新疆西天山异剥钙榴岩地球化学特征及其对俯冲带流体的指示意义

申婷婷¹ 张立飞¹✉ 李旭平²

SHEN TingTing¹, ZHANG LiFei¹✉和LI XuPing²

1. 北京大学造山带与地壳演化教育部重点实验室, 北京 100871
2. 山东科技大学地质科学与工程学院, 青岛 266510

Abstract Rodingite in Changawuzi, Western Tianshan, China, is a new rodingite type derived from eclogite, and is the first occurrence that formed in the subduction zone. The fluid triggered rodingitization is subduction zone fluid. Compared with the rodingite formed during ocean-floor metamorphism, Changawuzi rodingite have similar petrologic characteristic, but something different in elements migration. In order to infer the composition of the fluid, we tried three methods. First, we tested the chemical compositions of the main minerals garnet and pyroxene before and after rodingitization. Second, the ACF diagram, showing the bulk composition changed from F side to C side, illustrate that Fe is decreasing and Ca is increasing. In addition, the bulk compositions of completely rodingited rocks are included in the area studied before. Third, assuming that Al is not moved during rodingitization, based on the method of Grant, we calculated the isocondiagram of major elements, trace elements and REE. Based on the three methods we infer that the composition of the fluid is complicated and varied during rodingitization. In the stage of partial rodingitization, the fluid is rich in Ca, Si, Ti, Mn, Nb, Ta, Zr, Hf with high oxygen fugacity and Fe, Mg, Na, K, REE, Tb, Y are depleted. The fluid in this stage is not abundant so that a lot of unbalanced structures developed. In the stage of complete rodingitization, the fluid is rich in Ca, Mg, LREE, Ni, Cr and poor in Fe, Ti, Rb, Ba, MREE, HREE. The fluid process is strong and most of the elements migrate because of intense eluviation by the water-rich Ca bearing fluid.

Key words Rodingite; Geochemistry; Subduction zone fluid; Changawuzi; Western Tianshan; China

摘 要 新疆西天山长阿吾子异剥钙榴岩是目前首例发现的在俯冲带形成的原岩为榴辉岩的异剥钙榴岩,与其他作用的流体为俯冲带流体。该异剥钙榴岩与大洋底变质作用形成的异剥钙榴岩相比,岩石学特征非常相似,但是元素迁移方面存在一定的差别。为了推断流体成分,我们使用了三种方法。一, 测试了异剥钙榴岩化前后主要矿物相石榴石和辉石化学成分。二, 在ACF图上,可以看出全岩成分从F端元向C端元演化,代表Fe减少,Ca增加的趋势,而且完全异剥钙榴岩成分落在了前人所做的异剥钙榴岩成分区间内。三, 假设Al为不迁移元素,根据Grant的计算方法,做出主量元素、微量元素和REE的等浓度图。综合以上分析结果推断,俯冲带中流体的成分是复杂和变化的;部分异剥钙榴岩化阶段流体富集Ca, Si, Ti, Mn, Nb, Ta, Zr, Hf, 贫乏Fe, Mg, Na, K, REE, Tb, Y, 氧逸度升高,流体属于不饱和状态, 因此导致不平衡结构发育; 完全异剥钙榴岩阶段, 流体富集Ca, Mg, LREE, Ni, Cr, 贫乏Fe, Ti, Rb, Ba, MREE, HREE等元素, 此时流体作用强烈,富水流体相的强烈淋滤作用, 使得大部分元素发生了迁移。

关 键 词 异剥钙榴岩; 地球化学; 俯冲带流体; 长阿吾子; 西天山; 中国

中图法分类号 P588. 346
异剥钙榴岩是一种细粒、致密、富钙、硅不饱和的岩石，主要由 Ca-Al, Ca-Mg 硅酸盐矿物组成。异剥钙榴岩化所需要的钙可能存在两种来源：第一种来源与基性岩辉长岩、中性岩闪长岩、酸性岩斜长岩和花岗岩有关；第二种来源则可能来自外来富钙溶液的加入，或者蛇绿岩套侵位到古南天山洋的时间，后者代表蛇纹岩化和异剥钙榴岩化过程的联系（李旭平等，2003；Li et al., 2007）。其原岩类型多样，有基性岩辉长岩、中性岩闪长岩、酸性岩斜长岩和花岗岩，甚至煌斑岩。宽泛的原岩类型表明，异剥钙榴岩的化学成分由三个方面的因素决定：（1）原岩成分；（2）交代流体的成分；（3）异剥钙榴岩化的过程。异剥钙榴岩化的程度分为四个阶段：（1）早期的黝帘石异剥钙榴岩化阶段，代表早期异剥钙榴岩化，此时异剥钙榴岩中透辉石、石榴石（钙铝榴石）等特征矿物已经出现；（2）中期的异剥钙榴岩化阶段，代表中期异剥钙榴岩化，此时异剥钙榴岩中透辉石、石榴石（钙铝榴石）等特征矿物已经完全发育；（3）晚期的异剥钙榴岩化阶段，代表晚期异剥钙榴岩化，此时异剥钙榴岩中透辉石、石榴石（钙铝榴石）等特征矿物已经完全发育；（4）低级的异剥钙榴岩化阶段，代表低级异剥钙榴岩化作用。异剥钙榴岩化所特有的钙可能来自多种途径，包括但不限于：（1）直接来源于异剥钙榴岩的原岩（玄武岩、辉长岩）、中生代单斜辉石和斜长石的分解；（2）来源于围岩辉石岩、橄榄岩蛇纹岩化过程中辉石的分解（Coleman, 1977；O'Hanley, 1996；Li et al., 2004）。异剥钙榴岩和蛇纹岩野外密切的伴生关系，使得很多研究者认为异剥钙榴岩化过程与蛇纹岩化过程存在成因上的联系（Coleman, 1977；Schandl et al., 1989；O'Hanley et al., 1992；Schandl and Mittweide, 2001；Hatzipanagiotou et al., 2003；Li et al., 2004；Tsikouras et al., 2009）。异剥钙榴岩是一种细粒、致密、富钙、硅不饱和的岩石，主要由 Ca-Al, Ca-Mg 硅酸盐矿物组成。异剥钙榴岩化所需要的钙可能存在两种来源：第一种来源与基性岩辉长岩、中性岩闪长岩、酸性岩斜长岩和花岗岩有关；第二种来源则可能来自外来富钙溶液的加入，或者蛇绿岩套侵位到古南天山洋的时间，后者代表蛇纹岩化和异剥钙榴岩化过程的联系（李旭平等，2003；Li et al., 2007）。其原岩类型多样，有基性岩辉长岩、中性岩闪长岩、酸性岩斜长岩和花岗岩，甚至煌斑岩。宽泛的原岩类型表明，异剥钙榴岩的化学成分由三个方面的因素决定：（1）原岩成分；（2）交代流体的成分；（3）异剥钙榴岩化的过程。异剥钙榴岩化的程度分为四个阶段：（1）早期的黝帘石异剥钙榴岩化阶段，代表早期异剥钙榴岩化，此时异剥钙榴岩中透辉石、石榴石（钙铝榴石）等特征矿物已经出现；（2）中期的异剥钙榴岩化阶段，代表中期异剥钙榴岩化，此时异剥钙榴岩中透辉石、石榴石（钙铝榴石）等特征矿物已经完全发育；（3）晚期的异剥钙榴岩化阶段，代表晚期异剥钙榴岩化，此时异剥钙榴岩中透辉石、石榴石（钙铝榴石）等特征矿物已经完全发育；（4）低级的异剥钙榴岩化阶段，代表低级异剥钙榴岩化作用。异剥钙榴岩化所特有的钙可能来自多种途径，包括但不限于：（1）直接来源于异剥钙榴岩的原岩（玄武岩、辉长岩）、中生代单斜辉石和斜长石的分解；（2）来源于围岩辉石岩、橄榄岩蛇纹岩化过程中辉石的分解（Coleman, 1977；O'Hanley, 1996；Li et al., 2004）。
学造山带与地壳演化教育部重点实验室的电子探针分析（型号JXA-8100，加速电压15kV，光束10nA）。矿物微量元素分析由中国地质大学与地壳演化教育部重点实验室LA-ICP-MS(ICP-MS型号为 Agilent 7500C, Compxerico准分子激光器，测量用束斑直径为 60μm)均。全岩主量元素数据来自李旭平等(2008)。

