Abstract
In recent years, the evolution history of Paleo-Pacific tectonic domain attracted the attention of many researchers. The zircon LA-ICP-MS U-Pb ages of granodiorite-quartz diorite pluton in Kaishantun, Yanbian area indicates that it formed in early Early Jurassic (198 ± 1 Ma). According to the ratio of Zr/Hf, we divided the samples into two groups: granodiorite with high Zr/Hf ratio and quartz diorite with low Zr/Hf ratio. Magma source of high Zr/Hf ratio group is from crust. Trace element compositions of this group are enrichment in large ionic lithophile elements (LILEs), such as Rb, Th, U, K, and depletion in high field strength elements (HFSEs), Nb, Ta, Ti. Magma source of low Zr/Hf ratio group is the mixed product of magma from crust and magma from depleted mantle. Samples of quartz diorite are strong negative with HFSEs (Nb, Ta, Zr, Hf, Ti), also have the typical geochemistry characteristics of arc-type magma. There are a lot of fine-grained dunitic enclaves in the rock mass. Under microscope, we can see needle like apatite on the thin section. The Kaishantun rock mass belong to calc-alkaline series. Combined with previous research, we found the north-east direction Early Jurassic active continental margin igneous belt. In the west of the belt, there is coeval back arc extensional zone in Xiao Hinggan Mountains-Zhangguangcailing area. The distribution of the two belts make a typical model of active continental margin arc and back arc extensional belt in a subduction zone, reveal the subduction of Paleo-Pacific plate to NE China in early Early Jurassic.

Key words Quartz diorite; Magma mixing; Paleo-Pacific plate; Zr/Hf ratio; Eastern Jilin-Heilongjiang provinces

Abstract
在最近几年，对古太平洋构造域的构造演化备受学者关注。本文报道的延边开山屯地区花岗闪长岩-石英闪长岩体LA-ICP-MS U-Pb年龄表明其形成时间为早侏罗世早期(198 ± 1 Ma)，所采样品可根据Zr/Hf值分为高Zr/Hf值组花岗闪长岩和低Zr/Hf值组石英闪长岩。高Zr/Hf值组花岗闪长岩起源深度浅，富集Rb, Th, U, K等大离子亲石元素(LILEs)，贫Nb, Ta, Ti等高场强元素(HFSEs)，其壳源岩浆的特点。低Zr/Hf值组为壳源岩浆与来自深部的亏损地幔岩浆混合而成，岩石亏损Nb, Ta, Zr, Hf, Ti等高场强元素，具有典型的弧型岩浆地球化学特征。岩体中存在粒状长质包体，镜下可见针柱状磷灰石。开山屯岩体属钙碱性系列岩石，结合前人资料，认为其与该地区同时代火成岩组成北-东方向分布的早侏罗世活动大陆边缘型火成岩带，而位于该带西侧的小兴安岭-张广才岭地区存在同时代弧后拉张带，两者构成典型的大陆弧与弧后拉张带模型，共同揭示了早侏罗世早期古太平洋板块对东北地区的俯冲作用。

关键词 石英闪长岩; 岩浆混合; 古太平洋板块; Zr/Hf 值; 吉-黑东部

中图法分类号 P588.122; P597.3

Abstract
In recent years, the evolution history of Paleo-Pacific tectonic domain attracted the attention of many researchers. The zircon LA-ICP-MS U-Pb ages of granodiorite-quartz diorite pluton in Kaishantun, Yanbian area indicates that it formed in early Early Jurassic (198 ± 1 Ma). According to the ratio of Zr/Hf, we divided the samples into two groups: granodiorite with high Zr/Hf ratio and quartz diorite with low Zr/Hf ratio. Magma source of high Zr/Hf ratio group is from crust. Trace element compositions of this group are enrichment in large ionic lithophile elements (LILEs), such as Rb, Th, U, K, and depletion in high field strength elements (HFSEs), Nb, Ta, Ti. Magma source of low Zr/Hf ratio group is the mixed product of magma from crust and magma from depleted mantle. Samples of quartz diorite are strong negative with HFSEs (Nb, Ta, Zr, Hf, Ti), also have the typical geochemistry characteristics of arc-type magma. There are a lot of fine-grained dunitic enclaves in the rock mass. Under microscope, we can see needle like apatite on the thin section. The Kaishantun rock mass belong to calc-alkaline series. Combined with previous research, we found the north-east direction Early Jurassic active continental margin igneous belt. In the west of the belt, there is coeval back arc extensional zone in Xiao Hinggan Mountains-Zhangguangcailing area. The distribution of the two belts make a typical model of active continental margin arc and back arc extensional belt in a subduction zone, reveal the subduction of Paleo-Pacific plate to NE China in early Early Jurassic.

