腾冲火山口内岩浆囊现今温度：来自温泉逸出气体CO₂、CH₄间碳同位素分馏的估计

赵慈平 范华 陈坤华
ZHAO Giping, RAN Hua and CHEN KunHua

云南省地震局, 昆明 650224
Earthquake Administration of Yunnan Province, Kunming 650224, China
2011-06-01 收稿，2011-08-13 改回。

Abstract Temperature is an important physical parameter of magma. It has important theoretical and practical significance to acquire and monitor temperature parameter of magma chambers for better understanding changes in the physical and chemical properties and behavior of a volcano, and for better assessing its activity and eruption risk. Here we report the carbon isotope composition data of CO₂ and CH₄ that collect from thermal springs in the Tengchong volcanic field (TVF) and the temperatures of the existing three magma chambers within crust beneath the TVF, which are calculated with carbon isotope equilibrium fractionation equation T(°C) = 3880.3 \(\times (1000\ln{\alpha_{\text{CO}_2/\text{CH}_4}})^{-0.984} \) between CO₂ and CH₄ that fit from Horita’s experimental correction of Richet’s theoretical fractionation factor data between them. Our results shows that, the lowest carbon isotope equilibrium fractionation temperature between CO₂ and CH₄ of gas source area, is 397°C, the highest one, up to 1163°C, the average value, 615°C in the TVF and that, among the 3 crustal magma chambers in the TVF, the southern Wuhe-Longjiang-Puchuan one has highest present-day temperature, which ranges from 464°C to 1163°C, with an average of 773°C; the central Tengchong-Heshun-Rehai one has higher temperature, which ranges from 438°C to 773°C, with an average of 566°C; the northern Mazhan-Qushi-Yongan one has the lowest temperature, which ranges from 397°C to 651°C, with an average of 524°C. We believe that the current temperature of the gas-rich region at the top of those 3 magma chambers in TVF varies from 400°C to 1200°C, the actual average temperature of those 3 magma chambers should be higher than 615°C, the temperature of the core of those 3 magma chambers may be 700 – 1200°C, that of marginal region of those 3 magma chambers may be 400 – 600°C. The current temperature of the center of those 3 magma chambers has reached which rhyolitic magma (600 – 900°C), andesitic magma (800 – 1100°C) and basaltic magma (1000 – 1250°C) form in, suggesting further, in turn, that there exist objectively those 3 magma chambers in TVF. In addition, we find that, in the process of determining whether the carbon isotope fractionation equilibrium between CO₂ and CH₄ achieve or not with the δ-∆ diagram method, under the conditions that the slope sign of two fitting straight lines maintain always the opposite, no matter how exclud data points, one can not make the difference b₂ of the intercept b₂ of \(\delta^{13}C_{\text{CO}_2}-\Delta_{\text{CO}_2/\text{CH}_4} \) fitting straight line in the δ-axis and the intercept b₂ of \(\delta^{13}C_{\text{CH}_4}-\Delta_{\text{CO}_2/\text{CH}_4} \) fitting straight line in the δ-axis less than 0.1245, indicating that the intersection point of the two fitting straight lines can not fall in the δ-D axis. And this value is near the constant item of Horita’s equation, suggesting that there exists really a constant item in the equation of carbon isotope fractionation equilibrium between CO₂ and CH₄, and that the carbon isotope fractionation between CO₂ and CH₄ exists always at no matter how high temperature. The δ-∆ diagram guidelines of determining the carbon isotope fractionation equilibrium between CO₂ and CH₄ should be amended as follows; under the conditions that the sign of the slope of the two fitting lines keep allways opposite, the δ\(^{13}C_{\text{CO}_2}-\Delta_{\text{CO}_2/\text{CH}_4} \) fitting straight line and the δ\(^{13}C_{\text{CH}_4}-\Delta_{\text{CO}_2/\text{CH}_4} \) fitting straight line should intersect near the δ-axis with intercept difference 0.1245.

Key words Temperature; Magma chamber; Isotopic geothermometer; Hot spring gases; Tengchong volcanic field

摘 要 温度是岩浆囊的重要物理参数，获取温度参数并监测其变化对更准确地理解岩浆囊的物理化学性质和行为，评价火山

* 本文受国家自然科学基金面上项目(41172306, 40973015)和中国地质探测工程(SinoProbe-05-03)联合资助。
第一作者简介：赵慈平，男，1966 年生，博士，副研究员，地球化学和构造地质学专业，E-mail: cpzhao@china.com
山的活动性和喷发危险性具有重要的理论和现实意义。本文通过对温泉逸出气体 CO₂ 和 CH₄ 碳同位素样品的采集、分析测试，利用 Horita 通过实验矫正的 Richet 的平衡分馏系数的理论计算数据，通过拟合得到的 CO₂—CH₄ 碳同位素平衡分馏方程
\[T(K) = 3880.3 \times (1000 \nu_{(CO₂/CH₄)})^{0.994} \]，计算了腾冲火山区现有 3 个岩浆囊的温度。结果表明：在腾冲火山区内，CO₂ 和 CH₄ 的碳同位素分馏值计算的气体深区平衡温度最低 397°C，最高 1163°C，平均 615°C。腾冲火山区内有 3 个岩浆囊，南部为龙-江-浦江岩浆囊的现代温度在 464~1163°C，平均 773°C，温度最高；中部腾冲-和顺-热海岩浆囊的现代温度在 438~773°C 之间，平均达 566°C，温度之次；北部火山-曲石-永安岩浆囊的现代温度在 397~651°C 之间，平均达 524°C，温度最低。我们认为，腾冲火山区内这 3 个岩浆囊的温度分布是具有地热区的温度，进一步分析腾冲火山区内 3 个岩浆囊的特征是客观存在的。另外，我们发现用 δ-δ 图解法判断 CO₂—CH₄ 间碳同位素分馏平衡的过程中，保持 2 条相拟直线的斜率符号相反的条件下，无论如何相拟数据点都不能使 \[δ^{13}C_{CO₂-\Delta C_{CH₄}} \] 拟合直线的截距 b_{CO₂} 和 \[δ^{13}C_{CH₄-\Delta C_{CO₂}} \] 拟合直线的截距 b_{CH₄} 之差 b 小于 0.1245，说明 2 条相拟直线的交点不能落在 δ 轴上，而此数值与 Horita 方程的常数项接近，这说明 CO₂—CH₄ 间碳同位素分馏方程中确实存在常数项，CO₂ 和 CH₄ 间在再高的温度下都存在碳同位素的分馏。 δ-δ 图解法判断 CO₂—CH₄ 间碳同位素分馏平衡准则应修正为：在保持 2 条相拟直线的斜率符号相反的条件下，\[δ^{13}C_{CO₂-\Delta C_{CH₄}} \] 拟合直线和 \[δ^{13}C_{CH₄-\Delta C_{CO₂}} \] 拟合直线应相交于 δ 轴附近截距差 0.1245 处。

关键词：温度；岩浆囊；同位素地热带；温泉气体；腾冲火山区

中图法分类号：P317

1 引言

长期以来，火山学家普遍认为火山岩浆囊冷却，在新岩浆注入使其恢复高温并重新活动起来之前它将保持休眠状态数百年的时间。但最近有研究认为当新鲜的热岩浆从上地幔上升到岩浆囊的底部，迫使新的岩浆流向之熔合，这种混合过程使岩浆整体温度上升的速度比以前人们预想的要快得多，而短短几个月的时间内岩浆囊的升温过程就能完成（Burgisser and Bergantz, 2011），因此并无真正意义上休眠的火山。所以温度是岩浆囊的重要物理参数，获取温度参数并监测其变化对了解岩浆囊的物理化学性质和行为、评价火山的活动性和喷发危险性具有重要的理论和现实意义。

