北秦岭西段冥古宙锆石(4.1 ~ 3.9 Ga)年代学新进展

第五春荣 孙勇 董增产 王洪亮 陈丹玲 陈亮 张红
DIWU Chun Rong, SUN Yong, DONG Zeng Chan, WANG Hong Liang, CHEN Dan Ling, CHEN Liang and ZHANG Hong

大陆动力学国家重点实验室，西北大学地质系，西安 710069
State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an 710069, China
2010-03-10 收稿，2010-03-30 改回。

Abstract One zircon xenocryst with a concordant 207 Pb/206 Pb age of 4079 ± 5Ma was reported by Wang et al. (2007) from volcanic rocks in the western of the Northern Qinling Orogenic Belt. In recent study on those old xenocrysts, about 3,000 zircon grains are separated from the same rock outcrop and have been analyzed by LA-ICPMS. Two metamorphic zircon xenocrystic cores gave confirmative 207 Pb/206 Pb ages of 4008 ± 29Ma and 3908 ± 45Ma, respectively. The occurrence of 4.0 Ga metamorphic zircon provided evidence that the metamorphism occurred as old as 4008Ma. The lithologic characteristics of the host rocks contain Hadean zircons are clearly defined as pyroclastic lava, not volcanic lava, as previously believed.

Key words Hadean; Zircon; Volcanic rock; Northern Qinling Orogenic Belt; Metamorphism

摘 要 2007年王洪亮等报道了在北秦岭西段火山岩中获得一粒年龄为4079 ± 5Ma的冥古宙锆石后。之后，对这一发现开展了深入的详细研究，我们利用SHMP技术方法对原4079Ma的锆石进行分析实验，新获得了两粒207 Pb/206 Pb 年龄为 4007 ± 29Ma和3908 ± 45Ma的变质成因锆石，表明早在4.0 Ga已经有变质作用的发生，这或许说明在冥古宙时期地球已经具有相当规模和厚度的地壳。同时开展的岩石学研究表明，冥古宙锆石的母岩属于火山碎屑熔岩类而不是火山熔岩。

关键词 冥古宙；锆石；火山岩；北秦岭造山带；变质作用

中图法分类号 P597.3

存在冥古宙 (>4.0 Ga)地质记录的地区在世界上为数不多（Wilde et al., 2001；izuka et al., 2006；多吉等, 2007），任何老于4.0 Ga的矿体或岩石都十分珍贵，因为人们只有通过这些稀存的矿体或岩石来探索地球最初形成、演化的历史。2007年王洪亮等报道了在北秦岭西段火山岩中获得一粒年龄为4079 ± 5Ma(LA-ICPMS 定年)的冥古宙锆石后。而后在国家自然科学基金的支持下，对已发现4079 ± 5Ma冥古宙锆石的地区开展细致的野外调研及岩相学研究，并利用 LA-ICPMS 和 SHRIMP 锆石 U-Pb 测定方法继续搜寻早期地壳残片，通过两年不懈的努力，取得一些新的研究成果，现做以简要的报道。

1 样品岩相学

研究对象属于秦岭造山带西段出露的奥陶纪草滩沟群。草滩沟群由一套火山-沉积岩构成。含4.1 Ga捕虏锆石的样品采自甘肃省宕昌县张家庄乡桑园村南侧河谷中。最初，将发现冥古宙锆石的寄主岩石命名为火山熔岩(王洪亮等, 2007)。

野外观察和详细的室内岩石薄片研究表明: 岩石形成于火山喷发的通道，属于介于火山熔岩和火山碎屑岩之间的火山碎屑熔岩类。岩石呈暗灰绿色，块状构造，具有特殊的熔
岩基质胶结火山碎屑物的结构特征。岩石中见有部分浆屑（fiamme），呈明显的断裂状（火焰状）塑性形态，已发生脱玻化，其内部常具零星结构，且多被压扁，拉长，微显定向构造；岩石中晶屑成分较为单一，主要为长石和石英；长石呈现两种不同的形态特征，一类为晶状体，其外缘不规则，棱角状、阶梯状或发育多粒状断口；岩石中或熔结体为熔岩基质，具有显微晶质结构，并已明显蚀变，由蚀变形成的纤维状绢云母、绿泥石和长英质微细晶粒构成，并可见他形微细粒状磁铁矿颗粒呈弥散状分布在基质之中（图1a, b）。

上述岩相学研究表明，该物主岩应该是火山爆发时产生的火山碎屑物被熔岩（浆）基质胶结而形成，属于火山碎屑熔岩类。这类岩石通常产于火山口或火山通道附近，它们在岩浆上升以及喷发和成岩过程中可以携带或捕获源区，围岩甚至附近的锆石。

2 锆石定年结果和讨论

本文锆石 U-Pb 定年测试分析分别在西北大学大陆动力学国家重点实验室和中国地质科学院离子探针中心完成。

王洪亮等 (2007) 利用 LA-ICPMS 锆石微区原位 U-Pb 同位素测年获得一粒207Pb/206Pb 年龄为 4079 ± 5Ma 的碎屑锆石，这使得北秦岭成为东吴深 Yilgan 穿越克拉通（碎屑锆石，