Key words Quartz diorite; Magma mixing; Paleo-Pacific plate; Zr/Hf ratio; Eastern Jilin-Heilongjiang provinces
1 引言

东北地区古生代至中生代期间经历了多个微板块的拼合过程，形成了复杂的构造样式。经过国内外学者多年研究，古太平洋板块在早白垩世晚期西向俯冲已经从太平洋岛移动特征（Sun et al., 2007; Koppers et al., 2001）和东北地区火成岩（Yu et al., 2009; 王微等，2006）的研究中得到证实，而古亚洲洋消失后至早白垩世晚期之间古太平洋有无向东北地区俯冲以及俯冲开始时间一直是众多学者讨论的焦点。由于研究手段和对象的不同，学者们对这一问题存在分歧，主流观点有以下几种：(1) 俯冲作用始于晚三叠世（裴福萍等，2004; 彭玉鲸等，2012; 周建波等，2013）；(2) 始于早侏罗世~中侏罗世（Yu et al., 2012; 许文良等，2013; 付长亮，2009）；(3) 始于早白垩世晚期（李超文等，2007; Northrup et al., 1995; Engebretson et al., 1985）。目前对这一时期古黑东北部构造演化研究主要是从小兴安岭-张广才岭双峰式火成岩或黑龙江杂岩带和高压变质带这两方面展开的，而对是否存在古太平洋板块俯冲形成的钙碱性火成岩带研究非常少，从而限制了我们对吉黑东部构造演化的认识。解决这一问题的关键在于对吉黑东部地区火成岩成因与分布特征的认识。延边地处吉林省东部，有学者对这一区域部分火成岩做过深入研究，这些研究主要集中于晚古生代-早中生代中基性侵入岩（曹花花，2010; 付长亮，2009; 张艳斌，2002），而该地区出露的侏罗纪侵入岩尚缺乏系统的研究。本文将从延边开山屯地区一个花岗闪长岩-石英闪长岩体的形成时代、地球化学特征入手，结合前人对吉黑东部地区火成岩的研究资料，讨论该岩体的成因及其形成时的构造背景，为研究中生代古太平洋构造域的构造演化提供更多依据。

2 地质背景

延边开山屯地处兴蒙造山带东段，夹于龙岗地块、兴凯地块与松嫩地块之间（图1），古生代以来先后受古亚洲洋活动与滨太平洋构造运动影响，特殊的地理位置使之成为研究
古亚洲洋构造域演化和滨太平洋构造域演化的关键地区。区内火成岩以侵入岩为主，火山岩分布较少。侵入岩主要由闪长岩、花岗闪长岩、石英闪长岩和少量橄榄岩组成，这些侵入岩主要侵入于新太古界鸡南岩组，二叠系寺洞沟组、开山屯组和新东村岩组，三叠系山谷旗组和托盘沟组。在1:20万大砬子幅中这些侵入岩的年龄被划定为二叠纪（吉林省地质矿产局区域地质调查大队，1985），但最新测年结果表示其中二叠纪侵入岩占比较少，大多数侵入岩为侏罗纪形成的（武鹏飞等，2013；Wu et al., 2011；张艳斌，2002）。火山岩主要分布于三仙岭组、屯田营组、天桥岭组、金钩岭组和火山岩组，这些地层原先被划分为三叠系-侏罗系火山岩，后经高精度Ar-Ar年代学研究表明这些火山岩的喷发时代为早白垩世（李超文等，2007）。

3 岩石学特征

样品采于开山屯镇南10km处花岗闪长岩-石英闪长岩体，该岩体呈岩株状产出，出露面积约12km²，侵入于二叠系寺洞沟组和大蒜沟组复成分砾岩中。岩体成分不均匀，东部主要为花岗闪长岩，西部石英闪长岩较多，两者没有明显的界线。岩体中存在颜色较深且粒度较细的闪长质包体（图2a），包体形态呈椭圆状至长条状，长度3~10cm，包体与主体岩边界过渡明显，包体边缘未见明显的冷凝边，但显微镜下观察发现包体中存在岩浆经历骤冷的标志性矿物针柱状磷灰石（图2d）。岩体主体未出现变形，只在岩体边部表现出弱定向构造，但在显微镜下观察发现并末晶内变形，表明这种定向构造为岩体形成时边部流动所致，岩体为半自形粒状结构，块状构造。

岩体寄主岩石浅色矿物占85%~90%由石英、碱性长石、斜长石构成，其中石英占10%~25%，粒度为1~2.5mm，呈聚合体状不规则他形填充。斜长石55%~70%，粒度1~2mm，最大5mm±，板条状，半自形-自形，发育聚片双晶和环带结构。碱性长石5%~12%，粒度1~3mm，半自形-他形板状。暗色矿物10%~15%，由角闪石和黑云母组成，角闪石3%~8%，1~2.5mm，长条状或六边形，自形程度高，多色性为绿-黄绿。黑云母7%~8%，1~3mm，呈长条状或他形填
充于斜长石之间，部分绿泥石化。

包体岩石粒度较细，浅色矿物占65%，其中斜长石约52%，粒度为0.2~0.8mm，他形半自形短柱状，同时还存在一些似短柱状斜长石，含量约3%，晶形较好，粒度1.5mm左右。碱性长石约5%，粒度0.2~0.8mm，呈自形半自形长条状，同时还存在一些似斑状斜长石，含量约3%，晶形较好，粒度1.5mm左右。石英约5%，0.2~0.5mm，他形填充于角闪石和斜长石等矿物之间。暗色矿物占35%，由角闪石和黑云母组成。角闪石约25%，0.2~1mm，呈自形半自形长条状，发育闪石式节理。黑云母约10%，0.5~1mm，薄片上显示为短柱状，颜色为棕红色。薄片中可见针柱状磷灰石，平行消光，中等突起。

图3 石英闪长岩代表性锆石颗粒 CL图像(a)和U-Pb年龄谐和图(b)

Fig. 3 Representative zircon CL diagrams (a) and U-Pb age concordia diagram of quartz diorite (b)