Urey (1947) 首次指出可将同位素作为温度计应用于地质体系，才出现了“稳定同位素地球化学”这门分支学科，并逐渐发展成为今天地球科学领域的重要研究手段之一。近几十年来，稳定同位素地球化学基础理论的研究出现了修正 Urey 模型（或称 Bigeleisen-Mayer 公式）的修正（刘戚等，2008）。Urey 模型虽然存在着一些问题，也面临着一些挑战，包括几个近似处理法它的计算结果在小分子化合物中偏离了实际值，另外，“核场效应”使其对超重同位素体系并不适用，甚至对于包括第一过渡金属硫在内及其以上较轻同位素体系，Urey 模型的精度还是可以满足当前研究的需要。尤其在气相和液相体系的分馏计算中，使用 Urey 模型可以达到 ±0.2%的精度（刘戚等，2009）。因此虽然对重同位素和固体而言，同位素分馏很复杂，绝对简单的温度函数，但幸运的是，对气体系来说，尤其是对 CO₂ 和 CH₄ 气体中的碳同位素等轻同位素而言，Urey 模型依然适用。CO₂—CH₄ 碳同位素地
图 1 腾冲火山区火山岩、岩浆囊和温泉（温度研究样点）分布
蓝色大圆为腾冲火山区火山岩分布范围。大圆内的不规则封闭区域代表火山岩，不同的颜色代表不同的时代：紫色，上新世（N）火山岩；蓝色，中更新世（Q）火山岩；绿色，晚更新世（P）火山岩；红色，全新世（Q）火山岩。红色长线封闭区域为地球化学观测研究确定的 3 个岩浆囊（赵德平等，2006；赵德平等，2008）；红色实心圆点为 CO₂-CH₄ 采样点，数字标注温度为本文所得较高的温度点，其余点的温度未标注。黄色小方框为图 2 的表示范围。
Fig. 1 Distribution of volcanic rocks, magma chambers and thermal springs (sample locality of temperature researching) in Tengchong volcanic field (TVF)

结果发现，其中一些岩浆囊的现今温度高达 1200℃，比前人曾估计的温度（上官志华，2000）高出很多，这一结果与地球物理观测结果非常吻合（楼文等，2002；白志明，2009）, 对理解腾冲火山的现今活动性有重要意义。另外，我们发现在用 δ-Δ 图解法（陈骏和王鹤年，2004）判断 CO₂-CH₄ 间碳同位素分馏平衡的过程中，无论如何剔除数据点，都不能使 δ^{13}C_{CO₂} - Δ_{CO₂-CH₄} 合适直线的截距 b_{CO₂} 和 δ^{13}C_{CH₄} - Δ_{CO₂-CH₄} 合适直线的截距 b_{CH₄} 之差 b₂ 小于 0.1245，说明 2 直线的交点不能落在 δ 轴上，这一数值与 Horita(2001) 公式的常数项接近。本文的资料为 CO₂-CH₄ 间的碳同位素分馏方程中常数项的存在提供了自然环境下观测的证据，为修正用 δ-Δ 图解法（陈骏和王鹤年，2004）判断 CO₂-CH₄ 间碳同位素分馏平衡准则提供了依据。

2 地质背景

腾冲火山分布于高黎贡山以西，中缅边界以东，位于印度板块与欧亚板块碰撞带的弧后带。以腾冲县城西南为圆心，在半径约 55km 的范围内分布着 220 多个火山岩体，覆盖面积 1000km²（图 1）。其中全新世火山有 4 座：黑空山，打鹰山，马鞍山和老龟坡（云南省地质矿产局，1982，1985，1989，1992，1995）。腾冲火山每个火山岩体由多次喷发产物组成。

腾冲火山区内仍有岩浆活动。白登海等（1994）根据大地电磁测深（MT）资料认为，热海至热水塘一带地下5～25km存在1个岩浆囊；王椿儒等（2002）根据地壳中三维地震速度层析成像研究确认腾冲火山的五合-和顺-团田一带存在岩浆囊（7～14km）；叶建庆等（2003）根据观测到的震群分布和S波速场成像认为在打鹰山火山以南地区的地壳上部深度14km以内存在2个岩浆囊，上部岩浆囊位于老龟坡和马鞍山2个火山之间，深度约4～6km。下部岩浆囊位于马鞍山与腾冲县城、沙坝、热海一带，深度约8～14km；黎炜等（2000）根据1985年国家大地控制测理一测区成果和1997年自己测量的一期激光测距结果认为马鞍山-小西一带呈现面膨，认为其下有岩浆活动。赵慈平等（2006）、赵慈平（2008）根据上地壳厚度图，蛇源物质释放场研究认为腾冲火山区内现今存在3个活动性不同的岩浆囊：第1个岩浆囊位于腾冲县城和清水一带，第2个岩浆囊位于马站和曲石一带，第3个岩浆囊位于五合、龙江、团田和蒲川一带。3个岩浆囊的活动性不同：第1个岩浆囊集相对地热梯度、蛇源物质释放、形变和地震活动等异常于一身，岩浆囊正在接受幔源岩浆的补充，活动性较强，直接位于腾冲县城之下，喷发的危险性不严重，需重点监视；第2个岩浆囊的岩浆物质释放强度也引人注目，岩浆囊可能仍在接受幔源岩浆的补充，需加强监测；第3个岩浆囊幔源物质释放较弱，目前幔源岩浆的补充可能比较微弱，但规模大，埋深较浅，需引起注意。白志明（2009）通过建立S波速度结构，P波速度随深度、方向和多方向性融合认为腾冲火山区存在4个高温岩浆、孔洞型流体和裂缝型流体发育部位，在更面存在2个热流从上地幔底部输送到下地壳的突破点。

这些温泉普遍有大量气体逸出，其中可能含有可可的CO₂（0.27%～98.37%；V/V）和CH₄（0.005%～6.39%；V/V）（赵慈平，2008）。这使得以腾冲地区温泉为研究对象，利用其自由气体中CO₂-CH₄间碳同位素组成来估算现今腾冲地区的地下岩浆囊的温度参数成为现实。

3 分析方法

3.1 样品采集

为了保证所采集气体样品不受环境污染，提高分析结果的准确度，同时为了克服野外采样中如温泉水气温度过高，采样空间狭小等原因的困难，在近距离采样、排气规模太小以及CH₄通常作为微量组分需要富集等一系列问题，我们设计了一套集排气装置、储气装置、CH₄富集装置、样品输出接口装置于一体的气体样品采集器具（冉华等，2006，2008），并根据前期的采样分析结果，对CH₄富集装置进行改进，使其采集效果更好。

用本研究改进的防大气污染和具有雾集功能的采样器采集腾冲火山区内3个岩浆囊上方的温泉水气样，对CH₄碳同位素样品进行现场富集取样，用于常规组分和碳同位素组成分析的气体样品用铝塑气体样品袋装样。具体的采样方法及操作细节见冉华等（2006，2008）。

3.2 碳同位素分析测试

外送相关实验室分析碳同位素组成。CO₂碳同位素样品的纯化和奇数样品制备送中国地震局火山研究所中心火山气体实验室完成，CO₂碳同位素测定送中国科学院地质与地球物理研究所分析测试中心完成，分析测试仪器MAT251质谱仪，CH₄碳同位素样品送中国石油化工胜利油田地质研究所完成，首先进行质谱校正。然后根据分析好的CH₄，碳同位素组成测

