图像特征时，同位素测年数据表明喀喇昆仑走滑断裂在中新世后期 (6.88 ± 0.36 至 8.75 ± 0.25 Ma) 有一次强烈的走滑运动，同时造成断裂两侧地壳的升降，所以 8 Ma 年龄应是塔什库尔干杂岩记录了后期构造热事件的影响。

4 结论

综上所述，可以得出以下几点结论：

（1）通过对比塔什库尔干碱性杂岩钾长石\(^{36}Ar/^{40}Ar\) 法和锆石 U-Pb 法同位素年代学的研究和对比，认为其苦子干正长岩岩体中的钾长石含有过剩 Ar，所以不宜作为塔什库尔干碱性杂岩侵位年龄的测试对象。

（2）通过高精度锆石 SHRIMP U-Pb 测年，塔什库尔干碱性杂岩体中苦子干和卡日巴生两岩体的侵位年龄均为 11 Ma。结合岩体的成因，在 11 Ma 前帕米尔构造带地区已具有加厚的下地壳，地壳厚度至少大于 50 km。在岩体侵位后，由于喀喇昆仑大断裂活动的影响，8 Ma 时记录了这次后期构造热事件的发生。

致谢 衷心感谢赖绍聪教授认真评阅本文并提出宝贵的修改意见，感谢陈道公教授在写作过程中的指导和杨蔚博士的帮助。本文的研究工作是在教育部博士点新教师基金（20070491518）、中国地质大学（北京）青藏高原创新团队和国家自然科学基金项目（40472038）资助下完成的，谨致谢忱。

References

附中文参考文献

陈其松, 孙敏, 张克信等. 2000. 东昆仑变闪长岩体的40Ar/39Ar 和 U-Pb 年龄; 角闪石过硅 Ar 和东昆仑早古生代岩浆岩带证据. 科技通报, 45 (21): 2337 – 2342

柯珊, 莫宜学, 罗照华等. 2006b. 塔什库尔干新生代碱性杂岩的地球化学特征及岩石成因. 岩石学报, 22 (4): 905 – 915

林清荣, 夏斌, 张玉泉. 2006. 西昆仑-喀喇昆仑地区钾碱性岩 Ar-Ar 年龄——以鸡母、大向山和大和岩体为例. 矿物岩石, 26 (2): 66 – 70

肖庆辉, 莫作云, 张显等. 2003. 当代花岗岩研究的几个主要前沿. 地学前缘, 10 (3): 221 – 229

新疆地质矿产研究所. 1985. 新疆南疆西部地质图 (1:50 万) 及说明书. 北京: 地质出版社, 251 – 361

Acta Petrologica Sinica 岩石学报 2008, 24 (2)