4 锆石U-Pb测年

样品采于开山屯南边境公路旁，通过野外详细调查和室内鉴定，选取新鲜的样品D95（42°37′23.04″N，129°45′2.58″E）进行测验，锆石的挑选工作由河北省廊坊市宇能岩石矿物分选技术服务有限公司完成。锆石的制靶、阴极发光图像、透射光和反射光图像采集在北京锆年领航科技有限公司完成。通过对透射光、反射光和CL图像的分析，选取锆石吸收程度均匀、无裂隙、无包裹体的位置进行测定，本次U-Pb定年在中国科学院地质与地球物理研究所完成。实验所采取的激光束直径为30μm，测试结果通过GLITTER软件计算得出，实验获得的数据采用Anderson（2002）的方法进行同位素比值的校正以扣除普通Pb的影响，详细测试过程及仪器参数可参见袁洪林等（2008）文章所述。

5 地球化学特征

样品主量和微量元素含量分析测定在核工业北京地质研究院分析测试研究中心完成。主量元素分析使用AB-104L，PW2404X X射线荧光光谱仪完成。微量元素、稀土元素分析使用ELEMENT XR等离子体质谱分析仪和PerkinElmer，Elan DCR-e型等离子体质谱分析仪完成。详细的样品处理过程、分析精度和准确度同Liu et al.（2008）文章所述。

5.1 主量元素

延边地区开山屯花岗闪长岩-石英闪长岩体的主量元素和痕量元素组成见表2。岩体的SiO₂含量为61.46%~68.09%，TiO₂含量为0.384%~0.746%，Al₂O₃为15.04%~16.96%，Na₂O+K₂O为5.51%~5.90%，Na₂O/K₂O值为1.46~3.01，里特曼指数σ为1.39~1.65，属钙碱性岩石系列。从SiO₂-Na₂O+K₂O图（图4a）和SiO₂-K₂O变异图（图4b）中可以看出，该岩体落入钠长岩-花岗钠长岩区，属中钾钙碱性系列。岩石MgO含量为1.26%~3.03%，Fe₂O₃含量为3.51%~5.86%，该花岗闪长-石英闪长岩具有较高的镁指数，除样品F95的Mg²⁺值为0.39外，其它样品集中于0.46~0.49(Mg²⁺=Mg/(Mg+Fe²⁺))，A/CNK<1。

5.2 微量元素

样品稀土元素总量（ΣREE）为78.78×10⁻⁶~135.6×10⁻⁶，
Table 1 开山屯石英闪长岩锆石 LA-ICP-MS U-Pb 分析结果

<table>
<thead>
<tr>
<th>测点号</th>
<th>含量 ((\times 10^{-6}))</th>
<th>Th/U</th>
<th>(^{207})Pb/(^{206})Pb (\pm 1\sigma)</th>
<th>(^{207})Pb/(^{235})U (\pm 1\sigma)</th>
<th>(^{206})Pb/(^{238})U (\pm 1\sigma)</th>
<th>年龄 (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D95-01</td>
<td>100</td>
<td>0.60</td>
<td>0.05016</td>
<td>0.0161</td>
<td>0.22139</td>
<td>0.0073</td>
</tr>
<tr>
<td>D95-02</td>
<td>126</td>
<td>0.54</td>
<td>0.05013</td>
<td>0.0135</td>
<td>0.21574</td>
<td>0.00595</td>
</tr>
<tr>
<td>D95-03</td>
<td>75</td>
<td>0.51</td>
<td>0.05018</td>
<td>0.0181</td>
<td>0.21557</td>
<td>0.00796</td>
</tr>
<tr>
<td>D95-04</td>
<td>91</td>
<td>0.49</td>
<td>0.05015</td>
<td>0.0145</td>
<td>0.21751</td>
<td>0.00653</td>
</tr>
<tr>
<td>D95-05</td>
<td>83</td>
<td>0.54</td>
<td>0.05016</td>
<td>0.0168</td>
<td>0.21703</td>
<td>0.0075</td>
</tr>
<tr>
<td>D95-06</td>
<td>61</td>
<td>0.50</td>
<td>0.04998</td>
<td>0.0167</td>
<td>0.21543</td>
<td>0.00734</td>
</tr>
<tr>
<td>D95-07</td>
<td>80</td>
<td>0.51</td>
<td>0.05011</td>
<td>0.0159</td>
<td>0.21843</td>
<td>0.00711</td>
</tr>
<tr>
<td>D95-08</td>
<td>110</td>
<td>0.60</td>
<td>0.05024</td>
<td>0.0173</td>
<td>0.21429</td>
<td>0.00759</td>
</tr>
<tr>
<td>D95-09</td>
<td>91</td>
<td>0.53</td>
<td>0.05013</td>
<td>0.0022</td>
<td>0.22067</td>
<td>0.00871</td>
</tr>
<tr>
<td>D95-10</td>
<td>164</td>
<td>0.84</td>
<td>0.0501</td>
<td>0.0136</td>
<td>0.21804</td>
<td>0.0062</td>
</tr>
<tr>
<td>D95-11</td>
<td>125</td>
<td>0.63</td>
<td>0.05007</td>
<td>0.0153</td>
<td>0.21495</td>
<td>0.00684</td>
</tr>
<tr>
<td>D95-12</td>
<td>143</td>
<td>0.54</td>
<td>0.05006</td>
<td>0.0122</td>
<td>0.21442</td>
<td>0.00549</td>
</tr>
<tr>
<td>D95-13</td>
<td>121</td>
<td>0.60</td>
<td>0.05004</td>
<td>0.0132</td>
<td>0.21737</td>
<td>0.00602</td>
</tr>
<tr>
<td>D95-14</td>
<td>133</td>
<td>0.54</td>
<td>0.05001</td>
<td>0.0129</td>
<td>0.21702</td>
<td>0.00591</td>
</tr>
<tr>
<td>D95-15</td>
<td>222</td>
<td>0.78</td>
<td>0.05009</td>
<td>0.0127</td>
<td>0.21449</td>
<td>0.0058</td>
</tr>
<tr>
<td>D95-16</td>
<td>100</td>
<td>0.60</td>
<td>0.05011</td>
<td>0.0189</td>
<td>0.20858</td>
<td>0.0079</td>
</tr>
<tr>
<td>D95-17</td>
<td>104</td>
<td>0.61</td>
<td>0.05013</td>
<td>0.0181</td>
<td>0.21475</td>
<td>0.00791</td>
</tr>
<tr>
<td>D95-18</td>
<td>142</td>
<td>0.66</td>
<td>0.04997</td>
<td>0.032</td>
<td>0.21685</td>
<td>0.01333</td>
</tr>
<tr>
<td>D95-19</td>
<td>201</td>
<td>0.73</td>
<td>0.05001</td>
<td>0.0153</td>
<td>0.21299</td>
<td>0.00675</td>
</tr>
<tr>
<td>D95-20</td>
<td>71</td>
<td>0.57</td>
<td>0.05001</td>
<td>0.0191</td>
<td>0.21666</td>
<td>0.00836</td>
</tr>
<tr>
<td>D95-21</td>
<td>93</td>
<td>0.71</td>
<td>0.05001</td>
<td>0.0246</td>
<td>0.21444</td>
<td>0.0106</td>
</tr>
<tr>
<td>D95-22</td>
<td>80</td>
<td>0.49</td>
<td>0.05008</td>
<td>0.0207</td>
<td>0.21371</td>
<td>0.00897</td>
</tr>
<tr>
<td>D95-23</td>
<td>91</td>
<td>0.58</td>
<td>0.05006</td>
<td>0.0171</td>
<td>0.21469</td>
<td>0.00747</td>
</tr>
<tr>
<td>D95-24</td>
<td>134</td>
<td>0.61</td>
<td>0.05006</td>
<td>0.0171</td>
<td>0.21484</td>
<td>0.00746</td>
</tr>
<tr>
<td>D95-25</td>
<td>112</td>
<td>0.67</td>
<td>0.0514</td>
<td>0.0238</td>
<td>0.21818</td>
<td>0.01016</td>
</tr>
</tbody>
</table>