3.3 岩浆来源判定

理论模拟和观测实验均表明CO₂和CH₄等含碳气体不仅在岩浆中广泛存在（Duan et al., 1992a, b; Duan and Zhang, 2006; Zhang and Duan, 2005, 2009; Zhang et al., 2007; Sato et al., 1999, 2002; Fischer et al., 1998），而且气态CO₂、CH₄的碳同位素组成本身还能对其岩浆源进行示踪。

研究认为，幔源CO₂与CH₄的碳同位素组成式；δ¹³C CO₂ = 0～8‰；δ¹³C CH₄ = -15‰～-25‰（Fiebig et al., 2004; Carapezza et al., 2000; Taran et al., 2001, 2002）。通

普通认为岩浆CO₂的δ¹³C CO₂ = 0～-10‰；岩浆CH₄的δ¹³C CH₄ = -9‰~ -52‰（Chiodini et al., 2008; Werner et al., 2006; Takahashi et al., 2004; Birkle et al., 2001; Welhan, 1988; Giggenbach, 1997; Sherwood Lollar et al., 1993）。Shimooka et
al. (2002) 更是将岩浆 $\delta^{13}C_{CO_2} = -5\%_e$, 生物成因 $\delta^{13}C_{CO_2} = -27\%_e$, 大气 $\delta^{13}C_{CO_2} = -8\%_e$, 作为 CO$_2$ 组分的特征碳同位素组成用来估算这 3 个端源的贡献率（百分比）。Fischer et al. (1998) 认为万顷火山链的火山岩浆释放 CO$_2$ 的 $\delta^{13}C_{CO_2} = -5.2\%_e \sim -7.6\%_e$, 并且认为通过 CO$_2$ 碳同位素值可以示踪其不同的源区：地幔源 $\delta^{13}C_{CO_2} = +4 \pm 2.5\%_e$；海相碳酸盐平均值为 $\delta^{13}C_{CO_2} = 0\%_e$，但可在 $-5\%_e \sim +5\%_e$ 的范围内变化；生物成因则的 $\delta^{13}C_{CH_4} = +20\%_e$，而陆相冲带火山岩浆的 $\delta^{13}C_{CO_2} = -12\%_e \sim -2.5\%_e$。研究还证实，催化 CH$_4$ 的 $\delta^{13}C_{CH_4} = -25\%_e \sim -38\%_e$ (Barker and Fritzius, 1981)；生物成因 CH$_4$ 的 $\delta^{13}C_{CH_4} = -50\%_e \sim -93\%_e$ (Schoell, 1980; Grossman et al., 1989; Aravena et al., 1995)。

可以看出，CO$_2$ 与 CH$_4$ 的碳同位素组成本身就具有示踪意义，又由于大多数岩浆与地幔源区紧密相关，因此辅以其他示踪同位素（比如 He 同位素比例 He/^{3}He），我们就可以判断 CO$_2$ 与 CH$_4$ 是否同时来自于岩浆。综合以上数据范围，我们将 CO$_2$-CH$_4$ 作为岩浆来源的判断条件设定为同时满足 $\delta^{13}C_{CO_2} = 0 \sim -8\%_e$ 和 $\delta^{13}C_{CH_4} = -9\%_e \sim -25\%_e$ 这 2 个条件。对同时满足这 2 个条件的数据进行碳同位素平衡判断。

3.4 碳同位素分馏平衡判定

采用 Δ-图解法（陈骏和王鹤年，2004）来判断 CO$_2$-CH$_4$ 间的碳同位素分馏是否达到平衡。对 CO$_2$-CH$_4$ 间的碳同位素分馏来说，$\delta^{13}C_{CO_2}$ 和 $\delta^{13}C_{CH_4}$ 为观测值，分别指 CO$_2$ 和 CH$_4$ 的中$^{13}C/^{12}C$ 的比值。R$_{CO_2}$ 或 R$_{CH_4}$ 与碳同位素标准（PDB）比值的千分差，而 $\Delta^{13}C_{CO_2-CH_4}$ 则直接指 CO$_2$ 和 CH$_4$ 的中$^{13}C/^{12}C$ 的比值 R$_{CO_2}$ 与 R$_{CH_4}$ 之间的千分差。可用观测值 $\delta^{13}C_{CO_2}$ 和 $\delta^{13}C_{CH_4}$ 精确计算 $\Delta^{13}C_{CO_2-CH_4}$ 和 $\alpha_{CO_2-CH_4}$ 值，然后通过 $\alpha_{CO_2-CH_4}$ 值计算 1000 ln (值）。然后使用计算的 $\Delta^{13}C_{CO_2-CH_4}$ 值与 $\delta^{13}C_{CO_2}$ 和 $\delta^{13}C_{CH_4}$ 观测值，通过 Δ-图解法判断 CO$_2$-CH$_4$ 间的^{13}C 同位素交换平衡程度。

同位素交换反应的分馏系数 $\alpha_{CO_2-CH_4}$ 为：

$$\alpha_{CO_2-CH_4} = R_{CO_2}/ R_{CH_4}$$

式中 $\alpha_{CO_2-CH_4}$ 为 CO$_2$ 分子和 CH$_4$ 分子之间的同位素分馏系数。R$_{CO_2}$ 为 CO$_2$ 分子中碳原子的^{13}C 原子数和^{12}C 原子数的比值$^{13}C/^{12}C$R$_{CH_4}$ 为 CH$_4$ 分子中碳原子的^{13}C 原子数和^{12}C 原子数的比值$^{13}C/^{12}C$。

通常情况下是测定 CO$_2$ 分子和 CH$_4$ 分子之间的碳同位素分馏值 $\Delta^{13}C_{CO_2-CH_4}$ 而不是分馏系数 $\alpha_{CO_2-CH_4}$ 来确定其千分分馏值 1000ln$\alpha_{CO_2-CH_4}$：

$$\Delta^{13}C_{CO_2-CH_4} = \delta^{13}C_{CO_2} - \delta^{13}C_{CH_4} \approx 1000 \ln \alpha_{CO_2-CH_4}$$

$\delta^{13}C_{CO_2}$ 和 $\delta^{13}C_{CH_4}$ 分别为 CO$_2$ 分子和 CH$_4$ 分子的同位素值 R$_{CO_2}$ 与碳同位素标准（PDB）比值的千分差：

$$\delta^{13}C_{CO_2} = \left(R_{\text{PDB}}/R_{CO_2} - 1 \right) \times 1000$$

$$\delta^{13}C_{CH_4} = \left(R_{\text{PDB}}/R_{CH_4} - 1 \right) \times 1000$$

本文通过 δ 和 Δ 的测试值准确计算 α_{AB}、Δ_{AB} 的 1000ln α_{AB}：

$$\alpha_{AB} = R_{A}/ R_{B} = \left(1000 + \delta_{A} \right) / \left(1000 + \delta_{B} \right)$$

$$\Delta_{AB} = \left(R_{PDB}/ R_{A} - 1 \right) \times 1000 = \left(\delta_{A} - \delta_{B} \right) / \left(1 + \delta_{B} \right)$$

然后用 $\Delta^{13}C_{CO_2-CH_4}$ 为横坐标，$\delta^{13}C_{CH_4}$ 为纵坐标，若 $\Delta^{13}C_{CO_2-CH_4}$ 分别为横坐标轴，若 $\delta^{13}C_{CH_4}$ 分别为横坐标轴的斜率符号相反，且两拟合直线相交于 $\delta^{13}C$ 轴 (纵坐标轴)，则 $\delta^{13}C_{CO_2}$ 和 $\delta^{13}C_{CH_4}$ 分别为横坐标轴的截距 b_{CO_2} 和 b_{CH_4} 分别为横坐标轴的截距 b_{CO_2} 的横坐标轴截距 b_{CH_4} 之差 $b_{CO_2} - b_{CH_4}$ 等于 0。则可认为这些数据点的 CO$_2$ 和 CH$_4$ 间的碳同位素分馏达到平衡。