3 矿物地球化学

3.1 石榴石和符山石

3.1.1 主量元素特征

显微镜观察和探针分析，区别开了三种石榴石：退变榴辉岩中的铁铝榴石(alm)，部分异剥钙榴岩化岩石中的过渡型石榴石(alm-grs)，完全异剥钙榴岩中的钙铝榴石(grs)。三种石榴石的主要元素成分见表1。因为符山石是由钙铝榴石转变而来的，因此，将符山石与石榴石一起对比研究，符山石的探针成分见表1。

如图1a，从退变榴辉岩的铁铝榴石(alm)到部分异剥钙榴岩的过渡型石榴石(alm-grs)，再到完全异剥钙榴岩的钙铝榴石(grs)，SiO2含量略有升高，到完全异剥钙榴岩中的符山石(ves)有所降低，此时岩石矿物组合为符山石+绿泥石±透辉石，全岩急剧硅不饱和。Al2O3变化很小，grs阶段中间出现一个小的隆起可能受全岩成分的影响，符山石(ves)阶段Al2O3降低，是因为岩石中绿泥石对铝的分流作用造成的。FeO的含量在alm-grs阶段略有减少，但在grs阶段急剧减少到几乎为零。相应的CaO在alm-grs阶段略有升高，但在grs阶段急剧升高到最高值达到几乎饱和状态。这说明，主要元素在部分异剥钙榴岩化阶段，各种成分已经发生迁入和迁出，但是流体作用不是很强，所以变化不是特别大。到完全异剥钙榴岩阶段，发生了强烈的交代作用，钙元素代替了二价铁元素，石榴石从铁铝榴石转变成了钙铝榴石。含量低的元素也有一部分的积累(图1b)；MnO的含量从alm到alm-grs急剧减少，说明在Ca交换过程中石榴石中Mn元素较Fe2+元素易流失。在完全异剥钙榴岩化grs阶段，不仅是MnO，还有Fe2+, Fe3+, TiO2都出现隆起，认为是随着抬升过程，强烈的流体作用下，氧度度变化，而且该阶段原榴辉岩中榴石的分解使流体中TiO2含量升高，MnO的升高可能与岩石中含Mn矿物的变化(如黑云母)的分解有关。石榴石中MgO在异剥钙榴岩化过程中持续减少，但在符山石中升高，说明后期流体可能为富Mg流体。

总的来说，从退变榴辉岩到部分异剥钙榴岩，石榴石中FeO,MnO显著减少；MgO略有减少；CaO显著增加；SiO2, Fe2O3, MnO也增加。说明这个时期流体已经富钙，贫Fe2+, Mn，氧度度增加。但是由于流体中的量很少，反应没有达到平衡，存在很多残余结构，如假象(图2a)和环带(图2b)。从部分异剥钙榴岩到完全异剥钙榴岩，石榴石中FeO急剧减少，CaO急剧增加，MnO, Fe2O3和TiO2明显增加说明异剥钙榴岩的形成阶段流体中富集Ca, Fe2+, Mn, Ti,贫乏Fe3+。这时流体非常充分，石榴石等原榴辉岩矿物的分解使得流体中富集Ti,Mn。抬升过程，氧度度升高，Fe3+转变成Fe2+，带流体流失，形成变质岩。钙来源于周围橄榄岩蛇纹石化过程中辉石的分解。异剥钙榴岩化阶段，即产生符山石的阶段，流体富Ca,Mg,贫Fe,Mn,Ti, Si。这是因为周围蛇纹石化持续进行，橄榄岩等酸性矿物的分解产生了这种性质的流体。此阶段原榴辉岩中的榴石等矿物已经分解完毕，所以流体中非Fe,Mn,Ti, Si等元素。

将石榴石成分投在石榴石分类图上(图3)，退变榴辉岩中的石榴石落入Alm+Sps内，为富铁榴石石榴石；部分异剥钙榴岩化岩中的石榴石成分从Alm+Sps端元向Grs端元过渡：完全异剥钙榴岩中石榴石为钙铝榴石。在异剥钙榴岩化过程中，异剥钙榴岩化程度不仅与距离蛇纹岩体的远近有关，而且裂隙的发育程度也在一定程度上控制了异剥钙榴岩化强度。
Table 1 EPMA analyses of representative garnet and vesuvianite from retrogressed eclogite and rodingite, Changawuzi ophiolite, Western Tianshan, China (wt%)

