云南金顶超大型铅锌矿床沥青Re-Os法测年及地质意义

高炳宇1 薛春纪1** 池国祥2 李超3 屈文俊3 杜安道3 李足晓1 顾浩1
GAO BingYu1, XUE ChunJi1**, CHI GuoXiang2, LI Chao3, QU WenJun3, DU AnDao3, LI Zuxiao1 and GU Hao1

1. 地质过程与矿产资源国家重点实验室，中国地质大学地球科学与资源学院，北京 100083
2. Department of Geology, University of Regina, Regina, Saskatchewan S4S0A2, Canada
3. 国家地质实验测试中心，北京 100037
1. State Key Laboratory of Geological Processes and Mineral Processes, Faculty of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
2. Department of Geology, University of Regina, Regina, Saskatchewan S4S0A2, Canada
3. State Center of Geological Experiment and Analysis, Beijing 100037, China

2011-06-20 收稿，2011-09-29 改回.

Abstract Oil-gas reservoirs and metal deposits often co-exist in many sedimentary basins, and their genetic relations have been paid much attention. The Jinding Zn-Pb deposit, Yunnan, China, is so far the largest Zn-Pb deposit in China, the youngest and only giant Zn-Pb deposit hosted in continental sedimentary rocks in the world. Bitumen and heavy oil were often observed in the Jinding Zn-Pb deposit. It has been a subject of debate whether the bitumen formed before or after the Zn-Pb mineralization., making it difficult to evaluate and the genetic relationship between the bitumen and Zn-Pb mineralization. The bitumen in the Jinding Zn-Pb ores hosted in the breccia-bearing sandstones and sandy breccias of the Paleocene Yunlong Formation has been dated by the Re-Os method in this paper, and an isochron age of 68 ± 5Ma (MSWD = 9.2, n = 6) has been obtained. Therefore, the oil-gas reservoir in the Jinding ore district was formed earlier than the Zn-Pb mineralization. The hydrocarbons in the reservoirs may have provided the condition for the production of reduced sulfur required for Zn-Pb mineralization through thermal chemical reduction of sulfates. The formation of the oil-gas reservoir and the Zn-Pb deposit may have been a continuous geologic process, and the oil-gas reservoir was one of the basic conditions of Zn-Pb mineralization in the Jinding ore district. The oil-gas reservoir was destructed by the mineralization process.

Key words Zinc-lead ores hosted in the sandy breccias; Bitumen; Re-Os dating; The Jinding giant Zn-Pb deposit; Laping, Yunnan

摘 要 油气藏与金属矿床在世界许多沉积盆地内共生，油气成藏与金属成矿的动力学关系备受关注。云南金顶金顶产有中国目前最大铅锌矿床，也是世界上唯一陆相沉积岩成矿，且形成于新生代的超大型铅锌矿床。矿床中常见沥青、重油等有机质，它们的形成早或晚于铅锌硫化物成矿存在明显分歧，限制了对油气成藏与铅锌成矿关系的认识。本文针对金顶超大型矿区以古新统云龙组合砾砂岩和砂砾岩为主夹铅锌矿矿石沥青，开展了 Re-Os 法同位素测年，获得 68 ± 5Ma 的等时线年龄 (MSWD = 9.2, n = 6)，指示金顶古油气成藏形成于古新世，先于铅锌硫化物大规模成矿；烃类物质通过热化学还原硫酸盐提供铅锌成矿所需硫化氢的客观条件；油气成藏与铅锌成矿在云南金顶矿区很可能是一个先后发生的连续地质过程，成藏为成矿奠基，成矿伴随油气藏的破坏。

* 本文受国家基础研究专项基金(2009CB421005)、国家自然科学基金(40930423, 41072069, 40772061)、国土资源部公益性行业科研专项 (200911007-23)、长江学者和创新团队发展计划(IRT 0755) 和高等学校学科创新引智计划(110711) 联合资助。
第一作者简介：高炳宇，男，1986 年生，硕士，岩石学、矿物学、矿床学专业，E-mail：gaobingyu1986@163.com
** 通讯作者：薛春纪，男，1962 年生，教授，博士生导师，从事矿床学、矿产普查与勘探专业教学和科研工作，E-mail：chunji.xue@cugb.edu.cn
1 引言