3.5 平衡分馏系数的选择

CO$_2$-CH$_4$ 气体同碳同位素分馏系数的计算及其与温度关系的研究有较长的历史。诺贝尔化学奖得主 Urey (1947) 关于同位素的同位素同位素及其分子具有不同的热力学性质的开创性研究奠定了同位素温度计的理论基础；同位素的热力学性质差异导致了同位素的分馏，而分馏系数和温度据有相依关系。Bigeleisen and Mayer (1947) 开创了分馏系数的计算方法。从此之后，同位素温度计广泛应用于地质过程和全球气候变化的研究中，在地质过程研究中当作地质温标使用，在环境变化过程研究中当作古温度计使用。

Craig (1955) 根据光谱资料估计了 CH$_4$ 碳同位素的振动频率变化，从理论上计算了作为温度函数的气体会碳同位素交换反应的平衡常数 (分馏系数)，讨论了气体分子碳同位素平衡过程中丰富资料 (分馏系数) 与温度的关系，认为观测到的碳同位素值是含碳气体分子间温度决定的碳同位素交换反应的热力学平衡结果。他首次从理论上计算了不同温度下 CH$_4$ 的配分系数比，并将其与 Urey (1947) 关于 CO$_2$
的计算相关所结合，首本形成了其要地质意义的含碳化合物分子 CO_2 与 CH_4 之间碳同位素交换反应的平衡常数（分馏系数）与温度的对应数据表，并用作图插值法，根据观测的 CO_2 与 CH_4 间碳同位素分馏值，利用美国黄石公园温泉气体碳同位素平衡温度，这是碳同位素温度计在火山地热区的首次应用，主要用于 $600K$ 以下的低温区。此后，他又直接提出了 CO_2 与 CH_4 间碳同位素分馏值 $1000\ln\alpha$ 与平衡温度的相关关系式（Craig, 1963），主要应用于 $600K$ 附近的高温区。为了在更大的温度范围内应用同位素温度计，Bottinga (1969a, b) 在 $273 - 973K$ 的温度范围 内根据 Urey (1947) 的理论和 Bigeleisen (1947) 的计算方法，应用其中新获得的更广泛的光谱资料，对 CO_2 与 CH_4 间碳同位素分馏分系数进行了理论计算。Richter et al. (1977) 回顾了气体分子同位素平衡分馏系数计算的理论和方法，并认为 Urey 模型仅适用于气体分子。他们详细讨论了计算中可能的误差来源，讨论了作为计算输入的光谱资料，对双原子分子交换体系和多原子分子交换体系的平衡常数和同位素分馏系数进行了分析和计算，发现双原子分子交换体系的平衡常数 K 和同位素分馏系数 α 是等同的，而多原子分子交换体系的平衡常数 K 和同位素分馏系数 α 并不等同，需引入 β 参数，才能通过平衡常数的计算过程计算出同位素分馏系数 α。他从理论上计算了 $273 - 1573K$ 温度范围的含碳气体分子的碳同位素交换 β 参数，这是目前所能得到的温度范围 最大，也最协调的一套气体分子交换反应的碳同位素分馏系数数据，从数据可发现 β 参数和分馏系数 α 与温度平方的倒数 $1/T^2$ 并不是线性相关关系，但通过回归和拟合，这套数据可用于确定这些气体 (包括 CO_2 与 CH_4) 的碳同位素交换平衡温度。

Giggenbach (1982) 认为 CO_2-CH_4 间碳同位素交换平衡的速率与温度相关，温度越高，达到平衡的速度越快，达到平衡的反应时间越少（300℃以下达百万年量级，1000℃以上为数天量级）。Fiebig et al. (2004) 也认为在 400℃以下，交换非常缓慢。这样，当地热流体从高温源区快速上升并迅速降温的话，同位素组成会被“冻结”，由观测到的同位素分馏值 Δ 所计算的温度就代表源区的温度下限。CO_2-CH_4 间13C 同位素交换反应既可作为地质温度计，也可作为地质年代计。他同时还提出了一个具体的 T 关系式。

美国 Oak Ridge 国家实验室化学和分析科学部的 Horita (2001) 认为在含人的 CO_2-CH_4 间碳同位素交换平衡分馏系数统计力学计算结果中，Richter et al. (1977) 的数据是最准确的，因为他们的计算使用了更新的和采取了轴和桥的更精确的光谱数据。Horita (2001) 在 $200 - 6000$℃的温度范围内对 CO_2-CH_4 间碳同位素交换平衡分馏系数进行了实验测定，共获得了 44 个数据。通过与根据 Richter et al. (1977) 的数据拟合的公式计算的理论值对比，发现两者非常相似，只是实验结果比理论结果系统偏低 0.89%。他用其实验结果对 Richter et al. (1977) 的拟合公式进行改校，提出了一个新的既

基于理论又有实验校正的 CO_2-CH_4 间碳同位素交换平衡分馏系数与温度的关系式：
$$10^\ln\alpha (\text{CO}_2/\text{CH}_4) = 0.16 + 11.754 \left(\frac{10^6}{T^2}\right) - 2.3655 \left(\frac{10^6}{T^3}\right) + 0.2054 \left(\frac{10^5}{T^4}\right) + 0.1573K$$
$$T = 273 - 1573K, 1\sigma = \pm 0.21\%, n = 44$$

值得注意的是，在这一关系式中有常数项 0.16。这是 CO_2-CH_4 碳同位素温度计在停滞了近 20 年后的最新进展和成果。

可以看出，Urey (1947) 指出若可将同位素作为温度计应用于地质系统，出现了“固定同位素地球化学”这门分支学科，并逐渐发展成为今天地球科学领域的重要研究手段之一。近十年来，固定同位素地球化学基础理论发展出现了 Urey 模型（或称 Bigeleisen-Mayer 公式）的新趋势，包括能处理多重元素同位素分馏的核反应效应理论，基于晶格动力学及声子的密度函数微扰理论计算的固体同位素分馏理论、稳定同位素的微观反应动力学理论，以及含压力变量的同位素分馏理论等新理论 (Roths et al., 2002)。Urey 模型仍然存在一些问题，也面临一些挑战，包括几个近似处理使它的计算结果在小分子氢系统中偏离了实际值，另外，“核反应效应”使其对重同位素系统并不适用，但对于包括第一过渡金属族在内及以上较轻同位素系统，Urey 模型的精度还是可以满足当前需要的。尤其是对于因 CO_2-CH_4 气体中的碳同位素轻同位素而言，Urey 模型仍然适用。Urey 模型的长时期发展，检验和不断完善为用 CO_2-CH_4 间碳同位素平衡分馏反应地下岩浆的现今温度提供了充分的理论依据。

根据以上分析对比结果，本文选取 Horita (2001) 实验校正的由 Richter et al. (1977) 的理论计算数据的拟合公式进行碳同位素平衡温度计算，具体公式如下：
$$\ln\alpha (\text{CO}_2/\text{CH}_4) = 0.16 + 11.754 \left(\frac{10^6}{T^2}\right) - 2.3655 \left(\frac{10^6}{T^3}\right) + 0.2054 \left(\frac{10^5}{T^4}\right) + 0.1573K$$
$$T = 273 - 1573K, 1\sigma = \pm 0.21\%, n = 44$$