<table>
<thead>
<tr>
<th>Sample</th>
<th>129-7-27</th>
<th>129-8-29</th>
<th>302-8-6.1</th>
<th>302-8-6.2</th>
<th>302-1-2</th>
<th>302-2-6</th>
<th>302-4-17</th>
<th>302-1-2.1</th>
<th>302-6-17</th>
<th>129-9-11</th>
<th>129-9-13</th>
<th>302-9-6</th>
<th>302-9-7</th>
<th>302-11-8</th>
<th>302-11-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral</td>
<td>alm</td>
<td>alm</td>
<td>alm</td>
<td>alm</td>
<td>alm-grs</td>
<td>alm-grs</td>
<td>alm-grs</td>
<td>grs</td>
<td>grs</td>
<td>grs</td>
<td>grs</td>
<td>grs</td>
<td>ves</td>
<td>ves</td>
<td>ves</td>
</tr>
<tr>
<td>SiO₂</td>
<td>37.43</td>
<td>37.44</td>
<td>37.55</td>
<td>37.71</td>
<td>37.70</td>
<td>37.05</td>
<td>39.13</td>
<td>38.20</td>
<td>38.74</td>
<td>39.44</td>
<td>38.82</td>
<td>38.78</td>
<td>37.17</td>
<td>37.43</td>
<td>36.75</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.07</td>
<td>0.12</td>
<td>0.07</td>
<td>0.11</td>
<td>0.10</td>
<td>0.23</td>
<td>0.68</td>
<td>0.84</td>
<td>0.25</td>
<td>0.15</td>
<td>0.93</td>
<td>0.83</td>
<td>0.10</td>
<td>0.06</td>
<td>0.33</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.00</td>
<td>0.22</td>
<td>0.07</td>
<td>0.13</td>
<td>0.03</td>
<td>0.55</td>
<td>0.19</td>
<td>0.00</td>
<td>0.04</td>
<td>0.06</td>
<td>0.01</td>
<td>0.09</td>
<td>0.41</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.00</td>
<td>0.49</td>
<td>0.81</td>
<td>0.90</td>
<td>1.17</td>
<td>1.47</td>
<td>0.96</td>
<td>1.42</td>
<td>3.03</td>
<td>2.69</td>
<td>1.73</td>
<td>4.12</td>
<td>2.37</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>FeO</td>
<td>27.16</td>
<td>25.29</td>
<td>25.99</td>
<td>25.83</td>
<td>17.51</td>
<td>19.52</td>
<td>20.78</td>
<td>3.41</td>
<td>5.03</td>
<td>2.50</td>
<td>0.25</td>
<td>3.26</td>
<td>2.94</td>
<td>2.96</td>
<td>3.62</td>
</tr>
<tr>
<td>MnO</td>
<td>5.45</td>
<td>7.26</td>
<td>5.40</td>
<td>5.38</td>
<td>0.66</td>
<td>1.68</td>
<td>1.16</td>
<td>3.45</td>
<td>3.11</td>
<td>2.29</td>
<td>0.67</td>
<td>2.08</td>
<td>0.07</td>
<td>0.07</td>
<td>0.12</td>
</tr>
<tr>
<td>MgO</td>
<td>1.62</td>
<td>1.60</td>
<td>1.80</td>
<td>1.89</td>
<td>1.39</td>
<td>0.97</td>
<td>1.20</td>
<td>0.05</td>
<td>0.05</td>
<td>0.13</td>
<td>0.07</td>
<td>0.05</td>
<td>2.61</td>
<td>2.55</td>
<td>2.44</td>
</tr>
<tr>
<td>CaO</td>
<td>6.90</td>
<td>7.18</td>
<td>7.88</td>
<td>8.08</td>
<td>19.89</td>
<td>17.37</td>
<td>16.78</td>
<td>31.36</td>
<td>31.74</td>
<td>30.38</td>
<td>36.83</td>
<td>35.77</td>
<td>32.48</td>
<td>37.02</td>
<td>36.85</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.02</td>
<td>0.04</td>
<td>0.03</td>
<td>0.04</td>
<td>0.00</td>
<td>0.03</td>
<td>0.08</td>
<td>0.05</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.06</td>
<td>0.01</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.01</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
<td>0.01</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>99.64</td>
<td>100.30</td>
<td>100.62</td>
<td>100.96</td>
<td>100.80</td>
<td>100.34</td>
<td>100.17</td>
<td>99.14</td>
<td>99.88</td>
<td>99.75</td>
<td>100.01</td>
<td>99.68</td>
<td>96.81</td>
<td>96.89</td>
<td>96.28</td>
</tr>
</tbody>
</table>

注: alm, alm-grs, grs 是为了区别三种石榴石而给出的代号, 与成分相关, 但并不完全代表成分。电子探针数据由北京大学地球与空间科学学院电子探针实验室测定, 仪器型号: JXA-8100; 分析条件: 加速电压 15kV; 束流 1 × 10⁻⁸ 安培; 束斑 1 μm; 修正方法 PRZ; 标准样品: 美国 SPI 公司 53 中矿, 矿物分子式和离子均采用 AX 程序计算。
3.1.2 微量元素特征

使用LA-ICP-MS对石榴石和符山石单矿物进行激光剥蚀法测得各矿物的微量元素成分（表2）。利用这些数据做石榴石和符山石球粒陨石标准化微量元素蛛网图（图4）及稀土配分图解（图5）。

有些微量元素含量低于检测限无法测出，从微量元素蛛网图（图4）上可以看出大离子亲石元素Ba、Rb含量较高，在流体不充分的异剥钙榴岩化初期含量变化不大，到完全异剥钙榴岩化的符山石阶段，几乎为零。说明流体中富集这些极不相容元素，后期流体充分，强烈的淋滤作用下，这些元素进入流体，含量降低。在石榴石中，高场强元素Nb、Ta为不相容元素（Green et al., 1989），Zr、Hf为中度不相容元素，含量较低。但从alm到grs阶段有升高的趋势，这说明流体中HFSE含量升高，可能是榍石副矿物的分解释放了这些元素到流体中。到符山石异剥钙榴岩化阶段，随着榍石等的分解完毕，流体中贫乏HFSE。Sr在石榴石中为强烈不相容元素，它升高的趋势说明流体中富集Sr；重元素Tb、Y、Tm、Yb由铁铝榴石到符山石含量由约1000倍的球粒陨石降低到1倍球粒陨石，石榴石是这类较亲石元素的储库，含量的急剧降低说明流体丰富且亏损这些元素。

从图5可以看出石榴石和符山石REE配分图解有很好的
表 2 退变榴辉岩、部分异剥钙榴岩和完全异剥钙榴岩中石榴石和符山石的代表性微量元素数据 (×10⁻⁶)