世界各地沉积岩容岩的铅锌矿床中多见有机质，它们与金属成矿的关系倍受关注 (Dianar and Sureau, 1990; Chi et al., 1995; Sicree and Barnes, 1996; Disnar, 1996; 谢树其等，1997; Bartrick and Andrew, 1997; Pengenberg and Mackoo, 1998; 肖鸿福等，1999; Spanger et al., 1999; Ulrich et al., 1999; Guszkiewicz and Kwiecinska, 2001; Falllick et al., 2001; 薛春纪等，2002a, 2007a, 2009; 朱国成等, 2003; Southam and Saunders, 2005; 高水宝等, 2008a; 顾雪祥等, 2010)。云南金顶铅锌矿床是中国最大的铅锌矿床，也是世界上唯一规模沉积岩容岩矿床，形成于新生代超大型铅锌矿床 (Xue et al., 2000, 2003)，代表了沉积岩容岩矿床的一种新类型 (Kyle and Li, 2002; Xue et al., 2004, 2006, 2007c; 薛春纪等, 2007b); 矿区矿石、围岩及矿流体系中伴生有机质 (胡明安, 1989a; 薛春纪等, 2002a, 2007a, 2009; 王大和张杭, 2007b; 薛春纪等, 2007c) 是认识有机质与金属成矿关系的重要标志。

2 地质背景和矿床地质

金顶铅锌矿床位于云南省曲靖市陆良县北部，以金平江断裂带与扬子板块相接，其西接曲江断裂带与保山地块毗邻。在古特提斯基础上沉积了中-新生代海相、陆相碳酸盐岩、火山碎屑岩和碎屑岩建造，地层中有多个陆相膏盐层，存在多个沉积间断 (薛春纪等, 2002a, b, c)。自古以来江汉盆地与周口盆地相向影响，以及新的构造活动的影响，金顶铅锌矿床与含铅锌岩浆活动，地幔扰动和地幔流体活动、地层中不整合及壳幔相互作用是金顶铅锌成矿的基本地质背景 (Xue et al., 2004, 2007c)。

金顶铅锌矿床在形成后大致经历了中-新生代沉积、推覆构造、局部喷发以及中-新生代喷发等过程 (薛春纪等, 2002b; Xue et al., 2007c)，油脂气成藏和金属成矿可能伴随推覆构造、穹隆化和热液活动先后发生 (薛春纪等, 2007a, 2009; 高水宝等, 2008a)。矿区发育有多个推覆构造，较老地层多被推覆到较新地层之下; 局部喷发使推覆构造面和顶板上的地层发生变形，形成金顶穹隆 (吴振国和吴习东, 1989; 薛春纪等, 2002b)。穹隆核心由中白垩统虎头寺组 (K2h) 灰色砂岩和岩性异常带展延 (E1y) 板状砂岩层发育，形成原地层系统，围绕穹隆核心向外扩展依次为下白垩统虎头组 (K2j) 灰色细砂岩，中侏罗统松山组 (J1h) 板状砂岩和粉砂岩岩，上三叠统麦圭组 (T1m) 板状泥岩和三合组 (T1s) 板状灰岩等变质下覆层系的外来系统 (图1)。铅锌硫化物和热液矿化可能主要发生在主推覆构造面上的 K2j 砂岩和 E1y 砂岩中，矿体呈板状、脉状，主要集中于穹隆近核部 (图1)。典型矿石结构是闪锌矿、方铅矿、黄铁矿等硫化物热液矿液交代碎屑岩中钙质胶结物形成的次生结构，硫化物矿物它形微晶-细晶状，后生热液成矿特征明显。成矿温度为 200～250℃，成矿深度 1.08 km 左右 (薛春纪等, 2002b)。