鉴于 Horita (2001) 的上述平衡分馏方程是通过其实验校正数据拟合而来的，而我们解决的是反向问题，即通过测试获得 CO_2-CH_4 间的 $\ln\alpha$ 值后，通过 (1) 式计算其平衡分馏温度 T，直接应用上述式求解 T 并不方便。我们通过将 (1) 式在 $T = 273 - 1573K$ 的范围内以 $5.10, 20, 25K$ 的间隔 (超越高温区间隔) 计算的 T 平衡分馏系数 $1000\ln\alpha (\text{CO}_2/\text{CH}_4)$ 和温度数据的正相关拟合，得到的 CO_2-CH_4 碳同位素分馏方程 (1) 式的反向表达式：
$$T (K) = 3880.3 \left(1000\ln\alpha (\text{CO}_2/\text{CH}_4)\right)^{-0.584}$$
$$T = 273 - 1573K, n = 72, R^2 = 0.9990, 1\sigma = \pm 1.73\%$$

我们用 (2) 式计算腾冲火山地区温泉逸出气中 CO_2-CH_4 间碳同位素平衡分馏温度，并以此估计腾冲火山地区存在 3 岩浆囊的温度。
图 2 热海地区 CO₂ 和 CH₄ 的碳同位素样点分布图
Fig. 2 The distribution of carbon isotope samples of CO₂ and CH₄ in Rehai region

4 分析结果

4.1 腾冲火山岩浆囊区温泉水体 CO₂-CH₂ 的碳同位素组成

我们运用自制的简易防大气污染和具有富集功能的气体取样器，在腾冲火山区 3 个内岩浆囊上方地表采集了 30 个温泉的 CO₂ 和 CH₄ 的碳同位素测试样品（图 1、图 2）。通过 MAT-251 同位素质谱计分析测试获得了这 30 个样品的 CO₂ 和 CH₄ 的碳同位素组成 δ¹³C (%) (PDB) 数据（表 1）。

在腾冲火山区温泉 CO₂-CH₄ 碳同位素数据中，所有泉点的 δ¹³C₀₂ 均在 0% ~ −8% 的范围内，而 1° 永安澡塘，4° 钻水河井，5° 钻水河，14° 大爆炸点，16° 西坡西，19°朗甫寨热水塘，20° 攀枝花砂塘，26° 蓝别大澡塘和 27° 荷花澡塘等 9 个泉点的 δ¹³C₀₂ 值不在 −9% ~ −25% 的范围内，不是岩浆来源的，应予剔除。这样只有 21 个泉点的碳同位素数据符合 CO₂ 和 CH₄ 同时来源于岩浆的要求。下面对这 21 个泉点的 CO₂-CH₄ 间碳同位素是否达到分馏平衡用 δ-Δ 图示法进行判断（图 3）。

从图 3a 可以看出，全部 21 个泉点的 δ¹³C₀₂-CH₄，δ¹³C₀₂ 和 δ¹³C₀₂-CH₄-δ¹³C₀₂ 的 2 条拟合直线的斜率符号相反，截距差 b₂ = b₁ - b₂ = 6.1273 - 5.9908 = 0.1365，说明 2 拟合直线交于 δ 轴还较远。24°点黄家寨（−0.52，−12.8，12.44）离 2 条拟合直线的距离均较大，说明相对所有其他点而言，黄家寨泉点的 CO₂ 和 CH₄ 之间的碳同位素分馏是不均衡的，应予以剔除。从图 3b 可以看出，剔除黄家寨 1 个泉点后，20 个数据的 2 条拟合直线的斜率符号相反，b₂ = 6.4781 - 6.3476 = 0.1305，比剔除前 b₂ 有所减小，28° 点新合掌大澡塘、29° 点新合掌大澡塘（−0.677，−22.4397, 22.22）离 2 条拟合直线的距离均较大，说明相对所有其他点而言，新合掌大澡塘泉点
表 1 腾冲火山区温泉逸出气 CO$_2$，CH$_4$ 的碳同位素组成

<table>
<thead>
<tr>
<th>序号</th>
<th>泉点名称</th>
<th>泉点坐标</th>
<th>泉点温度</th>
<th>δ13C (‰) CO$_2$</th>
<th>δ13C (‰) CH$_4$</th>
<th>∆13C</th>
<th>岩浆囊</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>永安澡塘</td>
<td>98.6241</td>
<td>25.3139</td>
<td>-4.12</td>
<td>-48.24</td>
<td>46.35</td>
<td>马站-曲石-永安岩浆囊</td>
</tr>
<tr>
<td>2</td>
<td>扯哑塘</td>
<td>98.6310</td>
<td>25.2316</td>
<td>-4.97</td>
<td>-23.5</td>
<td>18.98</td>
<td>五合-龙江-浦川岩浆囊</td>
</tr>
<tr>
<td>3</td>
<td>岚石破塘坝</td>
<td>98.5967</td>
<td>25.2142</td>
<td>-4</td>
<td>-14.9</td>
<td>11.06</td>
<td>马站-曲石-永安岩浆囊</td>
</tr>
<tr>
<td>4</td>
<td>选水河井</td>
<td>98.4832</td>
<td>25.0314</td>
<td>-6.41</td>
<td>-2.237</td>
<td>-4.18</td>
<td>五合-龙江-浦川岩浆囊</td>
</tr>
<tr>
<td>5</td>
<td>选水河</td>
<td>98.4832</td>
<td>25.0314</td>
<td>-4.71</td>
<td>-27.3</td>
<td>23.22</td>
<td>五合-龙江-浦川岩浆囊</td>
</tr>
<tr>
<td>6</td>
<td>和顺井</td>
<td>98.4550</td>
<td>25.0139</td>
<td>-3.76</td>
<td>-12.8</td>
<td>9.157</td>
<td>五合-龙江-浦川岩浆囊</td>
</tr>
<tr>
<td>7</td>
<td>大滚锅</td>
<td>98.4380</td>
<td>24.9534</td>
<td>-4.36</td>
<td>-19.44</td>
<td>15.38</td>
<td>五合-龙江-浦川岩浆囊</td>
</tr>
<tr>
<td>8</td>
<td>黄瓜箐</td>
<td>98.4393</td>
<td>24.9413</td>
<td>-3.74</td>
<td>-20.16</td>
<td>16.76</td>
<td>五合-龙江-浦川岩浆囊</td>
</tr>
<tr>
<td>9</td>
<td>新怀胎井</td>
<td>98.4364</td>
<td>24.9512</td>
<td>-4.32</td>
<td>-16.5</td>
<td>12.38</td>
<td>五合-龙江-浦川岩浆囊</td>
</tr>
<tr>
<td>10</td>
<td>大地脚北</td>
<td>98.4446</td>
<td>24.9489</td>
<td>-3.18</td>
<td>-13.7</td>
<td>10.67</td>
<td>五合-龙江-浦川岩浆囊</td>
</tr>
<tr>
<td>11</td>
<td>陇鸣泉</td>
<td>98.4362</td>
<td>24.9511</td>
<td>-4.8</td>
<td>-16.4</td>
<td>11.79</td>
<td>五合-龙江-浦川岩浆囊</td>
</tr>
<tr>
<td>12</td>
<td>中井泉</td>
<td>98.4359</td>
<td>24.9508</td>
<td>-4.95</td>
<td>-13.8</td>
<td>8.974</td>
<td>五合-龙江-浦川岩浆囊</td>
</tr>
<tr>
<td>13</td>
<td>交通宾馆 2</td>
<td>98.4387</td>
<td>24.9501</td>
<td>-3.93</td>
<td>-20.18</td>
<td>16.58</td>
<td>五合-龙江-浦川岩浆囊</td>
</tr>
<tr>
<td>14</td>
<td>大爆炸点</td>
<td>98.4377</td>
<td>24.9497</td>
<td>-4.13</td>
<td>-30.43</td>
<td>27.13</td>
<td>五合-龙江-浦川岩浆囊</td>
</tr>
<tr>
<td>15</td>
<td>东坡中</td>
<td>98.4380</td>
<td>24.9498</td>
<td>-4.43</td>
<td>-20.13</td>
<td>16.02</td>
<td>五合-龙江-浦川岩浆囊</td>
</tr>
<tr>
<td>17</td>
<td>萧堂河 2</td>
<td>98.4379</td>
<td>24.9500</td>
<td>-3.06</td>
<td>-17.06</td>
<td>14.24</td>
<td>五合-龙江-浦川岩浆囊</td>
</tr>
<tr>
<td>18</td>
<td>萧堂河北 3</td>
<td>98.4377</td>
<td>24.9503</td>
<td>-5.42</td>
<td>-22.22</td>
<td>17.18</td>
<td>五合-龙江-浦川岩浆囊</td>
</tr>
<tr>
<td>19</td>
<td>朗源热热水塘</td>
<td>98.3897</td>
<td>24.9093</td>
<td>-3.808</td>
<td>-25.13</td>
<td>21.87</td>
<td>五合-龙江-浦川岩浆囊</td>
</tr>
<tr>
<td>20</td>
<td>桃枝花热塘</td>
<td>98.4839</td>
<td>24.723</td>
<td>99.3</td>
<td>-2.574</td>
<td>-25.49</td>
<td>23.52</td>
</tr>
<tr>
<td>21</td>
<td>黑石河热塘</td>
<td>98.4842</td>
<td>24.6968</td>
<td>-3.876</td>
<td>-17.13</td>
<td>13.48</td>
<td>五合-龙江-浦川岩浆囊</td>
</tr>
<tr>
<td>22</td>
<td>速庆热塘</td>
<td>98.4612</td>
<td>24.6755</td>
<td>-6.737</td>
<td>-12.58</td>
<td>5.92</td>
<td>五合-龙江-浦川岩浆囊</td>
</tr>
<tr>
<td>24</td>
<td>五合家寨</td>
<td>98.6569</td>
<td>24.8789</td>
<td>-0.52</td>
<td>-12.8</td>
<td>12.44</td>
<td>五合-龙江-浦川岩浆囊</td>
</tr>
<tr>
<td>25</td>
<td>养喜热塘</td>
<td>98.6527</td>
<td>24.7695</td>
<td>-4.5</td>
<td>-9.727</td>
<td>5.278</td>
<td>五合-龙江-浦川岩浆囊</td>
</tr>
<tr>
<td>26</td>
<td>青松热塘</td>
<td>98.6767</td>
<td>24.7168</td>
<td>-2.94</td>
<td>7.433</td>
<td>-10.3</td>
<td>五合-龙江-浦川岩浆囊</td>
</tr>
<tr>
<td>28</td>
<td>邦腊掌大沸泉西</td>
<td>98.6647</td>
<td>24.6562</td>
<td>-0.677</td>
<td>-22.397</td>
<td>22.22</td>
<td>五合-龙江-浦川岩浆囊</td>
</tr>
<tr>
<td>29</td>
<td>邦腊掌电信疗养院南</td>
<td>98.6680</td>
<td>24.6553</td>
<td>-1.567</td>
<td>-23.03</td>
<td>21.97</td>
<td>五合-龙江-浦川岩浆囊</td>
</tr>
<tr>
<td>30</td>
<td>钻水河温泉</td>
<td>98.7202</td>
<td>24.6605</td>
<td>-5.082</td>
<td>-18.55</td>
<td>13.72</td>
<td>五合-龙江-浦川岩浆囊</td>
</tr>
</tbody>
</table>