图 1 火山碎屑熔岩镜下照片 (a, b) 和该样品中的锆石 CL 照片 (c, d, e)。 (a, b): 单偏光，Mag-磁铁矿；Pl-斜长石；(c, d, e): 黄色的圆和数字为 SHRIMP 的年龄测试结果；粉红色的圆和数字为 LA-ICPMS 的年龄测试结果。

Fig. 1 Photomicrograph of pyroclastic lava (a, b) and typical CL images for U-Pb dated zircons (c, d, e)。 (a, b): Mag-magnetite；Pl-plagioclase；(c, d, e): the yellow circles and numbers show the result of SHRIMP dating；the pink circles and numbers show the result of LA-ICPMS dating。

图 2 火山碎屑熔岩中冥王谷-古太古代锆石年代谱图和图

其中红色的圆和数字为 SHRIMP 的年龄测试结果，蓝色的圆和数字为 LA-ICPMS 的年龄测试结果。

Fig. 2 Concordia diagrams of Hadean-Eoarchean zircon of pyroclastic lava

The red circles and numbers show the result of SHRIMP dating；The blue circles and numbers show the result of LA-ICPMS dating.

4404 ± 8Ma, Wilde et al., 2001)。加拿大 Wopmay 造山带 (Acasta 片麻岩, 4016Ma, Iizuka et al., 2006) 和中国西藏普
表1 火山碎屑熔岩中冥古宙-古太古代锆石 U-Pb 年龄测试结果

<table>
<thead>
<tr>
<th>分析点号</th>
<th>组成(×10^{-8})</th>
<th>Th/U</th>
<th>同位素比值</th>
<th>年龄(Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb</td>
<td>Th</td>
<td>U</td>
<td>207Pb/206Pb</td>
<td>1σ</td>
</tr>
<tr>
<td>C1W24</td>
<td>455</td>
<td>167</td>
<td>337</td>
<td>0.49</td>
</tr>
<tr>
<td>A211-6-386</td>
<td>755</td>
<td>85</td>
<td>629</td>
<td>0.14</td>
</tr>
<tr>
<td>A211-3-305</td>
<td>1014</td>
<td>31</td>
<td>797</td>
<td>0.04</td>
</tr>
<tr>
<td>A211-3-305(2)</td>
<td>891</td>
<td>50</td>
<td>876</td>
<td>0.06</td>
</tr>
<tr>
<td>CTRG9-1.1.3</td>
<td>61</td>
<td>330</td>
<td>0.18</td>
<td>0.4329</td>
</tr>
<tr>
<td>CTRG9-1.1.1</td>
<td>119</td>
<td>446</td>
<td>0.27</td>
<td>0.4484</td>
</tr>
<tr>
<td>CTRG9-1.1.2</td>
<td>37</td>
<td>148</td>
<td>0.25</td>
<td>0.3504</td>
</tr>
</tbody>
</table>

注：C1W24, A211-6-386, A211-3-305, A211-3-305(2) 为 LA-ICPMS 的测试结果；CTR90-1.1.3, CTR90-1.1.1, CTR90-1.1.2 为 SHRIMP 测试的结果。

3 地质意义

根据已有的文献报道，地球上最早的岩浆锆石纪录的岩浆事件发生在 4.4～3.7Ma（Cavosie, 2005；Nechmin et al., 2006），那么本文发现的这些 4.0～3.9 Ga 变质成因的锆石，表明早在 4.0～3.9 Ga 已经有变质作用的发生，这或许说明在冥古宙时期地球已经具有相当规模面积和厚度的地壳，至少北秦岭西段的古地球时代岩浆活动的事件或区域是这样。另外，根据 Sun et al. (2008) 的报道，在附近发育的凝灰岩中发现一些 3.5 Ga 的捕获锆石具有负的 ε_{Hf} (t) 值（可达 -61.1），其 Hf 模式年龄为 4.1 Ga，明显大于锆石的结晶年龄，表明这些锆石的寄主体质是 4.1 Ga 地壳再造的产物，这也说明正是由于壳内物质多次循环作用，导致地球表面的盖地物质遭到破坏和改造而几乎殆尽，使得现在保留的地球早期环境相对稀少。最近华北多处有 > 3.8～3.3 Ga 的古老锆石被发现（谢明国, 2010），本项研究对北秦岭的早古生代区域有所指示。

致谢

感谢赖智明教授在岩相学研究过程中给予的帮助；感谢万维生研究员、王伟博士在 SHRIMP 测试分析过程中给予的帮助；感谢翟明国院士对论文的审阅。

参考文献

Iizuka T, Horie K, Komiya T et al. 2006. 4.2Ga zircon xenocryst in an Acacha gneiss from northwestern Canada; Evidence for early continental crust. Geology, 34(4); 245 – 248

Nechmin AA, Pidgeon RT and Whitehouse MJ. 2006. Re-evaluation of the origin and evolution of > 4.2 Ga zircons from the Jack Hills
metasedimentary rocks. Earth Planet. Sci. Lett., 244; 218 – 233

附中文参考文献
王洪亮，陈亮，孙勇等. 2007. 北秦岭西段奥陶纪火山岩中发现近4.1 Ga的捕虏锆石. 科学通报, 52 (14): 1685 – 1693
多吉，温春齐，郭建慈等. 2007. 西藏4.1 Ga碎屑锆石年龄的发现. 科学通报, 52 (1): 19 – 22