3 矿区有机物质

金顶矿区铅锌矿石中有机质及古油气特征多见 (雪春纪等, 2007a, b; 高水宝等, 2008a)。K2j 中沥青质岩多见，采样于深灰色泥岩及其灰质泥岩薄层，沥青含量在 1%～25% 不等 (云南省地质局第三地质大队, 1984)。富含碳质和有机质多为含沥青油干酪根，显微镜下集成黑色条带及层状、纹状、K2j 中常见有黑色碳质泥岩和碳质泥灰岩，含碳质植物碎片。J1h 中发育黑色碳质泥岩。矿区 K2j 矿岩基本全层发生铅锌硫化物化，矿石和矿化砂岩经常会然到石膏味; 打开标本时，常会看到石油从某个中心点向四周扩散，并且同时嗅到浓烈的汽油味; K2j 矿化砂岩中也常见到黑色有机质微斑块团状块状，染染状分布，显微镜下有机质个体不
4 样品和 Re-Os 法测年

本次用于 Re-Os 法测年的沥青样品采自金顶铅锌矿区架崖山矿段露天采矿坑底部（图 1），为以云龙组（E$_{y}$）含硅砂岩和硅砂岩为主岩铅锌硫化矿物矿石角砾构造中的沥青（图 2a，b）。野外采样时，先选择采矿底部新剥露出来的较新鲜矿物体部位，使用木质工具逐粒采集沥青 3 ~ 5g，用拉边封口塑料袋存放样品；实验室内将样品用木质工具稍作粉碎后，在双目实体显微镜下对 0.5 ~ 1.0 mm 沥青颗粒逐粒检查其纯度，排除有连生或混入其他杂质矿物的颗粒，使样品沥青纯度达到 99.5% 以上；然后，在超声波清洗样品，以除去沥青样品表面吸附的粉尘等杂质，以备测年。由于没有能够获得足够高纯度的重油样品（图 2c，d），本次没有对铅锌硫化矿物角砾和断层中的硫化物开展测年工作。

准确称取 0.2 g 备好的沥青样品，将其转入 Carius 管中，加入氧化剂（3 mL 盐酸，5 mL 硝酸，1 mL 蒸馏水）和稀释剂，在 200 °C 封闭熔炼 24 h（李超等，2011）。用蒸馏法分离 Os（杜安等，1994），用丙酮萃取法分离 Re（李超等，2009）。Re，Os 的制备液在 HR-element-2-ICP-MS 分析，分析结果见表 1。Re，Os 含量的不确定性包括样品和稀释剂称量误差，同位素组成误差、稀释剂的标定误差，质谱分析的分辨校正误差和
图 2 金顶矿区铅锌硫化物矿化含砾砂岩和砂砾中岩角砾岩架内的沥青 (a, b) 和空洞内的重油 (c, d)
Fig. 2 the bitumen (a, b) in the grilles and the heavy oil (c, d) in the cavity of breccia-bearing sandstone and sandy breccia
bearing Zn- and Pb-sulfide minerals, Jinding

表 1 金顶铅锌矿石中沥青的 Re-Os 同位素组成分析结果数据
Table 1 The analysis results of Re-Os isotopic compositions of the bitumen in the Jinding zinc-lead ores

<table>
<thead>
<tr>
<th>样品号</th>
<th>重量 (g)</th>
<th>Re (× 10⁻⁹)</th>
<th>普通 Os (× 10⁻⁹)</th>
<th>¹⁸⁷Os (× 10⁻⁹)</th>
<th>¹⁸⁷Re/¹⁸⁸Os</th>
<th>¹⁸⁷Os/¹⁸⁸Os</th>
</tr>
</thead>
<tbody>
<tr>
<td>JYS-11</td>
<td>0.201</td>
<td>71.30</td>
<td>0.6</td>
<td>0.1299</td>
<td>0.0063</td>
<td>0.1164</td>
</tr>
<tr>
<td>JYS-4</td>
<td>0.200</td>
<td>131.9</td>
<td>1.2</td>
<td>0.1027</td>
<td>0.0023</td>
<td>0.1424</td>
</tr>
<tr>
<td>JBC-19</td>
<td>0.207</td>
<td>542.8</td>
<td>6.5</td>
<td>1.027</td>
<td>0.008</td>
<td>0.9646</td>
</tr>
<tr>
<td>JYS-2</td>
<td>0.200</td>
<td>404.4</td>
<td>4.6</td>
<td>0.0487</td>
<td>0.0036</td>
<td>0.3094</td>
</tr>
<tr>
<td>JYS-3</td>
<td>0.204</td>
<td>340.9</td>
<td>5.1</td>
<td>0.0583</td>
<td>0.0010</td>
<td>0.2727</td>
</tr>
<tr>
<td>JYS-4</td>
<td>0.143</td>
<td>89.31</td>
<td>0.81</td>
<td>0.1161</td>
<td>0.011</td>
<td>0.1028</td>
</tr>
</tbody>
</table>