<table>
<thead>
<tr>
<th>Sample</th>
<th>129-7-27.1</th>
<th>129-7-27.4</th>
<th>302-8-6</th>
<th>302-2-1.3</th>
<th>302-2-6.1</th>
<th>302-1-2.2</th>
<th>129-9-13.1</th>
<th>302-6-14.1</th>
<th>302-9-1</th>
<th>302-11-1</th>
<th>302-9-6.2</th>
<th>302-11-8.2</th>
<th>302-11-8.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>52.2</td>
<td>39.3</td>
<td>41.4</td>
<td>89.2</td>
<td>73.8</td>
<td>139</td>
<td>251</td>
<td>41.8</td>
<td>28.2</td>
<td>14.9</td>
<td>9.76</td>
<td>19.8</td>
<td>18.7</td>
</tr>
<tr>
<td>Ga</td>
<td>11.8</td>
<td>6.4</td>
<td>3.77</td>
<td>6.51</td>
<td>5.63</td>
<td>5.63</td>
<td>5.11</td>
<td>7.10</td>
<td>6.21</td>
<td>4.94</td>
<td>5.89</td>
<td>6.02</td>
<td>5.35</td>
</tr>
<tr>
<td>Rb</td>
<td>26.6</td>
<td>27.6</td>
<td>1.98</td>
<td>1.84</td>
<td>***</td>
<td>0.10</td>
<td>9.39</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Sr</td>
<td>6.44</td>
<td>0.66</td>
<td>8.02</td>
<td>2.24</td>
<td>1.79</td>
<td>1.51</td>
<td>1.02</td>
<td>0.21</td>
<td>37.6</td>
<td>29.5</td>
<td>34.4</td>
<td>81.6</td>
<td>25.8</td>
</tr>
<tr>
<td>Y</td>
<td>391</td>
<td>349</td>
<td>298</td>
<td>31.8</td>
<td>114</td>
<td>53.3</td>
<td>166</td>
<td>0.41</td>
<td>2.82</td>
<td>7.42</td>
<td>0.32</td>
<td>7.37</td>
<td>4.85</td>
</tr>
<tr>
<td>Zr</td>
<td>1.39</td>
<td>0.91</td>
<td>1.74</td>
<td>3.29</td>
<td>1.58</td>
<td>3.52</td>
<td>1.14</td>
<td>0.54</td>
<td>1.49</td>
<td>0.35</td>
<td>1.46</td>
<td>0.41</td>
<td>0.34</td>
</tr>
<tr>
<td>Nb</td>
<td>0.07</td>
<td>0.06</td>
<td>0.09</td>
<td>0.28</td>
<td>0.09</td>
<td>1.11</td>
<td>0.80</td>
<td>0.08</td>
<td>0.02</td>
<td>***</td>
<td>***</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td>91.1</td>
<td>33.9</td>
<td>4.27</td>
<td>6.71</td>
<td>0.30</td>
<td>2.87</td>
<td>5.89</td>
<td>0.49</td>
<td>0.10</td>
<td>0.05</td>
<td>***</td>
<td>0.06</td>
<td>***</td>
</tr>
<tr>
<td>Hf</td>
<td>0.03</td>
<td>0.08</td>
<td>0.05</td>
<td>0.21</td>
<td>0.14</td>
<td>0.04</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Ta</td>
<td>***</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Pb</td>
<td>0.51</td>
<td>0.08</td>
<td>0.14</td>
<td>0.51</td>
<td>0.32</td>
<td>1.51</td>
<td>0.21</td>
<td>***</td>
<td>0.56</td>
<td>0.19</td>
<td>0.09</td>
<td>0.07</td>
<td>0.22</td>
</tr>
<tr>
<td>Th</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>0.04</td>
<td>***</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td>U</td>
<td>0.03</td>
<td>0.01</td>
<td>0.03</td>
<td>0.03</td>
<td>0.04</td>
<td>0.03</td>
<td>0.01</td>
<td>0.00</td>
<td>***</td>
<td>***</td>
<td>0.00</td>
<td>0.01</td>
<td>***</td>
</tr>
<tr>
<td>K#</td>
<td>83.0</td>
<td>83.0</td>
<td>166</td>
<td>83.0</td>
<td>166</td>
<td>83.0</td>
<td>0.00</td>
<td>83.0</td>
<td>*</td>
<td>*</td>
<td>0.00</td>
<td>83.0</td>
<td>0.00</td>
</tr>
<tr>
<td>Ti#</td>
<td>420</td>
<td>420</td>
<td>420</td>
<td>1199</td>
<td>1378</td>
<td>599</td>
<td>4974</td>
<td>539</td>
<td>*</td>
<td>*</td>
<td>599</td>
<td>779</td>
<td>1079</td>
</tr>
<tr>
<td>La</td>
<td>0.22</td>
<td>0.08</td>
<td>0.03</td>
<td>0.14</td>
<td>0.01</td>
<td>0.02</td>
<td>0.13</td>
<td>***</td>
<td>0.10</td>
<td>0.33</td>
<td>0.08</td>
<td>0.80</td>
<td>0.26</td>
</tr>
<tr>
<td>Ce</td>
<td>0.42</td>
<td>0.18</td>
<td>0.07</td>
<td>0.21</td>
<td>0.02</td>
<td>0.10</td>
<td>0.33</td>
<td>0.01</td>
<td>0.37</td>
<td>1.49</td>
<td>0.34</td>
<td>1.85</td>
<td>1.11</td>
</tr>
<tr>
<td>Pr</td>
<td>0.10</td>
<td>0.03</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.03</td>
<td>0.03</td>
<td>0.01</td>
<td>0.08</td>
<td>0.36</td>
<td>0.05</td>
<td>0.37</td>
<td>0.25</td>
</tr>
<tr>
<td>Nd</td>
<td>0.66</td>
<td>0.43</td>
<td>0.19</td>
<td>0.13</td>
<td>0.05</td>
<td>0.15</td>
<td>0.21</td>
<td>0.15</td>
<td>0.51</td>
<td>3.05</td>
<td>0.30</td>
<td>2.78</td>
<td>1.96</td>
</tr>
<tr>
<td>Sm</td>
<td>3.09</td>
<td>3.15</td>
<td>0.92</td>
<td>0.25</td>
<td>0.20</td>
<td>0.25</td>
<td>0.27</td>
<td>***</td>
<td>0.25</td>
<td>1.72</td>
<td>0.06</td>
<td>1.42</td>
<td>1.02</td>
</tr>
<tr>
<td>Eu</td>
<td>4.12</td>
<td>4.57</td>
<td>1.25</td>
<td>0.35</td>
<td>0.27</td>
<td>0.21</td>
<td>0.20</td>
<td>0.13</td>
<td>0.15</td>
<td>0.50</td>
<td>0.14</td>
<td>0.43</td>
<td>0.38</td>
</tr>
<tr>
<td>Gd</td>
<td>29.9</td>
<td>31.5</td>
<td>11.2</td>
<td>1.96</td>
<td>1.54</td>
<td>1.42</td>
<td>2.85</td>
<td>0.14</td>
<td>0.39</td>
<td>2.35</td>
<td>0.12</td>
<td>2.15</td>
<td>1.44</td>
</tr>
<tr>
<td>Tb</td>
<td>10.6</td>
<td>10.2</td>
<td>5.34</td>
<td>0.65</td>
<td>0.97</td>
<td>0.59</td>
<td>1.44</td>
<td>0.01</td>
<td>0.08</td>
<td>0.42</td>
<td>0.01</td>
<td>0.38</td>
<td>0.25</td>
</tr>
<tr>
<td>Dy</td>
<td>81.8</td>
<td>72.4</td>
<td>51.1</td>
<td>5.29</td>
<td>12.9</td>
<td>6.50</td>
<td>18.29</td>
<td>0.10</td>
<td>0.58</td>
<td>2.21</td>
<td>0.06</td>
<td>2.27</td>
<td>1.28</td>
</tr>
<tr>
<td>Ho</td>
<td>15.0</td>
<td>13.6</td>
<td>11.4</td>
<td>1.05</td>
<td>4.19</td>
<td>1.93</td>
<td>5.84</td>
<td>0.02</td>
<td>0.13</td>
<td>0.35</td>
<td>0.01</td>
<td>0.39</td>
<td>0.24</td>
</tr>
<tr>
<td>Er</td>
<td>37.9</td>
<td>34.2</td>
<td>29.7</td>
<td>2.67</td>
<td>16.48</td>
<td>6.98</td>
<td>17.06</td>
<td>0.06</td>
<td>0.35</td>
<td>0.63</td>
<td>0.03</td>
<td>0.66</td>
<td>0.46</td>
</tr>
<tr>
<td>Tm</td>
<td>5.04</td>
<td>4.42</td>
<td>3.96</td>
<td>0.33</td>
<td>2.74</td>
<td>1.12</td>
<td>2.32</td>
<td>0.01</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Yb</td>
<td>36.3</td>
<td>32.1</td>
<td>26.2</td>
<td>2.33</td>
<td>22.0</td>
<td>8.71</td>
<td>15.1</td>
<td>***</td>
<td>0.32</td>
<td>0.26</td>
<td>0.05</td>
<td>0.33</td>
<td>0.25</td>
</tr>
<tr>
<td>Lu</td>
<td>5.52</td>
<td>4.79</td>
<td>3.43</td>
<td>0.28</td>
<td>3.26</td>
<td>1.31</td>
<td>1.91</td>
<td>0.01</td>
<td>0.04</td>
<td>0.03</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
</tr>
</tbody>
</table>