的 CO$_2$ 和 CH$_4$ 之间的碳同位素分馏是不平行的，应予以剔除。从图3c可以看出，剔除革家寨和邦腊掌大沸泉西 2 个点后，19 个数据的 2 条拟合直线的斜率符号相反，$b_A = 5.8770 - 5.7464 = 0.1306$，与剔除革家寨 1 个点后的 b_A 没有明显改善。29d 点邦腊掌电信疗养院南 (–1.567, 23.031, 21.97) 离 2 条拟合直线的距离均较大，说明相对所有其他点而言，邦腊掌电信疗养院南泉点的 CO$_2$ 和 CH$_4$ 之间的碳同位素分馏是不平行的，应予以剔除。从图 3d 可以看出，剔除革家寨、邦腊掌大沸泉西和邦腊掌电信疗养院南 3 个点后，18 个数据的 2 条拟合直线的斜率符号相反，$b_A = 5.1933 - 5.0688 = 0.1245$，与前 2 次剔除点后的 b_A 相比有较大较面的减小，但 22a 点速庆热塘 (–6.737, –12.583, 5.92) 离 2 条拟合直线的距离均较大，说明相对所有其他点而言，速庆热塘点的 CO$_2$ 和 CH$_4$ 之间的碳同位素分馏很可能是平行的，应予以剔除，看看 b_A 是否有再次减小。
图3 碳同位素分馏平衡判断图
庆藻4个点后，17个数据的2条拟合直线的斜率符号相同，"b1"=4.1313 - 3.9896 = 0.1435，与剔除前3个点的"b1"相比反而再次增大，甚至比全部21个数据的"b1"=0.1365还大。
17点的藻藻2(-3.06, -17.06, 14.24)离2条拟合直线的距离均较大，说明相对其他点而言，藻藻2点的CO2和CH4之间的碳同位素分格可能是不平衡的，应予以剔除，看看"b1"能否有所减小。从图3f可以看出，剔除藻藻3后，2条拟合直线的斜率符号相同，"b1"=4.1383 - 3.9949 = 0.1434，与剔除4个点相比，"b1"没有明显减小。由图可见，10°C点大地脚北(3.18, -13.7, 10.67)离2条拟合直线的距离均还较大，说明相对所有其他点而言，大地脚北点的CO2和CH4之间的碳同位素分格可能是不平衡的，应予以剔除，看看"b1"能否有所减小。从图3g可以看出，剔除藻藻3、藻藻4、藻藻5和藻藻6后，15个数据的2条拟合直线的斜率符号相同，"b1"=4.1451 - 4.2773 = 0.1478，"b1"在前2次的基础上在逐步增大。总之，图3说明，剔除藻藻3、藻藻4、藻藻5和藻藻6后，15个数据的2条拟合直线的斜率符号相同，且"b1"=0.1245为最小。这是一个判断同位素分格平衡的分水岭。此后随着3个点的剔除，2条拟合直线的斜率符号保持相反，拟合直线的线性度在增强，"b1"在变小，此后随着3个点的剔除，2条拟合直线的斜率符号保持相反，拟合直线的线性度在继续增强，但"b1"又在逐渐变大。因此我们认为剔除藻藻3、藻藻4、藻藻5和藻藻6点后，剩余18个点的碳同位素分格达到平衡，其他数据点不能再行剔除。

由于CO2和CH4气体的挥发性，以及前人关于腾冲火山区岩浆储藏较浅的认识（白登海等，1994；楼海等，2002），我们认为这些气体从其源区岩浆析出后很快达到地表，因而其碳同位素分格基本保持了源区的平衡，其分格值可以用来源区岩浆的温度。

4.2 腾冲火山区的3大岩浆源的温度

通过Horita(2001)的CO2-CH4间碳同位素平衡分格方程(1)的反向表达式(2)计算得到了腾冲火山区3个岩浆源的温度(表2)。3个岩浆源的温度计算结果共18个数据，其中北部马站-曲石-永安岩浆2个，中部腾冲-和顺-热海岩浆11个，南部五合-龙江-浦川岩浆5个。18个温度数据中，最低温度397°C，最高温度1163°C，平均温度615°C。超过650°C的温度数据6个，北部马站-曲石-永安岩浆1个，651°C，中部腾冲-和顺-热海岩浆3个，671°C，761°C，773°C，南部五合-龙江-浦川岩浆2个，1068°C。