图 4 SiO\(_2\)-Na\(_2\)O+K\(_2\)O 图 (a) 和 SiO\(_2\)-K\(_2\)O 变异图解 (b)
Fig. 4 SiO\(_2\) vs. Na\(_2\)O + K\(_2\)O diagram (a) and SiO\(_2\) vs. K\(_2\)O diagram (b)
<table>
<thead>
<tr>
<th>样品号</th>
<th>F89</th>
<th>F94</th>
<th>F95</th>
<th>D95</th>
<th>G05</th>
<th>G06</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>62.79</td>
<td>65.79</td>
<td>68.09</td>
<td>61.65</td>
<td>61.46</td>
<td>61.55</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.618</td>
<td>0.551</td>
<td>0.384</td>
<td>0.738</td>
<td>0.746</td>
<td>0.682</td>
</tr>
<tr>
<td>Al2O3</td>
<td>16.45</td>
<td>15.04</td>
<td>15.8</td>
<td>16.96</td>
<td>16.25</td>
<td>16.71</td>
</tr>
<tr>
<td>FeO</td>
<td>4.98</td>
<td>4.76</td>
<td>3.51</td>
<td>5.34</td>
<td>5.86</td>
<td>5.46</td>
</tr>
<tr>
<td>MnO</td>
<td>0.096</td>
<td>0.094</td>
<td>0.066</td>
<td>0.101</td>
<td>0.105</td>
<td>0.104</td>
</tr>
<tr>
<td>MgO</td>
<td>2.65</td>
<td>2.23</td>
<td>1.26</td>
<td>2.79</td>
<td>3.03</td>
<td>2.85</td>
</tr>
<tr>
<td>CaO</td>
<td>5.26</td>
<td>4.22</td>
<td>3.5</td>
<td>5.44</td>
<td>5.39</td>
<td>5.48</td>
</tr>
<tr>
<td>Na2O</td>
<td>3.54</td>
<td>3.49</td>
<td>4.43</td>
<td>3.51</td>
<td>3.34</td>
<td>3.46</td>
</tr>
<tr>
<td>K2O</td>
<td>2.12</td>
<td>2.39</td>
<td>1.47</td>
<td>2.00</td>
<td>2.17</td>
<td>2.07</td>
</tr>
<tr>
<td>P2O5</td>
<td>0.117</td>
<td>0.131</td>
<td>0.112</td>
<td>0.12</td>
<td>0.131</td>
<td>0.131</td>
</tr>
<tr>
<td>LOI</td>
<td>0.60</td>
<td>0.76</td>
<td>0.88</td>
<td>0.60</td>
<td>0.83</td>
<td>0.85</td>
</tr>
<tr>
<td>Mg#</td>
<td>0.49</td>
<td>0.46</td>
<td>0.39</td>
<td>0.48</td>
<td>0.48</td>
<td>0.48</td>
</tr>
<tr>
<td>σ</td>
<td>1.62</td>
<td>1.52</td>
<td>1.39</td>
<td>1.63</td>
<td>1.65</td>
<td>1.65</td>
</tr>
<tr>
<td>A/CNK</td>
<td>0.93</td>
<td>0.94</td>
<td>1.04</td>
<td>0.95</td>
<td>0.92</td>
<td>0.93</td>
</tr>
</tbody>
</table>