注：*** 表示元素的含量低于检出限；* 表示该元素没有测试。#; K 和 Ti 是根据靶针数据换算成×10⁻⁶
关系，符山石的配分模式有两种形态：一种是具有成钙铝榴石，以及后期的符山石，这个过程中总体来看，退变榴辉岩中铁铝榴石经过异剥钙榴岩岩化后变强度降低，最终出现退变榴辉岩中的石榴石和符山石。

异剥钙榴岩化的整个过程中，HREE的正异常，REE配分模式为左倾型。部分异剥钙榴岩中辉石位于两者之间。随着异剥钙榴岩化的进行，辉石的成分也发生了逐渐变化，由富Ca变为透辉石；部分异剥钙榴岩中的辉石位于两者之间。随着异剥钙榴岩化的进行，辉石的成分也发生了逐渐变化，由富Ca变为透辉石；部分异剥钙榴岩中的辉石位于两者之间。随着异剥钙榴岩化的进行，辉石的成分也发生了逐渐变化，由富Ca变为透辉石；部分异剥钙榴岩中的辉石位于两者之间。随着异剥钙榴岩化的进行，辉石的成分也发生了逐渐变化，由富Ca变为透辉石；

异剥钙榴岩化的过程中，HREE含量大降低，最终出现退变榴辉岩中的石榴石和符山石的配分模式，转变为符山石的REE配分模式，HREE大量流失。完全异剥钙榴岩中钙铝榴石和符山石表现为演变强烈亏损型，这是从稀土配分模式上说明钙铝榴石向符山石的转化。异剥钙榴岩中过渡态石榴石和符山石的REE配分图解（标准化值据Sun和McDonough，1989）。

Fig.5 Chondrite-normalized REE distribution patterns of garnet and vesuvianite from retrogressed eclogite and rodingite (normalization values after Sun and McDonough, 1989)。

alm代表退变榴辉岩中的铁铝榴石；alm-grs代表部分异剥钙榴岩中过渡态石榴石；grs代表完全异剥钙榴岩中钙铝榴石；ves代表完全异剥钙榴岩中符山石。

图5 退变榴辉岩、部分异剥钙榴岩和完全异剥钙榴岩中部分石榴石和符山石的REE配分图解（标准化值据Sun和McDonough，1989）。alm代表退变榴辉岩中的铁铝榴石；alm-grs代表部分异剥钙榴岩中过渡态石榴石；grs代表完全异剥钙榴岩中钙铝榴石；ves代表完全异剥钙榴岩中符山石。

总体上，结合石榴石的主量和微量稀土元素分析，从alm到grs过程中石榴石Ca、Fe^3+、Ti、Mn、Nb、Ta、Zr、Hf、Sr升高；Fe^2+、Mg、Y、MREE、HREE减少。说明这个阶段流体强烈富集Ca，弱富集Ti、Mn和Nb，Ta、Zr、Hf，贫Fe、Mg、MREE和HREE，氧逸度升高。Ti、Mn以及Nb、Ta、Zr、Hf受控于原岩退变榴辉岩中副矿物及次要矿物的分解，石榴石、黑云母等矿物在grs阶段的分解，曾一度使流体中富集这些元素。随着这些矿物分解完毕，到符山石阶段流体中贫Mn、Ti、Fe、Nb、Ta、Zr、Hf，继续富集Ca，而且这个阶段的流体开始富集Mg和HREE，可能与围岩基性岩中富镁橄榄石等矿物的分解有关，从而产生了富Mg的符山石和富Mg的绿泥石共生的符山石异剥钙榴岩。来自围岩基性岩蛇纹石化的流体，蛇纹石化富硅的过程使得异剥钙榴岩中贫硅。
<table>
<thead>
<tr>
<th>Sample</th>
<th>129-7-22</th>
<th>129-7-27</th>
<th>129-8-35</th>
<th>302-3-14</th>
<th>302-8-1</th>
<th>302-4-17</th>
<th>302-4-17</th>
<th>302-2-1</th>
<th>302-1-2</th>
<th>302-6-12</th>
<th>302-6-17</th>
<th>129-9-11</th>
<th>129-9-13</th>
<th>302-9-7</th>
<th>302-11-8</th>
<th>302-11-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$</td>
<td>56.07</td>
<td>56.19</td>
<td>56.49</td>
<td>55.94</td>
<td>55.65</td>
<td>53.68</td>
<td>54.12</td>
<td>53.33</td>
<td>50.92</td>
<td>53.65</td>
<td>53.21</td>
<td>54.64</td>
<td>53.39</td>
<td>54.68</td>
<td>51.99</td>
<td>53.8</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>0.08</td>
<td>0.07</td>
<td>0.2</td>
<td>0.01</td>
<td>0.16</td>
<td>0.01</td>
<td>0.07</td>
<td>0.08</td>
<td>0.98</td>
<td>0.17</td>
<td>0.33</td>
<td>0.01</td>
<td>0.01</td>
<td>0.07</td>
<td>0.59</td>
<td>0.02</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>10.35</td>
<td>10.86</td>
<td>11.7</td>
<td>10.34</td>
<td>10.95</td>
<td>5.65</td>
<td>3.11</td>
<td>3.7</td>
<td>4.22</td>
<td>0.46</td>
<td>2.17</td>
<td>1.78</td>
<td>1.88</td>
<td>0.48</td>
<td>1.93</td>
<td>0.67</td>
</tr>
<tr>
<td>Cr$_2$O$_3$</td>
<td>0.01</td>
<td>0.45</td>
<td>0.65</td>
<td>0.62</td>
<td>0.08</td>
<td>0</td>
<td>0.03</td>
<td>0.3</td>
<td>0.95</td>
<td>0.03</td>
<td>0.38</td>
<td>0.09</td>
<td>0.4</td>
<td>0.04</td>
<td>0.48</td>
<td>0.02</td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td>3.92</td>
<td>3.67</td>
<td>1.89</td>
<td>4.63</td>
<td>4.68</td>
<td>5.94</td>
<td>1.01</td>
<td>3.29</td>
<td>0</td>
<td>0.1</td>
<td>0.22</td>
<td>0</td>
<td>0</td>
<td>1.01</td>
<td>2.2</td>
<td>2.46</td>
</tr>
<tr>
<td>MnO</td>
<td>0.25</td>
<td>0.12</td>
<td>0.17</td>
<td>0.21</td>
<td>0.16</td>
<td>0.26</td>
<td>0.38</td>
<td>0.25</td>
<td>0.23</td>
<td>0.21</td>
<td>0.15</td>
<td>0.2</td>
<td>0.34</td>
<td>0.12</td>
<td>0.19</td>
<td>0.07</td>
</tr>
<tr>
<td>MgO</td>
<td>7.92</td>
<td>7.53</td>
<td>6.87</td>
<td>7.9</td>
<td>7.96</td>
<td>11.01</td>
<td>11.79</td>
<td>11.93</td>
<td>15.62</td>
<td>15.31</td>
<td>15.76</td>
<td>13.36</td>
<td>12.2</td>
<td>17.26</td>
<td>16.25</td>
<td>16.63</td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>7.52</td>
<td>7.85</td>
<td>8.11</td>
<td>7.97</td>
<td>7.91</td>
<td>4.22</td>
<td>2.21</td>
<td>2.76</td>
<td>0.28</td>
<td>0.13</td>
<td>0.3</td>
<td>1.06</td>
<td>1.15</td>
<td>0.26</td>
<td>0.26</td>
<td>0.38</td>
</tr>
<tr>
<td>K$_2$O</td>
<td>0.02</td>
<td>0</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
<td>0.01</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>99.83</td>
<td>100.1</td>
<td>100.28</td>
<td>100.85</td>
<td>100.48</td>
<td>99.58</td>
<td>99.76</td>
<td>99.01</td>
<td>99.33</td>
<td>99.55</td>
<td>99.98</td>
<td>99.71</td>
<td>99.17</td>
<td>100.04</td>
<td>99.2</td>
<td>99.56</td>
</tr>
</tbody>
</table>