注：由国家地质实验测试中心分析, 分析者高耗宇、李超、杜安道; 用氧化离子法分离 Os, 用丙酮萃取法分离 Re，在 HR-element2-ICP-MS 完成 Re-Os 同位素组成分析

待分析样品同位素比值误差。整个流程的空白平均值 Re 为 4 pg, 普通 Os 为 0.3 pg, ¹⁸⁷Os 为 0.03 pg。空白相对样品中 Re、Os 含量，可以忽略不计。沥青样品中 Re 的含量在 71.30 × 10⁻⁹ ～404.4 × 10⁻⁹ 之间，普通 Os 和 ¹⁸⁷Os 的含量分别为 0.0487 × 10⁻⁹ ～1.027 × 10⁻⁹ 和 0.1028 × 10⁻⁹ ～0.9646 × 10⁻⁹。

金顶铅锌硫化物矿石中沥青的 Re-Os 同位素组成分析数据 (表 1) 用 isoplot 软件 (Ludwig, 2003) 处理，获得金顶沥青 Re-Os 同位素等时线 (图 3) 年龄为 68 ± 5 Ma, ¹⁸⁷Os/¹⁸⁸Os 初始比值为 4 ± 1, MSWD = 9.2。

5 讨论

沉积岩中的有机质多与海相还原环境有关。海水中 Re 在氧化条件下以 ReO₄⁻ 形式存在, 溶解度大, 容易迁移; 而在富含有机质沉积岩形成的还原环境，海水中 ReO₄⁻ 被还原成较
图 3 金顶铅锌矿石中沥青的 Re-Os 等时线
Fig. 3 The Re-Os isochron of the bitumen in the Jinding zinc-lead ores

难溶解的组分被有机物吸附（Bruland, 1983）。海水中的 Os 在氧化条件下以 H2Os3+ 形式存在，溶解度大，易于迁移；而在还原环境下，以活动性很弱的低价形式存在，因此在有机质的还原沉积环境中，高价态的 Os 被还原富集（Peucker-Ehrenbrink 和 Ravizza, 2000; Yoshiro et al., 2007）。由于 Re、Os 在有机质的岩石中富集，并且这些具有有机质的岩石常形成于较还原环境，Re-Os 同位素体系能够保持较好封闭性，使 Re-Os 同位素体系近年有效地应用于有机质地质样品。

油页岩、黑色页岩、碳质泥岩、富有机质灰岩等构成的黑色岩系在沉积的过程中，有机质能吸附、富集海水中的 Re、Os 元素，故其沉积过程就是其中 Re-Os 同位素体系封闭时的过程；黑色岩系 Re-Os 同位素年龄反应的是黑色岩系的成岩年龄，初始 187Re/187Os 反映的是黑色岩系沉积时海水的 187Re/187Os 值。原油、沥青、油砂等多由黑色岩系在一定条件下经热降解和热裂解衍生而成，它们的形成往往经过了生烃、运移、成岩等复杂富集过程；在此过程中 Os 同位素达到平衡，Re-Os 同位素体系会重置和重新计时（李超等, 2010）；相对于黑色岩系，这些有机质样品更富集有机 Re 和 Os 含量和放射成因同位素较高，Re-Os 同位素年龄记录的是烃源岩生烃后，烃类运移或封闭的年龄（Creaser et al., 2002），初始 187Re/187Os 指示烃流体的来源（Selby et al., 2005）。