图 5 球粒陨石标准化稀土元素配分模式图 (a, 标准化值据 Taylor and McLennan, 1985) 和原始地幔标准化微量元素蛛网图 (b, 标准化值据 Sun and McDonough, 1989)

Fig. 5 Chondrite-normalized REE patterns (a, normalization values after Taylor and McLennan, 1985) and spider diagram of trace elements (b, normalization values after Sun and McDonough, 1989)

岩体相对富集轻稀土元素 (LREEs)、贫重稀土元素 (HREEs), LREE/HREE = 4.50 ~ 6.98, (La/Yb)N = 3.30 ~ 6.91, 经球粒陨石标准化的稀土配分曲线 (图 5a) 可以看出岩石重稀土分馏较弱，标准化曲线较平坦，轻重稀土分馏明显，配分曲线呈明显右倾型，岩石存在中等至弱的铕负异常 δEu = 0.59 ~ 0.80。图中可见石英闪长岩与花岗闪长岩在稀土元素含量及配分形式上差别不大，但在原始地幔标准化微量元素蛛网图中 (图 5b) 两者差异明显，虽然两种岩石都富集大离子亲石元素 (LILEs) Rb, Th, U, K, 贫高场强元素 (HFSEs) Nb, Ta, Ti, 但石英闪长岩还存在明显的 Zr, Hf 亏损，这也暗示着两种岩石在成因方面的差异。
图 6 Zr/Hf-Mg* 相关性图解 (a) 和 Zr/Nb-Zr/Hf 相关性图解 (b)

Fig. 6 Zr/Hf vs. Mg* Correlation diagram (a) and Zr/Nb vs. Zr/Hf Correlation diagram (b)

6 讨论

6.1 岩石成因

开山屯岩体中存在暗色细粒闪长质包体, 包体为椭圆状外形, 显微镜下可见反映岩浆淬冷的针柱状磷灰石, 说明岩石的成因为高温基性岩浆与低温酸性岩浆混合后冷凝而成。岩石的 Zr/Hf 值对其成因具有一定的指示意义, 根据 Zr/Hf 值可以将样品分为两组, 石英闪长岩为低 Zr/Hf 值 (17.9~19.9) 组, 花岗闪长岩为高 Zr/Hf 值 (30.1~32.9) 组。从样品 Zr/Hf 值与 Mg* 的关系 (图 6a) 可以看出, 开山屯岩体的两组 Zr/Hf 值并非由同一岩浆分离结晶演化而来, 而是不同来源岩浆所造的。

岩石的 Zr/Nb 值能够反映岩石起源深度, 低 Zr/Nb 值可被视为深部地幔熔融的证据 (Bromiley and Redfern, 2008), 从 Zr/Nb-Zr/Hf 图解 (图 6b) 中也可以看出开山屯岩体的形成受到了两种不同起源深岩浆的影响, 其中高 Zr/Hf 组的花岗闪长岩具有较高的 Zr/Nb 值, 暗示其起源深度较浅, 这一点与岩石富集 K、Rb 等大离子亲石元素, 亏损 Nb、Ta、P、Ti 所揭示的曾受到地壳物质混染或为地壳来源 (孙德有等, 2001) 相匹配, 同时也符合该组岩石的 Nb/Ta 值 9.5~11 与大陆地壳 Nb/Ta 值 11~12 (Barth et al., 2000) 十分接近这一特征。低 Zr/Hf 组的石英闪长岩具有较低的 Zr/Nb 值, 表示其为深部地幔熔融产物。这也符合由于岩石起源较深, 源区存在金红石残留而造成的岩石亏损 Nb、Ta、Zr、Hf、Ti 的推测。但是该组岩石也具有较低的 Nb/Ta 值 (9.1~13.9), 虽然比花岗闪长岩略高, 但是和亏损地幔 (DM) 平均值 15.5 (Rudnick et al., 2000) 相比还是较小, 而造成这一现象的原因可能为来自亏损地幔的岩浆与来自地壳的岩浆发生了混合。

与 Nb/Ta 值分布不同, 大多数硅酸盐储库的 Zr/Hf 值分布不明显, 地壳、地幔似乎均处于球粒陨石值 (34.2) (Weyer et al., 2002)。石英闪长岩表现出的低 Zr/Hf 值有两种可能成因: 一种是岩浆演化成因, 岩浆演化到后期形成富硅的酸性岩浆, 而 Zr 属于不相容元素, 在岩浆演化中 Zr 达饱和并冷凝在酸性岩浆中; 另一种可能是岩浆与亏损地幔的相互作用, 由于亏损地幔中 Zr/Hf 值较低, 但 Zr/Hf 值的分布范围较大, 为低 Zr/Hf 值 (17~20)。已有学者通过对大量样品测试得出亏损地幔的 Zr/Hf 值可以低至 10 (Weyer et al., 2003), 而由这种亏损地幔部分熔融形成的岩浆也将继承其较低 Zr/Hf 值的特点, 结合低 Zr/Nb 值对岩浆起源深度的反映, 本文认为石英闪长岩表现出以上特征的原因是受到了来自亏损地幔部分熔融岩浆的影响。