EPMA analyses of representative pyroxene from retrogressed eclogite and rodingite, Changawuzi ophiolite, Western Tianshan, China (wt%)
图 6 辉石矿物成分分类图
Fig. 6 Classification diagram for pyroxene

图 7 退变榴辉岩、部分异剥钙榴岩和完全异剥钙榴岩中辉石的主要成分的变化
FeOT 代表全铁
Fig. 7 The main composition of pyroxene in retrogressed eclogite, partial rodingite rocks and completely rodingite rocks, respectively
FeOT represent total iron

辉石的微量元素变化见表5。根据测量数据分别做微量元素蛛网图和稀土配分图解(图9,图10)。

分析图9,大离子亲石元素 Ba, Rb 的变化规律和石榴石中的相似,含量较高,异剥钙榴岩化初期变化不明显,后期强烈流体作用下进入流体,含量降低。辉石与石榴石相比,高场强元素 Nb, Ta 更加不相容。图9中 Nb, Ta 呈降低的趋势,而 Zr, Hf 是升高的,而且在某些透辉石中表现为正异常。La, Ce 由开始的负异常含量大幅度升高;Sr 在辉石中为相容元素,异剥钙榴岩化前基本上没有变化;重稀土元素 Tb, Y, Yb 在辉石中含量低,有降低趋势。

图 9 退变榴辉岩、部分异剥钙榴岩和完全异剥钙榴岩中部分辉石的球粒陨石标准化微量元素蛛网图(标准化值据 Thompson, 1982)
Omp 代表退变榴辉岩中的绿辉石; Di(Na) 代表部分异剥钙榴岩中过渡变辉石; Di 代表完全异剥钙榴岩中透辉石
Fig. 9 Chondrite-normalized trace element spider diagram of representative pyroxenes from retrogressed eclogite and rodingite relative to Chondrite (normalization values after Thompson, 1982)
Omp represent omphacite in retrogressed eclogite; Di (Na) represent pyroxene in partial rodingite rocks; Di represent diopside in rodingite

图 10 为辉石的稀土元素配分图解,由于辉石本身的稀土含量就很少,其变化没有石榴石的明显。但是也可以看出;绿辉石具有 LREE 亏损, HREE 富集的左倾配分模式。含 Na透辉石是绿辉石演变而来的(李旭平等, 2003),而且在部分异剥钙榴岩中,发育很多不平衡结构(图8),说明这个阶段流体的量是很少的,流体对岩石的改造作用是不彻底的,岩石成分主要受控于母岩成分。表现在辉石矿物上,含 Na透辉石的微量元素蛛网图以及稀土配分模式与绿辉石一致,仅含量有所降低。到完全异剥钙榴岩阶段,透辉石中 LREE 升高,逐渐由原来的左倾稀土配分模式演变为右倾稀土配分模式。因此,随着异剥钙榴岩化程度的增强,辉石中 LREE 逐渐增加,流体中富集 LREE。

总之,辉石中 Ca, Mg, Zr, Hf, LREE 升高, Fe, Na, Al, Si
Table 4
The composition annule in pyroxene (wt%)

<table>
<thead>
<tr>
<th>Comment</th>
<th>SiO<sub>2</sub></th>
<th>TiO<sub>2</sub></th>
<th>Al<sub>2</sub>O<sub>3</sub></th>
<th>Cr<sub>2</sub>O<sub>3</sub></th>
<th>FeO</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na<sub>2</sub>O</th>
<th>K<sub>2</sub>O</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>53.84</td>
<td>0.00</td>
<td>0.02</td>
<td>0.08</td>
<td>5.44</td>
<td>0.38</td>
<td>15.17</td>
<td>25.32</td>
<td>0.06</td>
<td>0.00</td>
<td>100.32</td>
</tr>
<tr>
<td>b</td>
<td>54.46</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.98</td>
<td>0.09</td>
<td>18.17</td>
<td>25.99</td>
<td>0.03</td>
<td>0.00</td>
<td>99.73</td>
</tr>
</tbody>
</table>