3个岩浆源中的温度分别为：北部马站-曲石-永安岩浆397~651°C，平均524°C，最高温度651°C，中部腾冲-和顺-热海岩浆438~773°C，平均566°C，最高温度773°C；南部五合-龙江-浦川岩浆464~1163°C，平均773°C，最高温度1163°C。我们认为，腾冲火山区3个岩浆源顶部气体扁集区目前的温度变化范围为400~1200°C。从温度数据中可以看出，腾冲火山区目前3个岩浆源的客观存在。3个岩浆源中心的现今温度已达到高温区(600~900°C)，安山岩(800~1100°C)和玄武岩(1000~1250°C)的形成温度，进一步说明腾冲火山区目前3个岩浆源的客观存在。3个岩浆源中心的现今温度变化范围由北部马站-曲石-永安岩浆651°C，中部的腾冲-和顺-热海岩浆773°C，南部的五合-龙江-浦川岩浆1163°C依次增强，说明其目前的活动性在依次增强。

需要指出的是，由于CO2-CH4间碳同位素地球化学特征对样品的特殊要求，我们取得的数据量偏少，尤其是北部的曲石-马站-永安岩浆只有2个温度数据，从其他数据相对较多的岩浆源的情况看，岩浆源的平均温度肯定在520°C以上。

5 讨论

5.1 CO2-CH4在高温下的碳同位素分馏

用CO2-CH4间碳同位素分馏方程计算岩浆温度的关键条件有2条：(1) CO2、CH4要同时为岩浆来源的δ13C_CO2 = 0 ~ -8‰，δ13C_CH4 = -9‰ ~ -25‰；(2) CO2、CH4间碳同位素分馏要达到平衡（在δ-Δ图解中，δ13C_CO2-δ13C_CH4合拟直线和δ18O_CO2-δ18O_CH4合拟直线的斜率符号相反，且两合拟直线相交于δ13C轴（纵坐标）上即δ13C_CO2-δ13C_CH4合拟直线在δ13C轴（纵轴）上的截距bcO2和δ13C_CH4-δ13C_CO2合拟直线在δ18O轴（纵轴）上的截距bcH4之差为0）。第1个条件实际上是边界值条件，目前地球化学界对岩浆CO2和CH4的δ13C值边界既有共识，又有分歧，这不是1个研究区的工
作能解决问题，需要全球地球化学界的共同努力和资料积累。第2个条件涉及CO₂·CH₄在高温下的碳同位素分馏这一基础地球化学问题。陈骏和王鹤年（2004）已将δ-Δ图解法判断同位素分馏平衡写入地球化学教科书。我们在用δ-Δ图解法判断CO₂·CH₄间碳同位素分馏平衡的过程中，在保持2条拟合直线的斜率符号相反的条件下，无论如何剔除偏离拟合直线的数据点，都不能使δ¹³C₂H₄-δ¹²CH₂，拟合直线的截距b₁和δ¹³CO₂-δ¹₂CH₂拟合直线的截距b₂，之差小于0.1245，说明2条直线的交点不能落在δ轴上，而这一数值与Horita方程的常数项0.16很接近，这说明CO₂·CH₂间碳同位素分馏方程中确实存在常数项，意味着即使在温度很高的情况下，CO₂·CH₂间碳同位素分馏也不可能发生。即CO₂和CH₂间在再高的温度下也存在碳同位素的分馏，在再高的温度下，α⁺(CO₂-ch₂)都可能等于1，δ¹³CO₂·CH₂都可能等于0。因此，δ-Δ图解法判断CO₂·CH₂间碳同位素分馏平衡准则应修正为：在保持2条拟合直线的斜率符号相反的条件下，δ¹³CO₂·CH₂-δ¹₂CH₂，拟合直线和δ¹³CH₂-δ¹₂CO₂·CH₂，拟合直线应相交于δ轴附近截距差0.1245处。

我们的资料为CO₂·CH₂间碳同位素分馏方程中常数项的存在提供了自然环境下的观测证据，为修正用δ-Δ图解法（陈骏和王鹤年，2004）判断CO₂·CH₂间碳同位素分馏平衡准则提供了依据。

5.2 五合-龙江-浦东岩浆囊

三维地震速度层析成像资料（王春等，2002；Wang and Huangfu，2004）表明，龙陵-团田-腾冲-固东一线下方5~15km之间为一低速体。楼海等（2002）通过更精细的速度结构解释认为，五合-龙江-新华-团田一带地下存在的的低速异常体，将图示出了火山区地壳上地壳之内低速异常体的三维图像。该低速异常体在地下5~15km之间，可能就是岩浆囊或部分熔融体。根据地震波多属性融合成像，自志明（2009）认为腾冲火山口区岩浆接触带2个热量从地幔顶部传输到下地壳的突破点，热量或熔融物质从2点向上传输，在下地壳和上地壳形成4个高温岩浆囊。其中的1个热量突
破点与之相连的 2 个岩浆壳中，其中上地壳位于浦川一带，该岩浆壳最具有危险性，这与我们的 2 个高于 1000℃的温度数据点（速庆ighest, 1068℃; 茹高iest, 1163℃）都位于南部五号-龙江-浦川岩浆壳不谋而合。

我们的 1 个高于 1000℃的温度数据点（茹高iest, 1163℃）位于第 3 个相对地热梯度值异常区五号-龙江-团田一带（赵慈平等, 2006），我们的另 1 个高于 1000℃的温度数据点（速庆ighest, 1068℃）位于第 3 个 5He/4He 比值异常区五号-龙江-浦川-新华一带（赵慈平, 2008）。

层析成像的低速异常体、热量或熔融物质传输突破点、相对地热梯度值异常和高He/4He 比值异常与我们的岩浆壳温度的吻合性都说明该岩浆壳是客观存在的。

5.3 腾冲-和顺-热海岩浆壳

d地磁 (MT) 测深结果（白登海等, 1994）表明，在腾冲-和顺-热海岩浆壳（白登海等, 1994）认为该高导体是 1 个正在冷却的岩浆壳，该大地电磁测线位于第 1 个 5He/4He 比值异常区的西南缘。在腾冲-和顺-热海岩浆壳测剖面（刘国平等, 1989）在腾冲有 3 个测点，其上的石坪（98.39°E, 25.04°N）和大宽邑（98.51°E, 25.05°N）这 2 个测点的第三电极层的电阻率为 6～90Ωm, 埋深 10km～100km, 厚 5km, 分析认为该电性层为岩浆层。结合这 2 条大地电磁探测剖面资料，白登海等（1994）认为在这一带存在 1 个独特的高导异常体，即岩浆带。该岩浆壳的上方同时为相对地热梯度值异常区（赵慈平等, 2006）和高He/4He 比值异常区（赵慈平, 2008）。

5.3.3 马站-曲石-永安岩浆囊

根据地震波多属性提取成像，白志明 (2009) 认为腾冲火山-和顺火山-热海岩浆壳在可能与之相连的 2 个岩浆壳（下地壳）位于曲石一带，这一带同时是相对地热梯度值异常区（赵慈平等, 2006）和高He/4He 比值异常区（赵慈平, 2008）。马站火山公园的黑空山等最新火山就位于这一带，我们认为这一带存在一个统一的岩浆囊——马站-曲石-永安岩浆囊。我们的 1 个高于 650℃的温度数据点（曲石硝塘堆, 651℃）位于该岩浆囊区。