上文得知参与石英闪长岩形成的基性岩浆起始于较深的亏损地幔, 而从闪长质包体中存在大量含水矿物角闪石可知, 其成因与板块俯冲过程中发生脱水/熔融交代亏损地幔楔有关。石英闪长岩的 Nb 含量为 4.37 × 10^{-6} ~ 5.28 × 10^{-6}, 陆壳的 Nb 含量平均值为 11.0 × 10^{-6} (Hofmann, 1988), 而俯冲作用形成 Nb 等大离子亲石元素, 亏损 Nb、Ta、P、Ti 所揭示的曾受到地壳物质混染或为地壳来源 (孙德有等, 2001) 相匹配, 同时也符合该组岩石的 Nb/Ta 值 9.5~11 与大陆地壳 Nb/Ta 值 11~12 (Barth et al., 2000) 十分接近这一特征。低 Zr/Hf 组的石英闪长岩具有较低的 Zr/Nb 值, 表示其为深部地幔熔融产物。这也符合由于岩石起源较深, 源区存在金红石残留而造成的岩石亏损 Nb、Ta、Zr、Hf、Ti 的推测。但是该组岩石也具有较低的 Nb/Ta 值 (9.1~13.9), 虽然比花岗闪长岩略高, 但是和亏损地幔 (DM) 平均值 15.5 (Rudnick et al., 2000) 相比还是较小, 而造成这一现象的原因可能为来自亏损地幔的岩浆与来自地壳的岩浆发生了混合。

与 Nb/Ta 值分布不同, 大多数硅酸盐储库的 Zr/Hf 值分布不明显, 地壳、地幔似乎均处于球粒陨石值 (34.2) (Weyer et al., 2002)。石英闪长岩表现出的低 Zr/Hf 值有两种可能成因: 一种是岩浆演化成因, 岩浆演化到后期形成富硅的酸性岩浆, 而 Zr 属于不相容元素, 在岩浆演化中 Zr 达饱和并冷凝在酸性岩浆中; 另一种可能是岩浆与亏损地幔的相互作用, 由于亏损地幔中 Zr/Hf 值较低, 但 Zr/Hf 值的分布范围较大, 为低 Zr/Hf 值 (17~20)。已有学者通过对大量样品测试得出亏损地幔的 Zr/Hf 值可以低至 10 (Weyer et al., 2003), 而由这种亏损地幔部分熔融形成的岩浆也将继承其较低 Zr/Hf 值的特点, 结合低 Zr/Nb 值对岩浆起源深度的反映, 本文认为石英闪长岩表现出以上特征的原因是受到了来自亏损地幔部分熔融岩浆的影响。
<table>
<thead>
<tr>
<th>地区</th>
<th>岩石组合/岩类</th>
<th>岩性</th>
<th>位置</th>
<th>年龄 (Ma)</th>
<th>测年方法</th>
<th>资料来源</th>
</tr>
</thead>
<tbody>
<tr>
<td>吉黑东部花岗岩与矿产分布图</td>
<td>超基性岩侵入杂岩</td>
<td>橄榄苏长岩,辉长岩,闪长岩</td>
<td>图门</td>
<td>187</td>
<td>SHRIMP U-Pb</td>
<td>Guo et al., 2015</td>
</tr>
<tr>
<td>花岗闪长—二长花岗岩组合</td>
<td>花岗闪长岩</td>
<td>绿色花岗岩,道河岩</td>
<td>东宁县罗圈站,道河岩</td>
<td>189</td>
<td>K-Ar 全岩</td>
<td>张昌, 2008</td>
</tr>
<tr>
<td>超基性岩—流纹岩组合</td>
<td>流纹岩</td>
<td>东宁县罗圈站,道河岩</td>
<td>191</td>
<td>K-Ar 全岩</td>
<td>张昌, 2008</td>
<td></td>
</tr>
<tr>
<td>岩浆弧火成岩组合</td>
<td>安山岩</td>
<td>饶河老黑山带岩浆构造带南,集中于绥芬河市及太平沟一带</td>
<td>190</td>
<td>K-Ar 全岩</td>
<td>张昌, 2008</td>
<td></td>
</tr>
</tbody>
</table>

吉黑东部地区

<table>
<thead>
<tr>
<th>岩石组合/岩类</th>
<th>岩性</th>
<th>位置</th>
<th>年龄 (Ma)</th>
<th>测年方法</th>
<th>资料来源</th>
</tr>
</thead>
<tbody>
<tr>
<td>钙碱性火山岩系列</td>
<td>玄武岩-玄武安山岩-安山岩-英安岩</td>
<td>绥芬河-延边地区</td>
<td>167~192</td>
<td>LA-ICP-MS U-Pb</td>
<td>裴福萍等, 2008</td>
</tr>
<tr>
<td>钙碱性火山岩系列</td>
<td>花岗闪长岩</td>
<td>太平岭</td>
<td>179~204</td>
<td>SHRIMP U-Pb</td>
<td>吕长禄等, 2012</td>
</tr>
<tr>
<td>钙碱性火山岩系列</td>
<td>二长花岗岩-正长花岗岩</td>
<td>42°32′00.8″N,129°05′45.5″E,42°08′39.3″N,129°06′51.5″E,42°37′23.0″N,129°45′2.6″E</td>
<td>175±2</td>
<td>LA-ICP-MS U-Pb</td>
<td>武鹏飞等, 2013</td>
</tr>
<tr>
<td>钙碱性火山岩系列</td>
<td>花岗闪长岩-石英闪长岩</td>
<td>42°37′23.0″N,129°45′2.6″E</td>
<td>198.3±1.3</td>
<td>LA-ICP-MS U-Pb</td>
<td>本文</td>
</tr>
<tr>
<td>石英闪长岩</td>
<td>密山市</td>
<td>早侏罗</td>
<td>吉林大学地质调查研究院, 2015</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