油气勘查、有机岩相学和地球化学研究表明，兰坪盆地沉积柱中，上三叠统三合洞组 (T4s) 碳质灰岩和麦初箐组 (T4m) 碳质泥岩是主要烃源岩（胡明等, 1989a; 王大锐和张抗, 2003; 常象春和张金亮, 2003; 付修根, 2004; 高永宝等, 2008a; 薛春纪等, 2007a, 2009）。金顶矿区三合洞组为陆相含砾砂岩和砂砾岩，虽然其中较多角砾为上三叠统三合洞组 (T4s) 碳质灰岩和麦初箐组 (T4m) 碳质泥岩，具有一定的生烃能力，但研究认为金顶穹隆中大量油气显示和遗迹说明大部烃类物质是二次运移到穹隆内富集的 (Xue et al., 2007c; 高永宝等, 2008a; 薛春纪等, 2009)。本次针对金顶矿区古新统三合洞组铅锌矿化物矿化含砾砂岩和砂砾岩角砾格架空隙中沥青，Re-Os 法测得等时线年龄 68 ± 5 Ma，代表烃类流体迁移到三合洞组内富集成藏的时代，它在误差范围内与金顶组地层的沉积成岩时代相一致。兰坪盆地新生代陆相沉积主要与盆地中央南北走向的比江断裂自新生代以来强烈活动形成的走滑拉分盆地有关，这个断裂具有较大的切割深度（尹汉辉等, 1990; 薛春纪等, 2002b; Xue et al., 2004），为盆地主要烃源岩生烃后向上运移提供了地质条件。兰坪盆地古新统主要沿比江断裂的西侧分布，云龙含砾砂岩和砂砾岩成藏之后，矿区分裂于推覆和穹隆构造，随后烃类流体沿比江断裂从下部运移注入，穹隆构造对油气起到了很好的圈闭保护作用。

本次测年沥青样品所代表的古油气藏与其储层，即古新统三合洞组；金顶铅锌硫化物矿化以云龙组油气储层为主岩，发生显著的热液交代后生成矿化作用（白嘉芬等，1985; 吴淑国和吴习汐, 1989; 胡明安, 1989b; 尹汉辉等, 1990; 薛春纪等, 2002b; Chi et al., 2007），反映油气成藏先于铅锌成矿。油气藏内有机质对硫酸盐的热化学还原产生的大量硫化氢为铅锌硫化矿物沉淀奠定了还原硫化物物质基础（Xue et al., 2003, 2006, 2007c; 高永宝等, 2008b），很可能沿比江断裂从深部注入金顶油气藏的金属离子与硫化氢快速集中反应导致铅锌硫化矿物大量沉淀而成矿 (Xue et al., 2006, 2007c; 薛春纪等, 2009)，油气成藏与铅锌成矿很可能是先后连续发生的动力学过程。

6 结论

金顶超大型矿床以古新统三合洞组砾砂岩和砂砾岩为主岩铅锌矿石中沥青的 Re-Os 等时线年龄为 68 ± 5 Ma，指示金顶古油气成藏时代。

金顶古油气藏形成于古新世，先于铅锌硫化物大规模成矿，烃类物质具有通过热化学还原硫酸盐提供铅锌成矿所需硫化氢的客观条件。

油气成藏与铅锌成矿在云南金顶矿区很可能是一个先后发生的连续地质过程，成藏为成矿奠基，成矿伴随着油气藏的破坏。

致谢 云南金鼎锌业有限公司和李成厚、谭俊伦、聂志群、丰书荣、王小军、王伯光等在野外调查和样品采集过程中的热心帮助与全力支持；周利敏博士对文章也提出了较多意见；评审人提出了十分有益的建议意见；作者对他们一并表示衷心感谢。

References

Bai JF, Wang CH and Na RX. 1985. Geological characteristics of the
Jindling lead-zinc deposit in Yunnan with a special discussion on its genesis. Mineral Deposits, 4 (1); 1 – 9 (in Chinese with English abstract)

Chang XC and Zhang JL. 2003. Geochemical characteristics of oil in Jindling lead-zinc and its implications. Special Oil and Gas Reservoirs, 10 (5); 15 – 19 (in Chinese with English abstract)