从前 2 个有地球物理探测资料的岩浆壳都出现相对地热梯度异常值，沸源物质释放强度异常显示和较高的岩浆源 CO2, CH4 碳同位素交换平衡温度显示，以及火山喷发地质记录显示这些情况综合判断，该岩浆囊应当是客观存在的，其深度范围应大致和中部岩浆囊相当甚至更深。北部岩浆区内已有一个地热梯度异常显示而无地表热活动，是由于其新近喷发的多孔的玄武岩柱体的热传导过程所引起的，这些地区的多处地表流延河（熔岩隧道）可将本该垂直对流而在地表形成显示的热量在地下一定深度沿水平方向带走，排泄到位于地下侵蚀基准面附近的河流中去了。大家都认为，水是热量容量很大的物质。最近喷发的马鞍山火山及周围无地热活动也是这个原因。尽管如此，地球化学观测仍然发现这些岩浆囊和由其产生的种种奇怪的现象。

由于数据量较少，对岩浆温度的空间约束不够，因而难以象相等地热梯度和沸源物质释放那样勾画出 3 个对应的岩浆囊，这可在今后的研究中通过增加数据量予以完善。尽管如此，我们仍然获得了相当可观的岩浆囊现状地层温度。通过不同原子地化学温标计算的地温只是地表温度，岩浆囊的实际温度可能比以上数值还高。

王伟军等 (2002) 利用云南地区台网的区域地震走时所作层析成像结果表明，在这 3 个岩浆囊区域内，上地壳呈垂直异常，上地幔呈水平异常，而下地壳为正常速度分布，因此，推测地壳内岩浆来源于上地幔，局部地区存在的上地壳速度异常可与岩浆的异常分布关系密切，并认为腾冲火山多次喷发的可能性是存在的。

腾冲火山区 4 个高于 650℃的温度数据点与晚更新世-全新世火山的分布 (姜朝松, 1998) 基本一致。4 个高于 650℃的温度数据点分别位于全新世喷发的腾冲县城马鞍山火山和马站火山公园黑空山火山所在的岩浆囊。地表的火山岩是固化的火山喷发历史记录，不能说明现今地下岩浆的存在和活动性，而我们的温度数据说明腾冲火山地区地热岩浆活动和喷发活动具有很长时间的继承性和连续性，腾冲火山区现今仍具有活跃的地下岩浆活动。我们 2 个高于 1000℃的温度数据点（速庆最高, 1163℃；速庆最高, 1068℃）位于西南部第 3 个岩浆囊区，这里上新世-早更新世火山分布 (姜朝松, 1998) 广泛，尽管晚更新世-全新世该地区没有火山喷发，但地震探测的结果和我们的温度数据均说明该地区地下岩浆活动持续至今仍未停歇，可能是岩浆囊体较大，至今尚未完全冷却的缘故，也可能是幔源岩浆正在补充该岩浆囊导致其温度升高和温度场的迅速变化，无论如何，我们要加强对它的关注。

6 结论

通过对温泉逸出气体 CO2 和 CH4 碳同位素样品的采
Collective analysis indicates that for CO₂–CH₄, the concentration of CO₂ extends to the highest values observed in the core region, while CH₄ concentrations remain lower. The coexistence of CO₂ and CH₄ is likely due to the unique geochemical processes that influence gas migration in marine sediments.

Taran YA, Fischer TP., Cunciepeo E. and Morales P. 2002. Geochemistry of hydrothermal fluids from an intraplate ocean island; Everman volcano, Socorro Island, Mexico. Chemical Geology, 188; 51 – 63.

Werner C and Cardellini C. 2006. Comparison of carbon dioxide emissions with fluid upflow, chemistry, and geologic structures at the Rotorus geothermal system, New Zealand. Geothermics, 35 (3); 221 – 238.

Zhang C., Duan ZH. and Zhang ZG. 2007. Molecular dynamics simulation of the CH$_4$ and CH$_4$H$_2$O systems up to 10GPa and 2573K. Geochimica et Cosmochimica Acta, 71 (8); 2036 – 2055.

Zhang C. and Duan ZH. 2009. A model for C-O-H fluid in the Earth's
mantle. Geochimica et Cosmochimica Acta, 73(7) : 2089 – 2102

附中文参考文献
白登海, 建梅杰, 赵国治, 杨志红. 1994. 从MT探测结果推论腾冲热海热田的岩浆热源. 科学通报, 39(4) : 344 – 347
白志明. 2009. 腾冲火山口区的岩浆活动及其形成机制. 《岩浆作用》研究报告. 北京: 中国科学院地质研究所
陈景, 王震年. 2004. 地球化学. 北京: 科学出版社, 106 – 137
樊柏成, 蒋建立, 刘若新. 2001. 五大连池、西池和腾冲火山岩rSr、Nd同位素化学特征与岩浆演化. 岩石矿物学杂志, 20(3) : 233 – 236
皇甫岗, 姜朝松. 2000. 腾冲火山岩. 昆明: 云南科技出版社, 1 – 417
姜朝松, 周瑞琦, 姜朝松. 2003. 腾冲地区构造地貌特征与火山活动的关系. 地震研究, 26(4) : 361 – 366
李大明, 李新, 陈文志. 2000. 腾冲火山口区地表活动的火山活动. 岩石学报, 16(3) : 362 – 370
刘琪, 唐茂, 李雪防, 原杰, 刘瑞. 2009. 稳定同位素分馏及rn个普遍错误. 矿物学报, 29(12) : 175 – 182
刘若新, 魏海泉, 郑德文, 李杰. 1999. 活火山的监测与喷发预报. 矿物岩石地球化学通讯, 18(2) : 106 – 112
楼海, 楼振, 马家康, 柴嘉政. 2002. 云南腾冲火山区上部地壳三维地震速度层析成像. 地震学报, 24(3) : 243 – 251
穆国周, 佟伟, Gansis HC. 1987. 腾冲火山活动的年代和火山来源问题. 地球物理学报, 30(3) : 261 – 270
冉华, 赵松平, 陈坤华. 2006. 岩石圈排气气体富集取样装置的研制和取样方法的研究. 地震研究, 29(1) : 509 – 512
冉华, 赵松平, 陈坤华. 2008. 腾冲火山口区温泉甲烷气体现场采集取样效果研究. 地震研究, 31(1) : 486 – 493
上官志丹. 2000. 腾冲热海地热田热储结构与岩浆热源的温度. 岩石学报, 16(1) : 83 – 90
孙洁, 江常芳, 黄钟, 史上俊, 周传敏. 1998. 滇西地区地壳上地幔电性结构与地壳结构活动的关系. 地震地质, 11(1) : 35 – 45
佟伟, 章铭陶. 1994. 横断山区温泉志. 北京: 科学出版社, 1 – 326
汪洋, 邓永福, 王长江, 王大育. 2001. 中国大陆热流分布特征及热-地热流分布特征. 中国科学院研究生院学报, 18(1) : 51 – 58
王振福, 楼海, 吴建平, 白明志, 皇甫岗, 赵嘉政. 2002. 腾冲火山地热地区热流特征. 地热能、地热流分布特征. 中国科学院研究生院学报, 24(3) : 231 – 242
王先发, 沈杖, 陈文生, 郭家良, 范忠生, 王家献. 1993. 腾冲火山地热区温泉气体组分和同位素组成特征. 地球科学, 38(9) : 814 – 817
尹功明, 李盛华. 2000. 云南腾冲火山口最后一次喷发的热释光年年龄. 地震研究, 23(4) : 388 – 391
赵松平, 陈华, 陈坤华. 2006. 由相对地热梯度推断的腾冲火山口区内热释光化. 岩石学报, 22(6) : 1517 – 1528
赵松平. 2008. 腾冲火山台区现代热源温度特征及深部岩浆活动研究. 岩石学报, 16(3) : 362 – 370