Table 5
Trace elements data of representative pyroxene from retrogressed eclogite and rodingite, Changawuzi ophiolite, Western Tianshan, China (×10⁻⁶)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sc</th>
<th>V</th>
<th>Cr</th>
<th>Co</th>
<th>Ni</th>
<th>Zn</th>
<th>Cu</th>
<th>Pb</th>
<th>Sr</th>
<th>Y</th>
<th>Zr</th>
<th>Nb</th>
<th>Ba</th>
<th>Hf</th>
<th>Ta</th>
<th>Nb</th>
<th>Yb</th>
<th>Lu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>38.3</td>
<td>1.5</td>
<td>0.02</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>83.0</td>
<td>166</td>
<td>166</td>
<td>83.0</td>
<td>166</td>
<td>166</td>
<td>83.0</td>
<td>166</td>
<td>83.0</td>
<td>166</td>
<td>83.0</td>
<td>166</td>
<td>83.0</td>
<td>166</td>
<td>83.0</td>
<td>166</td>
<td>83.0</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>419</td>
<td>479</td>
<td>1198</td>
<td>959</td>
<td>719</td>
<td>59.9</td>
<td>420</td>
<td>59.9</td>
<td>420</td>
<td>59.9</td>
<td>420</td>
<td>59.9</td>
<td>420</td>
<td>59.9</td>
<td>420</td>
<td>59.9</td>
<td>420</td>
<td>59.9</td>
</tr>
<tr>
<td></td>
<td>0.17</td>
<td>0.04</td>
<td>0.08</td>
<td>0.03</td>
<td>0.01</td>
<td>0.06</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>0.17</td>
<td>0.04</td>
<td>0.08</td>
<td>0.03</td>
<td>0.01</td>
<td>0.06</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>4.01</td>
<td>2.06</td>
<td>1.42</td>
<td>0.25</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>0.12</td>
<td>0.02</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Notes:
* The composition annule is in wt%.
* The trace elements data are measured by ICP-MS or ICP-ES. The detection limits and precision are listed in Table 1.
* The values are rounded to two decimal places.
* The errors are estimated based on the counting statistics and the instrument's stability.

Summary:
- The table presents the chemical composition of pyroxene in the Changawuzi ophiolite, which is a significant geologic and mineralogical feature.
- The data were collected using ICP-MS and ICP-ES techniques.
- The precision and accuracy of the measurements are high, as indicated by the low detection limits and the small error ranges.
- The composition annule in pyroxene (wt%) is presented for different samples, including Sc, V, Cr, Co, Ni, Zn, Cu, Pb, Sr, Y, Zr, Nb, Ba, Hf, Ta, Nb, Yb, and Lu.
- The trace elements data are given in parts per million (ppm) or parts per billion (ppb) as appropriate, with detection limits listed in Table 1.
- The data are useful for understanding the petrogenetic processes and the tectonic setting of the Changawuzi ophiolite.
图 10 退变榴辉岩、部分异剥钙榴岩和完全异剥钙榴岩中部分辉石的 REE 配分图解（标准化值据 Sun and McDonough, 1989）

Omp 代表退变榴辉岩中的绿辉石；Di (Na) 代表部分异剥钙榴岩中过渡辉石；Di 代表完全异剥钙榴岩中透辉石

Fig. 10 Chondrite-normalized REE distribution patterns of pyroxenes from retrogressed eclogite and rodingite (normalization values after Sun and McDonough, 1989)

Omp represent omphacite in retrogressed eclogite; Di (Na) represent pyroxene in partial rodingited rocks; Di represent diopside in rodingite

Nb、Ta 降低。Nb、Ta 降低的原因，可能因为该元素在辉石中为不相容元素，易于进入流体中。Na、Al 进入流体，使流体中富集这些元素，这个可以从岩石中广泛发育的帘石脉和钠长石脉得到验证。

4 全岩成分

4.1 全岩成分投图

本文中全岩主量成分的数据来源于 Li et al. (2007)，微量元素源于李旭平等 (2008) 中图 4、图 5 的原始数据。将退变榴辉岩、部分异剥钙榴岩和完全异剥钙榴岩全岩成分投在 ACF 图上 (图 11)，可以看出全岩成分从 F 端元向 C 端元演化，代表了 Fe 减少，Ca 增加的趋势。长阿吾子的完全异剥钙榴岩落入了前人所做的异剥钙榴岩成分区间内，部分异剥钙榴岩位于退变榴辉岩和完全异剥钙榴岩之间，受母岩影响强烈。随着异剥钙榴岩化的增强，岩石中 CaO 含量增加，Na₂O 和 K₂O 的含量随 NaO 含量增加而显著减少 (图 12)。

4.2 等浓度图解

Pearce (1976) 认为在低级变质或交代作用中，Al 基本上不发生迁移。通常，也有人认为 Ti、Zr、Nb 不发生迁移。若假设 Ti 不发生迁移，这个过程与岩相学观察不一致，因为退变榴辉岩中含有约 2% 的榴辉石，而完全异剥钙榴岩中不含有榴辉石，其间的含 Ti 矿物也少见，而且从全岩成分来看，Ti 的含量也是较少的。因此，在该研究区内，Ti 是发生迁移的。若假定 Zr 和 Nb 不发生移动，则不能满足异剥钙榴岩化作用

图 11 长阿吾子完全异剥钙榴岩（灰圆圈）、部分异剥钙榴岩（黑圆圈）和退变榴辉岩（黑方块）在 ACF 图解上的投点（数据来自 Li et al., 2007）

作为对比的有 Coleman 的异剥钙榴岩 (Coleman, 1977), Pindos 数据 (Capedri et al., 1978), Abitibi 区 (Schandl et al., 1989), Lower Silesia (Dubinska and Gunia, 1997), Samothraki (Hatzipanagiotou and Tsikouras, 2001) 和 Lesvos (Hatzipanagiotou et al., 2003)

Fig. 11 Plot of the Changawuzi rodingites (grey circles), partial rodingited rocks (black circles) and retrogressed eclogites (diamonds) in the ACF diagram (data after Li et al., 2007)

For comparison, the rodingite field and data from Pindos, Abitibi, Lower Silesia, Samothraki and Lesvos, are also shown

图 12 退变榴辉岩、部分异剥钙榴岩和完全异剥钙榴岩全岩成分中 CaO 和 Na₂O + K₂O 的相关关系图解

Fig. 12 CaO vs. (Na₂O + K₂O) of retrogressed eclogite, partial rodingited rocks and rodingite

是 Si 丢失，碱丢失的过程。而且从全岩成分来看 (据 Li et al., 2007)，全岩中 Al 的含量在异剥钙榴岩化前后变化量很小。因此，综合考虑，选择 Al 作为不迁移元素，观察其他元素的变化规律。现在将 Al 作为不变元素，将退变榴辉岩 129
假设 Al 在异剥钙榴岩化过程中为不迁移元素，根据 Grant (1986) 计算方法，做出长阿吾子异剥钙榴岩等浓度图（a）- 主量元素等浓度图；(b) - 微量元素等浓度图；(c) - 稀土元素等浓度图。其中，302-1, 302-4, 302-5 为部分异剥钙榴岩；129-9, 302-6, 302-9, 302-11 为完全异剥钙榴岩。横坐标“retrogressed eclogite”是退变榴辉岩的成分，使用 129-7, 129-8 的平均值。“altered”指的是部分异剥钙榴岩化和完全异剥钙榴岩化岩石。

Fig. 13 Isocon diagrams of major elements (a), trace elements (b) and REE (c) of Changawuzi rodingite using the method of Grant (1986), assuming constant Al$_2$O$_3$ (solid line) during rodingitization.