Dinnet JR. 1996. A comparison of mineralization histories for two MVT deposits, Treves and Malines (Causses basin, France), based on the geochemistry of associated organic matter. Ore Geology Reviews, 11; 133 – 156

Gusikiewicz MS and Kwiecinska B. 2001. Organic matter in the Upper Silesian (Mississippi Valley-type) Zn-Pb deposits, Poland. Economic Geology, 97 (4); 981 – 992

Hu MA. 1989b. A preliminary evaluation of the mineralization and their characteristics on the karst-type lead-zinc deposit by the exploitation of Jindling, Yunnan Province. Earth Science, 14 (5); 531 – 538 (in Chinese with English abstract)

Kyle JK and Li N. 2002. Jindling; A giant Tertiary sandstone-hosted Zn-Pb deposit, Yunnan, China. SEG Newsletter, 50; 8 – 16

Li C, Qu WJ and Du AD. 2009. Comprehensive study on extraction of rhenium with acetone in Re-Os isotopic dating. Rock & Mineral Analysis, 28 (3); 233 – 238 (in Chinese with English abstract)

Sicree AA and Barnes HL. 1996. Upper Mississippi Valley district ore fluid model; The role of organic complexes. Ore Geology Reviews, 11; 105 – 131

Southam G and Saunders JA. 2005. The geomicrobiology of ore deposit. Economic Geology, 100; 1067 – 1084

Xue CJ, Chen YC, Wang DH, Yang JM, Yang WG and Zeng R. 2003. Geology and isotopic composition of helium, neon, xenon and metallic age of the Jindling and Baiyangping ore deposits, northwest Yunnan, China. Science in China (Series D), 46 (8);
789 – 800
Xue CJ, Zeng R, Liu SW, Chi GX and Qing HR. 2007c. Geologic, fluid inclusion and isotopic characteristics of the Jinding Zn-Pb deposit, western Yunnan, China; A review. Ore Geology Reviews, 31: 337 – 359

附中文参考文献
常象春, 张金亮. 2003. 金顶铅锌矿区中原油地化特征及其意义. 特种油气藏, 10(5): 15 – 19
高永全, 薛邦春, 曾荣. 2008b. 兰坪金顶铅锌硫化物成矿中硫化氢的成因. 地球科学与环境学报, 30(4): 367 – 372
顾雪祥, 章永梅, 李俊华, 薛邦春, 章永梅, 章永梅, 章永梅, 章永梅, 章永梅. 2010. 滇西北兰坪金顶铅锌矿床地球化学特征. 地球科学学报, 17(2): 83 – 105
胡明安. 1989b. 试论岩溶型铅锌矿床的成矿作用及其特点——以云南金顶铅锌矿床为例. 地球化学, 14(5): 531 – 537
李超, 段文俊, 段文俊, 段文俊. 2011. 滇南 Re-Os 同位素分析实验研究. 岩石矿物, 30(6): 688 – 694
吴志国, 吴亦东. 1989. 云南金顶铅锌矿床构造演化及成矿富集成
律. 地球化学, 14(5): 477 – 486
谢树武, 张鸿福, 张红梅. 1997. 南昌栖霞山多金属矿山体块体中生物标志化合物. 科学通报, 42(12): 1312 – 1314
薛春纪, 陈继川, 杨建民, 王登红, 王华. 2002a. 滇西北兰坪铅锌矿
银锌矿床含多金属. 地质学报, 76(2): 244 – 253
薛春纪, 陈继川, 杨建民. 2002b. 金顶铅锌矿床地质-地球化学. 矿床地质, 21(3): 270 – 277
薛春纪, 高永安. 2007a. 滇西北兰坪盆地金顶超大型铅锌矿床成矿机制. 岩石学报, 23(11): 2889 – 2900
段广福, 张文波, 张志坚. 1999. 生物成矿系统. 武汉: 中国地质大学出版社, 1 – 58
赵恒元. 1989. 云南金顶铅锌矿床成因研究. 地球科学, 14(5): 523 – 530
朱新成, 朱新成, 朱新成, 朱新成, 朱新成. 2003. 西成矿田盆地金顶铅锌矿床的有机成矿作用. 地球科学, 28(2): 201 – 208