小兴安岭(张广才岭地区)

<table>
<thead>
<tr>
<th>岩石组合/岩类</th>
<th>岩性</th>
<th>位置</th>
<th>年龄 (Ma)</th>
<th>测年方法</th>
<th>资料来源</th>
</tr>
</thead>
<tbody>
<tr>
<td>双峰式火成岩</td>
<td>粗面安山岩(帽儿山组)</td>
<td>46°11′55.1″N,127°39′28.0″E</td>
<td>179±2</td>
<td>LA-ICP-MS</td>
<td>唐杰等, 2011</td>
</tr>
<tr>
<td>角闪辉长岩</td>
<td>45°8′29″N,127°14′2″E</td>
<td>183±1</td>
<td>LA-ICP-MS</td>
<td>本文</td>
<td></td>
</tr>
<tr>
<td>橄榄辉长岩</td>
<td>48°32′24″N,129°12′51″E</td>
<td>185±1</td>
<td>LA-ICP-MS</td>
<td>本文</td>
<td></td>
</tr>
<tr>
<td>角闪辉长岩</td>
<td>48°29′35″N,129°25′21″E</td>
<td>186±2</td>
<td>LA-ICP-MS</td>
<td>本文</td>
<td></td>
</tr>
</tbody>
</table>

双峰式火成岩

<table>
<thead>
<tr>
<th>岩石组合/岩类</th>
<th>岩性</th>
<th>位置</th>
<th>年龄 (Ma)</th>
<th>测年方法</th>
<th>资料来源</th>
</tr>
</thead>
<tbody>
<tr>
<td>双峰式火成岩</td>
<td>黑云母二长花岗岩</td>
<td>48°41′55.3″N,129°25′21″E</td>
<td>176</td>
<td>LA-ICP-MS</td>
<td>徐文良等, 2013</td>
</tr>
<tr>
<td>角闪辉长岩</td>
<td>48°32′24″N,129°12′51″E</td>
<td>185±2</td>
<td>LA-ICP-MS</td>
<td>本文</td>
<td></td>
</tr>
<tr>
<td>角闪辉长岩</td>
<td>48°19′35″N,129°12′51″E</td>
<td>182±2</td>
<td>LA-ICP-MS</td>
<td>本文</td>
<td></td>
</tr>
<tr>
<td>角闪辉长岩</td>
<td>48°32′24″N,129°12′51″E</td>
<td>185±2</td>
<td>LA-ICP-MS</td>
<td>本文</td>
<td></td>
</tr>
<tr>
<td>角闪辉长岩</td>
<td>48°32′24″N,129°12′51″E</td>
<td>185±2</td>
<td>LA-ICP-MS</td>
<td>本文</td>
<td></td>
</tr>
</tbody>
</table>

A型花岗岩

<table>
<thead>
<tr>
<th>岩石组合/岩类</th>
<th>岩性</th>
<th>位置</th>
<th>年龄 (Ma)</th>
<th>测年方法</th>
<th>资料来源</th>
</tr>
</thead>
<tbody>
<tr>
<td>角闪辉长岩</td>
<td>45°30′35.5″N,126°58′30.1″E</td>
<td>182±3</td>
<td>SHRIMP TIMS</td>
<td>孙德有等, 2005</td>
<td></td>
</tr>
<tr>
<td>角闪辉长岩</td>
<td>48°32′24″N,129°12′51″E</td>
<td>182±2</td>
<td>LA-ICP-MS</td>
<td>本文</td>
<td></td>
</tr>
<tr>
<td>角闪辉长岩</td>
<td>48°32′24″N,129°12′51″E</td>
<td>185</td>
<td>LA-ICP-MS</td>
<td>本文</td>
<td></td>
</tr>
</tbody>
</table>

A型花岗岩

<table>
<thead>
<tr>
<th>岩石组合/岩类</th>
<th>岩性</th>
<th>位置</th>
<th>年龄 (Ma)</th>
<th>测年方法</th>
<th>资料来源</th>
</tr>
</thead>
<tbody>
<tr>
<td>角闪辉长岩</td>
<td>43°30′35.5″N,126°58′30.1″E</td>
<td>182±3</td>
<td>SHRIMP TIMS</td>
<td>孙德有等, 2005</td>
<td></td>
</tr>
<tr>
<td>角闪辉长岩</td>
<td>48°32′24″N,129°12′51″E</td>
<td>182±2</td>
<td>LA-ICP-MS</td>
<td>本文</td>
<td></td>
</tr>
<tr>
<td>角闪辉长岩</td>
<td>48°32′24″N,129°12′51″E</td>
<td>185</td>
<td>LA-ICP-MS</td>
<td>本文</td>
<td></td>
</tr>
</tbody>
</table>