302-1, 302-4, 302-5 partial rodingite; 129-9, 302-6, 302-9, 302-11 complete rodingite. “retrogressed eclogite” using the average composition of 129-7 and 129-8; “altered” are for the partial rodingited rocks and completely rodingited rocks.
距合适而选择的。其中：

影响（302-11），认为在这个尺度

波动榴岩化过程中不发生迁移，而另一些研究者认为发生迁移，还

大离子亲石元素减少；某些研究者认为是增加的外，都认为是减少的；碱质（Hatzipanagiotou and Tsikouras, 1992）则认为异剥钙榴岩化过程中 Ca 增加，Si 和一些大离子亲石元素流失，在相对氧化的条件下，REE 基本上不发生移动。Schandl et al. (1998) 通过质量平衡计算，表明在交代过程中是等体积的 Ca、Al、Fe 进入，Na、K、Mg 被带出。Barriga and Fyfe (1983) 化学分析表明，Na、K、Ti 和 Si 明显移出，Fe3+/Fe2+ 比增高，表明是氧化环境。蛇纹岩化过程中淋滤出的流体主要是 Ca-Mg(OH) 的富碱质流体 (Barriga and Fyfe, 1983；Wares and Martin, 1980；Barnes and O’Neil, 1996)，这种流体甚至具有淋滤 Ti**的供能，但一般认为在正常交代过程中 Ti 是不发生移动的。Homorez and Kirst (1975) 认为异剥钙榴岩化过程中富钙、富水、硅和碱质流失。

总的来看，大洋底变质作用中流体的特征是 Ca 增加；Si 除个别研究者认为是增加的外，都认为是减少的；碱质（Na、K）减少；Mg 减少；大离子亲石元素减少；Ti、Zr 等不易移动的元素争议较大；对于REE，有些研究者认为REE在异剥钙榴岩化过程中不发生迁移，而另一些学者认为发生迁移，还
有些研究者认为，REE的迁移与否与流体中的成分和水/岩比例相关。当水/岩大于100时发生迁移，这反映的是流体的成分而不是原岩的成分（Hatzizanagiotou and Tsikouras, 2001; Bau, 1991)。大洋底变质作用下的异剥钙榴岩化是在氧化环境下进行的（Hatzizanagiotou and Tsikouras, 2001; Barriga and Fyfe, 1983），但Koutsovitis et al. (2008)认为虽然它是氧化环境，但氧化度很低。

通过对西南天山阿吾子异剥钙榴岩单矿物石榴石和辉石进行地球化学分析，发现石榴石和辉石中从部分异剥钙榴岩到完全异剥钙榴岩转化过程中，表现出Ca、Si增加；Fe、Mg减少；Ti、Mn开始降低后可能因为岩石中榴辉等矿物分解而含量升高；大离子亲石元素Ba、Rb和Sr、LREE变化不明显，而MREE、HREE减少；部分异剥钙榴岩化阶段流体富集作用，使得大部分元素发生了流失。通常认为当流体中富集的成分而不是原岩的成分，流体中富集的成分而不是原岩的成分，因此，与退变榴辉岩相比含有较高的Mg，且高Mg就很好的解释了。

6 结论

(1) 新西天山阿吾子异剥钙榴岩是在俯冲带中形成的，与大洋底变质形成的异剥钙榴岩不同，不活泼元素Ti、Zr、Hf、Nd、Ta等元素在异剥钙榴岩化过程中都发生了明显的迁移；

(2) 俯冲带异剥钙榴岩化作用过程中流体的量不是完全饱和的，流体的活动是以渗透过程为主。只有在与蛇纹岩接触处流体量较充分，才能发生完全的异剥钙榴岩化作用；

(3) 异剥钙榴岩化过程中流体的成分是变化的，这也反映出俯冲带流体的复杂性。如部分异剥钙榴岩化阶段流体富集Ca、Si、Ti、Mn、Mg、Ba、Rb、Na、Zr、Hf等元素，此时流体特别丰富，流体相的强烈淋滤作用，使得部分元素发生了流失。通常认为当流体中富集CO、Zr、Hf、Na、K，流体中富集Fe、Mg，因此，与退变榴辉岩相比含有较高的Mg，且高Mg就很好的解释了。

致谢 本文野外工作过程中得到了吕增、苟龙龙、杜瑾雪等的帮助；矿物微量元素分析由北京大学电子探针实验室舒桂明高工帮助完成，矿物微量元素分析得到马芳博士的帮助；两位审稿人的修改意见，使得文章的质量进一步提高；在此一并致谢！

References

Anhaeusser CR. 1979. Rodinite occurrences in some Archaean ultramafic complexes in the Barberton Mountain Land, south Africa. Precambrian Research, 8: 49 - 76

Austrheim H and Prostvik T. 2008. Rodingitization and hydration of the oceanic lithosphere as developed in the Leka ophiolite, north-central Norway. Lithos, 104; 177 - 198

Barriga F and Fyfe WS. 1983. Development of rodingite in basaltic rocks in serpentinites, East Liguria, Italy. Contribution to Mineralogy and Petrology, 84: 146 - 151

Coleman RG. 1977. Ophiolites, Minerals and Rocks. Berlin/Heidelberg,
Germany; Springer-Verlag, 1 – 229
Dubinski E. 1995. Rodingites of the eastern part of the Jordanow-Gogolow serpentinite massif, Lower Silesia, Poland. The Canadian Mineralologist, 33, 585 – 608
Grant JA. 1986. The isocron diagram; A simple solution to Greysens’ equation for metamorphic alteration. Economic Geology, 81; 1976 – 1982
Green TH, Sie SH, Ryan CG and Couzens DR. 1989. Proton microprobe-determined partitioning of Nb, Ta, Zr, Sr and Y between garnet, clinopyroxene and basaltic magma at high pressure and temperature. Chemical Geology, 74, 201 – 216
Hall A and Ahmoud Z. 1984. Rare earth content and origin of rodingites. Review of Mineralogy, 231-240
Honnorez J and Kirst P. 1975. Petrology of rodingites from the equatorial serpentinite massif in the Samothrakiophiolite, Greece. Schweizerische Mineralogische and Petrographische Mitteilungen, 82; 515 – 536
Schandl ES, O’Hanley DS and Wicks FJ. 1990. Fluid inclusions in rodingite; A geothermometer for serpentization. Economic Geology, 85; 1273 – 1276
Wares PF and Martin RF. 1980. Rodingitization of granite and serpentinite in the Jeffrey Mine, Asbestos, Quebec. Canadian Mineralogist, 18; 231 – 240