A型花岗岩

<table>
<thead>
<tr>
<th>岩石组合/岩类</th>
<th>岩性</th>
<th>位置</th>
<th>年龄 (Ma)</th>
<th>测年方法</th>
<th>资料来源</th>
</tr>
</thead>
<tbody>
<tr>
<td>角闪辉长岩</td>
<td>43°30′35.5″N,126°58′30.1″E</td>
<td>182±3</td>
<td>SHRIMP TIMS</td>
<td>孙德有等, 2005</td>
<td></td>
</tr>
<tr>
<td>角闪辉长岩</td>
<td>48°32′24″N,129°12′51″E</td>
<td>182±2</td>
<td>LA-ICP-MS</td>
<td>本文</td>
<td></td>
</tr>
<tr>
<td>角闪辉长岩</td>
<td>48°32′24″N,129°12′51″E</td>
<td>185</td>
<td>LA-ICP-MS</td>
<td>本文</td>
<td></td>
</tr>
<tr>
<td>角闪辉长岩</td>
<td>48°32′24″N,129°12′51″E</td>
<td>185</td>
<td>LA-ICP-MS</td>
<td>本文</td>
<td></td>
</tr>
</tbody>
</table>

注：本文所研究的花岗闪长岩-石英闪长岩体形成于早侏罗世早期 (198±1Ma)，位于延边开山屯地区，与吉黑东部的钙碱性火成岩系列 (173~
图7 Ba/Nb-La/Nb 图解
Fig. 7 Ba/Nb vs. La/Nb diagram

图8 吉黑东部早侏罗世双峰式火成岩、A型花岗岩、活动陆缘型火成岩分布图(据许文良等，2013；参考数据见表3)
Fig. 8 Distribution map of Early Jurassic bimodal igneous rock, A-type granite, Active continental margin igneous rock in Eastern Jilin and Heilongjiang Provinces (after Xu et al., 2013; reference data from Table 3)

195 Ma(Guo et al., 2015; 许文良等, 2008; 裴福萍等, 2008; 吕长禄等, 2012; 武鹏飞等, 2013)联合组成早侏罗世洋-陆俯冲的产物——东东向的活动陆缘型钙碱性火成岩带(图8、表3)。而在此火成岩带西侧的小兴安岭-张广才岭地区存在一套同时代且与之平行展布的双峰式火成岩、A型花岗岩带(唐杰等, 2011; Yu et al., 2012; Wu et al., 2002; 孙德有等, 2005)。这两条火成岩带从岩性特征及产出位置上组成了古太平洋俯冲所形成的大陆边缘弧与弧后拉张区,揭示了古太平洋板块在早侏罗世早期就已经向中国东北地区俯冲现象的存在。

7 结论

(1) 开山屯花岗岩长岩—石英闪长岩体成因是受流体交代的亏损地幔楔发生部分熔融产生岩浆和来自地壳的岩浆经不均匀混合作用形成。
(2) 吉黑东部地区存在北东向分布的弧火成岩带, 其成因与古太平洋板块俯冲作用有关。
(3) 开山屯花岗岩长岩—石英闪长岩体形成时间为早侏罗世早期(198 ± 1 Ma), 表明古太平洋板块至少在早侏罗世早期就已经向中国东北地区俯冲。

References

Barth MG, McDonough WF and Rudnick RL. 2000. Tracking the budget of Nb and Ta in the continental crust. Chemical Geology, 165 (3 – 4): 197 – 213
Li CW, Guo F, Fan WM et al. 2007. Ar-Geochronology of Late
Mesozoic volcanic rocks from the Yanji area, NE China and tectonic implications. Science in China (Series D), 50(4): 505 – 518

Northrup CJ, Royden LH and Burchfiel BC. 1995. Motion of the Pacific plate relative to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia. Geology, 23 (8): 719 – 722

附中文参考文献

曹花花. 2010. 珲春地区晚海西期辉长岩-闪长岩的形成时代和地球化学. 硕士学位论文. 长春：吉林大学

陈端元, 杨进辉. 2015. 佛冈高分异 I 型花岗岩的成因：来自 Nb-Ta-Zr-Hf 等元素的制约. 岩石学报, 31(3): 846 - 854

付长亮. 2009. 珲春小西南岔地区花岗岩类的时代、地球化学特征与成因. 硕士学位论文. 长春：吉林大学

冯光英, 刘越, 范蔚茗等. 2007. 延吉地区晚中生代火山岩的 Ar-Ar 年代学格架及其大地构造意义. 中国科学 (D 辑), 37(3): 319 - 330

李锦轶, 高立明, 孙桂华等. 2007. 内蒙古东部双井子中三叠世间碰撞造山花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束. 岩石学报, 23(3): 565 - 582

吕长禄, 徐东海, 李新鹏等. 2012. 黑龙江太平岭早侏罗世花岗岩成因与壳幔相互作用. 现代地质, 26(4): 635 - 646

许文良, 葛文春, 裴福萍等. 2008. 黑龙江太平岭早侏罗世花岗岩的年代学及地球化学证据. 矿物岩石地球化学通报, 27(增): 286 - 287

张广才岭帽儿山组双峰式火山岩成因: 年代学与地球化学证据. 世界地质, 30(4): 508 - 520

张超. 2014. 华北板块北缘东段延边地区中生代构造演化. 博士学位论文. 长春：吉林大学

张昱. 2008. 黑龙江省东部早中生代火成岩构造组合及其大地构造演化. 博士学位论文. 北京：中国地质大学

张艳斌. 2002. 延边地区花岗岩质岩浆活动的同位素地质年代学格架. 博士学位论文. 长春：吉林大学

张艳斌. 2002. 中朝古板块碰撞时限的确定及意义. 科学通报, 58(23): 2266 - 2270